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ABSTRACT
Query Understanding (QU) is a fundamental process in E-commerce
search engines by extracting the shopping intents of customers.
It usually includes a set of different tasks such as named entity
recognization and query classification. Traditional approaches of-
ten tackle each task separately by its own network, which leads to
excessive workload for development and maintenance as well as
increased latency and resource usage in large-scale E-commerce
platforms. To tackle these challenges, this paper presents a multi-
task learning approach to query understanding at Walmart. We
experimented with several state-of-the-art multi-task learning ar-
chitectures including MTDNN, MMoE, and PLE. Furthermore, we
propose a novel large-scale entity-aware multi-task learning model
(EAMT)1 by retrieving entities from engagement data as query
context to augment the query representation. To the best of our
knowledge, there exists no prior work on multi-task learning for
E-commerce query understanding. Comprehensive offline experi-
ments are conducted on industry-scale datasets (up to 965M queries)
to illustrate the effectiveness of our approach. The results from on-
line experiments show substantial gains in key accuracy and latency
metrics.

CCS CONCEPTS
• Computing methodologies → Multi-task learning; • Infor-
mation systems → Information retrieval query processing.

∗The work was done during the internship at Walmart Global Tech.
†Sravanthi Rajanala is the corresponding author.
1Our code can be found at https://github.com/zhiyuanpeng/KDD2023-EAMT
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1 INTRODUCTION
QueryUnderstanding (QU) is an essential component of E-commerce
search engines, which aims to predict the customer intent given a
search query. Queries are usually short texts [16] containing several
words indicating what customers intend to buy. For instance, it is
QU’s job to understand that a customer who searches the query
“Sony TV 64 black” wants to buy a TV (product type) with the brand
“Sony”, size “64 inches”, and color “black”.

QU usually consists of a set of different tasks and each one can
capture one aspect of the customer’s intent. The tasks may vary
with different E-commerce platforms. In this paper, we focus on the
following four tasks of QU on Walmart’s online shopping platform:

• Product Type Classification (PT). PT is a sentence-level multi-
label classification task with about 6K labels in total.

• Query Catalog Classification (QC). QC is the same as PT
except for the number of labels. For QC, there are about 1k
labels in total.

• Named Entity Recognition (NER). NER is to identify named
entities in queries and classify them into predefined seman-
tic categories, like color, size, etc. Specifically, we use IOB2
scheme [19] to indicate each entity’s start and end positions.
We treat NER as a token-level multi-class classification task
with about 60 labels in total.

• Term Weighting (TW). TW is to distinguish whether or not
each token in the query is extraneous, which is a token-level
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Figure 1: An overview of QU in a retrieval system.

binary classification task. Instead of treating each token in
the query equally, TW detects the extraneous tokens and
excludes them when retrieving products.

An overview of QU on the Walmart e-commerce platform is
shown in Figure 1. After correcting the input query, QU models
predict the labels of the four QU tasks. The retrieval takes the QU
labels as inputs and searches items from the item index. Customers
will see a list of items ranked by ranking model.

Traditional approaches to QU tackle each task separately by its
own network and pipeline, which leads to excessive workload for
development and maintenance as well as increased latency and
resource usage in large-scale E-commerce platforms. In this paper,
we present a multi-task learning approach to query understand-
ing at Walmart, which enables several key advantages for QU in
large-scale E-commerce platforms. First of all, multi-task learning
enables a single launch for a combination of all models for individ-
ual QU tasks. This will increase the engineering development and
maintenance drastically. It also help measure the unified impact
of model changes. For example, whenever we add a new feature
it will be automatically incorporated to all predictions. Moreover,
it saves the computational resources and memory footprint as all
tasks share a significant portion of a single model. Last but not the
least, we can leverage transfer learning between different QU tasks
to improve overall performance and alleviate potential overfitting
on a single task [27]. In query understanding, the training corpora
of different tasks are all queries with different labels, which make
it naturally fits the multi-task learning paradigm. Moreover, we
resort to semi-supervised learning via retrieval augmentation, to
learn from the additional information extracted from the relevant
engagement data for prediction to achieve improved performance.
Our main contributions can be summarized as follows:

• We introduce a large-scale multi-task deep learning approach
to modeling multiple query understanding tasks. To the best
of our knowledge, there is no prior work on multi-task learn-
ing for E-commerce query understanding.

• We compared and experimented with several state-of-the-art
multi-task learning architectures including MTDNN, MMoE,
and PLE, for query understanding.

• We propose a novel large-scale entity-aware multi-task learn-
ing model (EAMT) with a clean and effective engineering so-
lution by retrieving entities from engagement data as query
context to augment the query representation.

• Comprehensive offline experiments are conducted on industry-
scale datasets (up to 965M queries) to illustrate the effective-
ness of our approach. The results from online experiments
show substantial gains in key accuracy and latency metrics.

2 RELATEDWORK
2.1 Query Understanding
Most of the researchers focus on a single QU task. [26] designs
three unique loss functions to improve the performance of the basic
Seq2Seq model to re-write the tail source queries to well-trained
head queries while preserving the shopping intent. [3] introduces
a model to identify the entities in queries from a knowledge base.
A few works focus on more than one QU task. Relying on transfer
learning, [2] presents a whole QU system with the ability to process
another language with minimal annotation by experts, but the
tasks are trained in sequence. [11] and [8] argue that queries are
short texts with less contextual information than long texts, so
they propose different methods to train better pre-trained language
models (PLMs) for queries which can improve QU tasks. Much
fewer works about multi-tasking learning in QU. Rao and Ture,
et al. [17] develop a multi-task learning model based on LSTM to
process the voice queries.

2.2 Multi-task Learning
Deep neural network based multitask learning is studied and ap-
plied in many academic areas like computer version and natural
language processing, Web, and so on [27]. With the progress in
sizeable masked language models (MLM) like BERT [10], multi-task
neural network (MT-DNN) [13] was proposed to utilize the BERT
as the shared structure among all tasks to learn expressive semantic
embeddings that are fed into the following heads, usually small spe-
cific neural networks designed for different tasks. The shared BERT
is trained on all the data, allowing knowledge to be transferred
among different tasks, but the heads of different tasks are indepen-
dently trained. In multi-task learning, not all the tasks update the
parameters in the same direction, e.g., the tug-of-war phenomenon
[7]. The multi-gated mixture of experts (MMoE) [6] explores to
use the sparse network to learn the specialized information about
individual tasks and the shared information among multiple tasks
separately. Specifically, MMoE inserts a mixture of expert (MoE)
[20] layer between BERT and the heads of tasks. Instead of using
only one shared gate in the original MoE, MMoE has a gate for
each task. The number of experts and the structure of experts are
all newly introduced hyperparameters; in practice, it is a burden to
search such optimal parameters. [14] proposes a large-scale online
multi-task learning model based on MMoE for ads auction. Like
MMoE, PLE [21] also explicitly separates shared and task-specific
experts to mitigate the negative transfer among tasks. The differ-
ence is that PLE introduces multi-level experts and gating networks,
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each of which is an MMoE layer, and applies a progressive separa-
tion routine to extract deeper knowledge from lower-layer experts
and gradually separate task-specific parameters in higher levels.
Apart from the hyperparameters introduced by MMoE, PLE has the
challenge of designing a progressive learning structure. MMoE and
PLE learn the sparse network after the transformer-based models
like BERT. Recently, Switch [5], MT-Switch [6], and MT-TaG [6]
learn the sparse network within the transformer. MLTR [24] pro-
poses a multi-task learning framework for product ranking on a
large-scale e-commerce dataset. In this paper, we implement MT-
DNN, MMoE, and PLE models and compare their performances on
the e-commerce QU dataset.

2.3 Semi-supervised Learning
Many semi-supervised learning works use unlabeled data to help
the supervised learning task. UDA [25] proposes to use consistency
loss to constrain the model output the same labels for unlabeled
augmented instance pairs. UDA can be easily extended to multi-task
learning settings, however, for token-level tasks like NER, there
will be fewer choices for data augmentation methods because the
relative positions of tokens should keep the same when doing data
augmentation. CL-KL [23] proposes to retrieve unlabeled instances
to be context to help the NER task. Our entity-aware model also
uses external memory to retrieve contexts for each query. However,
the contexts are not the unlabeled queries but the entities extracted
from the engagement data. Another difference in our work with
CL-KL is that we use the listwise loss to make the model learn the
relative importance of each retrieved entity.

Different from all the works above, our proposed 𝐸𝐴𝑀𝑇 model
can learn the relative importance of retrieved entities by calculating
the listwise loss on the entities. The model can learn a better entity
context for each query to help the overall performance of QU tasks.
To the best of our knowledge, this is the first paper discussing how
to successfully build an online large-scale multi-task learning for
e-commerce query understanding. Also, our work can be easily
extended to any number of tasks and other domains.

3 TASKS OF QUERY UNDERSTANDING
As introduced in Section 1, the query understanding process at Wal-
mart focuses on four individual tasks: Product Type Classification
(PT), Query Catalog Classification (QC), Named Entity Recognition
(NER), and Term Weighting (TW). All the QU tasks adopt the same
BERT-base model architecture as demonstrated in Figure 2, but they
have different task-specific networks 𝐻𝑡 and loss functions 𝑓 𝑡

𝑙𝑜𝑠𝑠
for the task 𝑡 . A query q is tokenized into a list of token pieces 𝑞1,
𝑞2, ..., 𝑞𝑚−1, 𝑞𝑚 . After concatenating the tokenized q with the start
token𝐶𝐿𝑆 and end token 𝑆𝐸𝑃 , a pre-trained BERT base model fine-
tuned by Walmart queries encodes token pieces into embeddings
e𝐶𝐿𝑆 , e𝑞1 , e𝑞2 , ..., e𝑞2 , e𝑞𝑚 , e𝑆𝐸𝑃 that are then fed into a followed
task-specific network 𝐻𝑡 to get the predictions 𝑝𝑡 (q).𝑊𝐻𝑡 denotes
the parameters of 𝐻𝑡 . We use the following prediction functions
and loss functions for QU tasks.

Assume PT has 𝑁𝑝𝑡 labels and for each query q, the true labels
are 𝑦1, 𝑦2, ..., 𝑦𝑁𝑝𝑡 each element of which is a binary indicator. The
multi-label prediction of the task PT is:

𝑝𝑝𝑡 (q) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑇
𝐻𝑝𝑡

· e𝐶𝐿𝑆 ) (1)

Figure 2: The architecture of each singleQU task. All the tasks
use the same green blocks and have different blue blocks.

where 𝑝𝑝𝑡 (q) = 𝑙1, ..., 𝑙𝑁𝑝𝑡 . 𝑙𝑛 is the probability of query q have the
𝑛𝑡ℎ label. We use the binary cross-entropy loss as the objective:

𝑡𝑎𝑠𝑘𝑙𝑜𝑠𝑠𝑝𝑡 (q) = −
𝑁𝑝𝑡∑︁
𝑛=1

[𝑦𝑛 · log 𝑙𝑛 + (1 − 𝑦𝑛) · log (1 − 𝑙𝑛)] (2)

QC has the same architecture as PT. Similarly, for QC, we have:

𝑝𝑞𝑐 (q) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑇
𝐻𝑞𝑐

· e𝐶𝐿𝑆 ) (3)

𝑡𝑎𝑠𝑘𝑙𝑜𝑠𝑠𝑞𝑐 (q) = −
𝑁𝑞𝑐∑︁
𝑛=1

[𝑦𝑛 · log 𝑙𝑛 + (1 − 𝑦𝑛) · log (1 − 𝑙𝑛)] (4)

BERT tokenizer may tokenize each token into several small
pieces. For NER, we assign each small piece a label by the rules:
1) 𝑂 label if the original token has label 𝑂 ; 2) 𝐼 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑙𝑎𝑏𝑒𝑙
if the original label is not 𝑂 . Assume there are 𝑁𝑛𝑒𝑟 labels. Each
token 𝑞𝑖 in query q has only one label ranging from 1 to 𝑁𝑛𝑒𝑟 . The
prediction of NER is:

𝑝𝑛𝑒𝑟 (q) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑇
𝐻𝑛𝑒𝑟

· e) (5)

where e = e𝑞1 , e𝑞2 , ..., e𝑞2 , e𝑞𝑚 and 𝑝𝑛𝑒𝑟 (q) ∈ R𝑚×𝑁𝑛𝑒𝑟 . 𝑙𝑖, 𝑗 is the
element in 𝑝𝑛𝑒𝑟 (q) with 𝑖𝑡ℎ row and 𝑗𝑡ℎ column. We use cross-
entropy loss as the objective:

𝑡𝑎𝑠𝑘𝑙𝑜𝑠𝑠𝑛𝑒𝑟 (q) = −
𝑚∑︁
𝑖=1

𝑁𝑛𝑒𝑟∑︁
𝑗=1

1(𝑞𝑖 , 𝑗) log 𝑙𝑖, 𝑗 (6)

where 1(𝑞𝑖 , 𝑗) is the binary indicator (0 or 1) if the class label 𝑗
is the correct classification for token 𝑞𝑖 . 𝐶𝐿𝑆 and 𝑆𝐸𝑃 are masked
when computing the loss.

The prediction of TW is:

𝑝𝑡𝑤 (q) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑇
𝐻𝑡𝑤

· e) (7)

where e = e𝑞1 , e𝑞2 , ..., e𝑞2 , e𝑞𝑚 and 𝑝𝑡𝑤 (q) = 𝑙1, ..., 𝑙𝑚 . Assume 𝑦𝑖 is
the true label of 𝑖𝑡ℎ token 𝑞𝑖 that has prediction probability 𝑙𝑖 . We
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use binary cross-entropy as the objective:

𝑡𝑎𝑠𝑘𝑙𝑜𝑠𝑠𝑡𝑤 (q) = −
𝑚∑︁
𝑖=1

[𝑦𝑖 · log 𝑙𝑖 + (1 − 𝑦𝑖 ) · log (1 − 𝑙𝑖 )] (8)

Only the first piece of the token will contribute to the loss for TW.
𝐶𝐿𝑆 and 𝑆𝐸𝑃 are masked when computing the loss.

4 MULTI-TASK LEARNING FOR QU
Our 𝐸𝐴𝑀𝑇 model is constructed on top of the baseline multi-task
models by introducing an entity-aware component. This section
will first introduce the baseline multi-task models (Section 4.1) and
then present the proposed 𝐸𝐴𝑀𝑇 model (Section 4.2) with the entity
retrieval model (Section 4.3).

4.1 Baseline Multi-task learning Models
In this paper, we compare three popular multi-task learning models:
𝑀𝑇𝐷𝑁𝑁 , 𝑀𝑀𝑜𝐸, and 𝑃𝐿𝐸, which can also serve as the building
block for our proposed 𝐸𝐴𝑀𝑇 models. The differences between
these three models are illustrated in Figure 3. For conciseness, we
only draw two tasks 𝐴 and 𝐵. The two tasks share the green struc-
tures. The blue structure is for task 𝐴 and the red structure is for
task 𝐵. 𝐸 blocks are expert networks, and the circle 𝐺 represents
the gate network. During training, the green structure is always
activated, but for each training step, only one of the red and blue
structures is activated.

Figure 3: The architecture of the model-specific network.

4.2 Entity-aware Model Structure
Utilizing context information to help the large language models
(LLM) like BERT has been well studied recently [4] [12]. For queries,
the related entities in the engagement data, like brand, have seman-
tic relationships with the PT, QC, and NER labels. Utilizing the
entities as context can transfer knowledge to queries. The scores of
entities indicating their importance also contain helpful informa-
tion. To utilize the knowledge of entities, we propose the EAMT
model to further improve the baseline multi-task model. EAMT
retrieves entities as context while utilizing the scores of entities to
regularize the model.
As shown in Figure 4, for the query “kung fu panda”, we first call
the entity retrieval model to retrieve the entities “isbn = kung fu
panda & pt = books” and “film = kung fu panda & pt = movie”. The

two entities are concatenated by an unused token “[unused0]” as a
context and then input the query and its context into the BERT-base
model to obtain the embeddings. Model-specific network𝑀𝑖 takes
the embeddings and outputs the embeddings with the same dimen-
sionality. The head network 𝐻𝑡 takes the embeddings from the
previous step as input to compute the prediction 𝑝𝑖𝑡 (q). We average
all the token embeddings in each entity as an entity representation
and calculate the ListNet [1] loss on the entity representations.

More formally, for a baseline multi-task model 𝑖 with model-
specific network 𝑀𝑖 , we use𝑊𝑀𝑖 to denote the parameters of 𝑀𝑖
and𝑊𝐻𝑡 to represent the parameters of task-specific network 𝐻𝑡 .
For a query q that can be tokenized into a list of token pieces
𝑞1, 𝑞2, ..., 𝑞𝑚−1, 𝑞𝑚 , we first call entity retrieval model to retrieve
entities consisting of𝐾 entities each of which has a score indicating
its order among the entities. Then, all the entities are shuffled,
tokenized into token pieces, and concatenated by "[unused0]". All
the entity token pieces 𝑐1, 𝑐2, ..., 𝑐𝑛−1, 𝑐𝑛 are concatenated as a
query context contextq for qeury q. Finally, query q and its context
contextq are concatenated by "SEP" as input of BERT-base model
to acquire the embeddings eCLS, eqi , ..., eqm , eSEP, ec1 , ..., ecn , eSEP.
𝑃𝑖𝑡 (q) represents the task prediction of 𝑞 for multi-task baseline
model 𝑖’s task 𝑡 . The loss of task 𝑡 is expressed as 𝑡𝑎𝑠𝑘𝑙𝑜𝑠𝑠𝑖𝑡 . The loss
function of each task in the multi-task learning model is the same as
that of the single task, which we have discussed in section 3. Here,
we only show the prediction functions of each task as follows.

𝑝𝑖𝑝𝑡 (q) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑇
𝐻𝑝𝑡

· (𝑀𝑇𝑖 · e𝐶𝐿𝑆 )) (9)

𝑝𝑖𝑞𝑐 (q) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑇
𝐻𝑞𝑐

· (𝑀𝑇𝑖 · e𝐶𝐿𝑆 )) (10)

𝑝𝑖𝑛𝑒𝑟 (q) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑇
𝐻𝑛𝑒𝑟

· (𝑀𝑇𝑖 · e)) (11)

𝑝𝑖𝑡𝑤 (q) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑇
𝐻𝑡𝑤

· (𝑀𝑇𝑖 · e)) (12)

where e = e𝑞1 , e𝑞2 , ..., e𝑞2 , e𝑞𝑚 .
Each entity retrieved from the entity retrieval model has a score

that indicates its relative importance compared to other retrieved
entities. A ranking loss is utilized to make the model learn which
entity is more important, so the attention networks [22] in the
BERT-base model will pay more attention to the crucial entities,
and better query embeddings are then learned. Suppose we retrieve
𝐾 entities, we first extract the embeddings of tokens belonging to
each entity and average the embeddings of all the tokens within the
entity as the entity representation ent𝑘 . Dense network 𝐷𝑘 with
parameters𝑊𝐷𝑘 compress ent𝑘 into a score 𝑠𝑘 . We use listwise loss
ListNet [1] to calculate 𝑟𝑎𝑛𝑘𝑙𝑜𝑠𝑠 (entities) as follow:

𝑟𝑎𝑛𝑘𝑙𝑜𝑠𝑠 (entities) =
𝐾∑︁
𝑘=1

−𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑦𝑘 ) log 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑠𝑘 ) (13)

where 𝑦𝑘 is the true score of the 𝑘𝑡ℎ entity and 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function
is:

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥𝑘 ) =
𝑒𝑥𝑘∑𝐾
𝑘=1 𝑒

𝑥𝐾
(14)
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At last, the loss of task 𝑡 and baseline multi-task learning model 𝑖
is computed as:

𝑙𝑜𝑠𝑠𝑖𝑡 = 𝑡𝑎𝑠𝑘𝑙𝑜𝑠𝑠
𝑖
𝑡 (q) + 𝑟𝑎𝑛𝑘𝑙𝑜𝑠𝑠 (entities) (15)

EAMT can be constructed on the three popular multi-task learn-
ing models:𝑀𝑇𝐷𝑁𝑁 ,𝑀𝑀𝑜𝐸, and 𝑃𝐿𝐸, introduced in Section 4.1.
The three proposed 𝐸𝐴𝑀𝑇 models 𝐸𝑀𝐴𝑇𝑚𝑡𝑑𝑛𝑛 , 𝐸𝑀𝐴𝑇𝑚𝑚𝑜𝑒 , and
𝐸𝑀𝐴𝑇𝑝𝑙𝑒 only differ in the model-specific network 𝑀𝑖 which is
the red block in Figure 4. 𝐸𝑀𝐴𝑇𝑚𝑡𝑑𝑛𝑛 has no model-specific net-
work which means the token embeddings of a query are directly
passed into a followed task-specific network. 𝐸𝐴𝑚𝑚𝑜𝑒 has shared
experts but independent gate networks. Instead of sharing all the
experts in 𝐸𝐴𝑀𝑇𝑚𝑚𝑜𝑒 , 𝐸𝐴𝑀𝑇𝑝𝑙𝑒 has both shared expert networks
and task-specific expert networks. The expert network in 𝑃𝐿𝐸 has
multi-layers to learn the features progressively.

4.3 Entity Retrieval Models
We developed three entity retrieval models: the entity nearest neigh-
bor (ENT-NN) model, the engagement nearest neighbor (ENG-NN)
model, and the exact match (EXACT) model. The three models
share a similar structure shown in Figure 5. Faiss indexer stores
the normalized embeddings of targets encoded by the sentence
transformer model all-MiniLM-L6-v2 [18] and their corresponding
entities are stored in the entity memory. Each entity is a dictionary
with keys like entity represents the entity type, name stores the
entity’s value, and pt stores a list of product types related to the
entity. For conciseness, we only draw one product type for key pt
in Figure 5, but in practice, each pt has at most ten product types
concatenated by “;”. When a query q comes into the entity retrieval
model, it will be first encoded and normalized into an embedding e𝑞
by the same all-MiniLM-L6-v2, and then we use Faiss [9] to conduct
the nearest neighbor (NN) search to obtain the ids of the top 𝑘 most
similar targets. Finally, we locate the entities in the entity memory
by the ids and retrieve the entities. ENT-NN and ENG-NN differ in
the Faiss indexers and entity memories.

ENT-NN. We collected about 7M entities which include brands,
book titles, author names, music names, and movie names by the
algorithm. We directly encoded and normalized the 7M entities into
embeddings and built the “IndexFlatIP” Fasiss index on them. For
query q with 𝑀 tokens, we first broke q into 𝑀 (𝑀 + 1)/2 grams.
The tokens in a gram are concatenated into a sub-query q𝑠𝑢𝑏 , which
has𝑚 tokens. To retrieve the entities for q, we first used the longest
q𝑠𝑢𝑏 to do NN search, and the Faiss will return ids. Each one has a
score of 𝑆𝑓 𝑎𝑖𝑠𝑠 , which is the Cosine similarity score between the
normalized embedding of 𝑞𝑠𝑢𝑏 and the retrieved normalized entity
embedding. The retrieved ids with the scores bigger than 0.99 are
valid. Short q𝑠𝑢𝑏 will introduce severe noise, and thus 𝑆𝑓 𝑎𝑖𝑠𝑠 is
punished by𝑚/𝑀 . The entity score 𝑆𝑒𝑛𝑡−𝑛𝑛 is computed as:

𝑆𝑒𝑛𝑡−𝑛𝑛 = 𝑆𝑓 𝑎𝑖𝑠𝑠 × (𝑚/𝑀) (16)

The advantage of ENT-NN is that we can add new entities to the
Faiss indexer to handle the unseen queries or queries with fewer
engagement data, while the disadvantage is the noisy entities in-
troduced by the entity collecting algorithm.
ENG-NN. We collected 2 years of engagement data with each in-
stance representing a pair of a query q𝑒𝑛𝑔 and its engagement
entities. Each entity is brought by customers 𝑜𝑟𝑑 times. We used

threshold 𝑜𝑟𝑑 > 1 to filter the q𝑒𝑛𝑔 and obtained about 20M differ-
ent query-entities pairs. Instead of directly encoding the entities,
ENG-NN encodes q𝑒𝑛𝑔 and builds the “PCA64, IVF16384_HNSW32,
Flat” Faiss index for fast approximate NN search. The entity mem-
ory stores the corresponding entities, and each entry in it has a
list of entity dictionaries. Different from ENT-NN’s entity dictio-
nary, ENG-NN’s entity dictionary has one more key 𝑜𝑟𝑑 . “PCA64,
IVF16384_HNSW32, Flat” cannot guarantee the retrieved q𝑒𝑛𝑔s are
in the descending order of 𝐶𝑜𝑠𝑖𝑛𝑒 (q, q𝑒𝑛𝑔). After retrieving a list
of q𝑒𝑛𝑔s, we calculated the entity score 𝑆𝑒𝑛𝑔−𝑛𝑛 as:

𝑆𝑒𝑛𝑔−𝑛𝑛 = 𝐶𝑜𝑠𝑖𝑛𝑒 (q, q𝑒𝑛𝑔) (17)

The average entity retrieval time for one query of QU-3.75M dataset
is about 1ms.
EXACT. We directly applied ENG-NN’s engagement queries as a
dictionary to conduct an exact match to find the entities for queries.
Compared with ENG-NN, EXACT retrieves entities with a higher
precision but a lower recall. EXACT is utilized as a baseline to be
compared with ENT-NN and ENG-NN.

5 EXPERIMENTAL SETUP
5.1 Datasets
We conducted our offline experiments on two large-scale QU datasets.
The QU-3.75M dataset contains 3.75 million instances which are
randomly sampled from the QU-965M dataset, which has about
965 million instances. The statistics of the datasets is shown in
Table 1, and all the numbers in the table are approximate numbers.
Among the four tasks, only NER’s data is labeled by experts with
domain knowledge. Other datasets are collected from engagement
data and labeled by algorithms. We first conducted experiments
on the QU-3.75M dataset to search optimal hyperparameters and
model structures. The model performing best on the QU-3.75M
dataset is picked up for training on the QU-965M dataset.

Table 1: Statistics of the QU datasets

Task QU-3.75M QU-965M

Train Dev Test Train Dev Test

PT 1M 0.1M 0.1M 45.8M 0.46M 0.2M
QC 1M 0.1M 0.1M 44.7M 0.45M 0.2M
NER 0.14M 3.5K 10.5K 0.14M 3.5K 10.5K
TW 1M 0.1M 0.1M 3.2M 0.69M 0.69M

5.2 Training Details
We utilized two heuristics to mitigate the uneven learning problem
of multi-task learning models. First, for different tasks, we selected
different batch sizes to make each task have a similar number of
batches in each training epoch. This heuristic can obtain a nearly
balanced number of batches on QU-3.75M as PT, QC, and TW
already have the same number of instances and we can select a
smaller batch size for NER to make it have a similar number of
batches. On the QU-965M dataset, PT, QC, and TW have much more
instances than NER. We oversampled NER 10 times. In Section 6.6,
we study the effect of oversampling. In addition, after each epoch,
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Figure 4: The architecture of the proposed 𝐸𝐴𝑀𝑇 model. For conciseness, we only draw two entities. All the tasks share the
green blocks. Model-specific network𝑀𝑖 is different for different baseline multi-task models. The task-specific network 𝐻𝑡 is
unique for each task. The dataset of each task is split into mini-batches and merged together. All the mini-batches are iterated
for training and at each training step, only one task is activated.

Figure 5: The architecture of entity retrieval model

we evaluated each task to obtain the F1 score and we calculate the
geometric mean of all the F1 scores as:

𝑉𝑎𝑙 𝐹1 =

( 4∏
𝑡=1

𝐹𝑡

) 1
4

(18)

where 𝐹𝑡 is the validation F1 score of task 𝑡 . We track 𝑉𝑎𝑙 𝐹1 score
during training, and will stop the training if we find there is no
better𝑉𝑎𝑙 𝐹1 score in recent ten epochs. The hyperparameter values
used in the experiments are shown in Table 2.

Table 2: Description of Hyperparameters

Hyperparameters QU-3.75M QU-965M

Batch Size

PT=1024 PT=4096
QC=1024 QC=4096
NER=256 NER=512
TW=1024 TW=512

Max Length 32 32
Learning Rate 5𝑒 − 5 5𝑒 − 5

DDP Yes Yes
Optimizer AdamW AdamW
Early Stop 10 10
Max epochs 30 50

GPU 8 A100s 16 A100s

5.3 Evaluation Metrics
For PT and QC, we report micro F1, because both of the tasks
are at the query level. For NER, we use seqeval [15] to calculate
the entity-level micro precision, micro recall, and micro F1. We
report the precision, recall, and F1 for TW for positive labels. For
overall performance, we report both micro F1 and macro F1 that
are calculated as:

𝑀𝑖𝑐𝑟𝑜 𝐹1 =
4∑︁
𝑡=1

𝐹1𝑡 × 𝑛𝑡/(
4∑︁
𝑡=1

𝑛𝑡 ) (19)

𝑀𝑎𝑐𝑟𝑜 𝐹1 =
4∑︁
𝑡=1

𝐹1𝑡/4 (20)
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where, 𝐹1𝑡 and 𝑛𝑡 are the F1 score and the number of test instance
for task 𝑡 respectively. Due to Walmart’s confidentiality policy,
relative improvements over baseline models varying with differ-
ent experiments instead of absolute values are presented. F1 score
ranges from 0 to 1; for brevity, we time F1 score by 100 and round
it to two decimal places.

6 EXPERIMENTAL RESULTS
6.1 EAMT vs Baseline Models
By adding the entity-aware scheme, we built our 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 model
based on MTDNN. MTDNN and 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 models are compared
with baseline single-task models (Section 3) in Table 3. On QU-
3.75M, both MTDNN and 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 gain relative improvements
on PT, QC, and overall tasks, while 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 performs better
than MTDNN. On NER and TW, the two models do not show ap-
parent improvements, but still, 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 is better than MTDNN.
This proves that the entity-aware scheme can improve the perfor-
mance of baseline MTDNN further. We studied the training graphs
of QU tasks and found TW is easy to converge, and after that, the
performance drops, while PT, QC, and NER are much slower to
converge. It is very challenging for the multi-task model to pick up
a good checkpoint that works best for all tasks. NER has a much
smaller number of instances than that of PT, QC, and TW, and dur-
ing the training, the multi-task models receive fewer NER batches
and the parameters may skew to other tasks with more instances
or batches resulting in the underfitting of the NER task.

On QU-965M, apart from the similar patterns we have elaborated,
𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 obtains 0.98 improvements on NER. This is because
we oversample NER ten times so that NER has a closed number
of batches as that of PT, QC, and TW, and the oversampling miti-
gates the imbalanced learning issue. We did not do oversampling
in other experiments and the oversampling is studied in section
6.6. 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 consistently obtaining better overall performance
than that of MTDNN and single task models on both QU-3.75M and
QU-965M datasets demonstrates the effectiveness of our proposed
EAMT model.

Table 3: The relative F1 improvements of MTDNN and
𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 over single task models on QU-3.75M and QU-
965M, respectively. 𝑒𝑛𝑡𝑖𝑡𝑦_𝑛𝑢𝑚 = 3 for 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 .

Task
QU-3.75M QU-965M

MTDNN 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 MTDNN 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛

PT 0.81 1.7 1.41 1.94

QC 1.04 2.27 1.85 2.6

NER -0.27 -0.18 -0.05 0.89

TW -0.33 0.05 -0.13 -0.27

Micro 0.48 1.29 0.51 0.66

Macro 0.32 0.96 0.77 1.29

6.2 Impact of Entity-aware Component
We justify that the entity-aware component does help the baseline
multi-task learning models. As shown in Table 4, all the EAMTmod-
els yield improvements on all four tasks except that 𝐸𝐴𝑀𝑇𝑚𝑚𝑜𝑒
and 𝐸𝐴𝑀𝑇𝑝𝑙𝑒 acquire a lightly worse result on TW. For overall per-
formance, all EAMTmodels produce better results and 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛
obtains the most significant overall improvements.

Table 4: Relative F1 improvements of EAMT models over
their corresponding baselinemulti-taskmodels onQU-3.75M.
𝑒𝑛𝑡𝑖𝑡𝑦_𝑛𝑢𝑚 = 3 for all EAMT models.

Model PT QC NER TW
ALL

Micro Macro

𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 0.89 1.23 0.09 0.38 0.81 0.65
𝐸𝐴𝑀𝑇𝑚𝑚𝑜𝑒 1.14 1.19 0.19 -0.14 0.71 0.59
𝐸𝐴𝑀𝑇𝑝𝑙𝑒 0.59 1.15 0.16 -0.04 0.55 0.47

6.3 Impact of Ranking Loss
We studied the effectiveness of ranking loss and the results are
shown in Figure 5. For 3 entities and 5 entities, with ListNet loss,
𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 get better results. For 2 entities, ListNet loss slightly
decreases the performance of 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 . Fewer entities mean the
entities are more clean or related because we only take the top
entity_num entities and the less need to use ListNet to distinguish
which entity is more important.

Table 5: Relative F1 improvements of 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 with List-
Net loss over 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 without ListNet loss on different
entity_num. Results are reported on QU-3.75M.

entity_num
ALL

Micro Macro

2 -0.01 -0.03
3 0.18 0.09
5 0.10 0.11

6.4 Impact of the Number of Entities
Retrieving more entities in EAMT will likely bring more valuable
information and noise as well. Also, more entities may slow the
training and increase the latency. We studied the influence of dif-
ferent numbers of entities retrived by the 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 model. The
results are shown in Table 6. We did not do experiments with entity
numbers more than 5 due to the much longer training time and
the BERT’s limitation of the input length. For all 𝑒𝑛𝑡𝑖𝑡𝑦_𝑛𝑢𝑚, we
notice the improvements over MTDNN and 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 obtains
the best results when 𝑒𝑛𝑡𝑖𝑡𝑦_𝑛𝑢𝑚 = 3. We fix 𝑒𝑛𝑡𝑖𝑡𝑦_𝑛𝑢𝑚 = 3when
training the 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 model on QU-965M.
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Table 6: Relative F1 improvements of 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 with differ-
ent entity_num over MTDNN on QU-3.75M. ListNet loss is
utilized.

entity_num PT QC NER TW
ALL

Micro Macro

2 0.76 1.08 0.00 0.19 0.65 0.51
3 0.89 1.23 0.09 0.38 0.81 0.65
5 0.74 1.32 0.29 0.18 0.73 0.63

6.5 Impact of Different Filter Threshold
For ENT-NN, the score of each retrieved entity 𝑆𝑒𝑛𝑡−𝑛𝑛 is calculated
as equation 16. An entity with a small 𝑆𝑒𝑛𝑡−𝑛𝑛 will be short com-
pared with the search query because 𝑆𝑓 𝑎𝑖𝑠𝑠 > 0.99. Short entities
will likely introduce noises; for instance, both "arm and hammer"
and "hammer" are all entities, and if the search query contains "arm
and hammer", we want to retrieve "arm and hammer" instead of
"hammer". For ENG-NN, 𝑆𝑒𝑛𝑔−𝑛𝑛 is computed as equation 17. A
bigger 𝑆𝑒𝑛𝑔−𝑛𝑛 means the retrieved entity belongs to an engage-
ment query that is very similar to the search query. Conversely,
an entity with a small 𝑆𝑒𝑛𝑔−𝑛𝑛 may likely introduce noises. We
studied the influence of different thresholds on the quality of en-
tities retrieved from NN models to choose optimal thresholds for
NN models. To measure the quality of retrieved entities, we train
𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 model on QU-3.75M utilizing the entities from NN
models, and the higher the test F1 score is, the better quality of
entities will be.

The results are shown in Figure 6 where EXAT is the exact match
model that have no threshold parameters, so we draw the EXACT’s
results as a horizontal line. ENT-NN’s performance is worse than
EXACT because the collecting entity algorithm introduces noises
and currently, we don’t have a method to remove all the noise
entities automatically. For instance, for query "waterproof iphone
xs max case", the retrieved top one entity is "brand=iphone 13
pro max phone cases" and obviously "iphone 13 pro max phone
cases" is not a brand name. Improving the threshold can reduce
the probability of retrieving short and incomplete entities like "arm
and hammer" and "hammer" example above, but can’t mitigate the
influence of fake entities that are not brand, movie, etc.

Compared with ENT-NN, ENG-NN’s entities are much cleaner
because the entities are at least brought one time by the customers
who search the engagement query. The higher threshold is, themore
similar the search query and the matched engagement query are,
and the cleaner entities are. From Figure 6, the relative improvement
of 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 with ENG-NN over MTDNN improves along with
the increasing of threshold, which works as expected. The EXACT
method can only retrieve entities for about 20% of the queries in
QU-3.75M as the exact matching criterion is very strict, and any
variation of the queries is unaccepted even though they look very
similar. In contrast, the ENG-NN searching entities in embedding
space can tolerate specific variants of the query and retrieve entities
for more queries. When set threshold as 0.99, ENG-NN can retrieve
at least one entity for about 33% of the queries in QU-3.75M. Finally,
ENG-NN is chosen as the default entity retriever.

0.2 0.4 0.6 0.8 1

−0.2

0

0.2

Threshold

Micro F1

ENT-NN
EXACT

0.2 0.4 0.6 0.8 1

−0.2

0

0.2

Threshold

Macro F1

ENT-NN
EXACT

0.8 0.9 1
0

0.2

0.4

0.6

Threshold

Micro F1

ENG-NN
EXACT

0.8 0.9 1
0

0.2

0.4

0.6

Threshold

Macro F1

ENG-NN
EXACT

Figure 6: Relative F1 improvements of 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 with differ-
ent entity retrieval models using different filter thresholds
over MTDNN model on QU-3.75M. 𝑒𝑛𝑡𝑖𝑡𝑦_𝑛𝑢𝑚 = 5 is default
for all experiments.

6.6 Impact of Oversampling
On QU-965M, the number of NER instances is much smaller than
that of other tasks. Even if we choose a very small batch size for
NER, NER will still has a much smaller number of batches com-
pared to other tasks. The uneven number of batches will make the
multi-task learning models learn specific tasks faster and cause
an imbalanced learning issue. On QU-965M, we studied the effec-
tiveness of oversampling and the results are shown in Table 7. We
only oversample NER ten times and keep the data of other tasks
unchanged. Without oversampling, 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 performs worse
on NER while 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 yields a much better NER result after
oversampling NER.

Table 7: Ablation study of oversampling NER dataset on
QU-965M. The results are the relative F1 improvements of
𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 model over single task models.

Oversample PT QC NER TW
ALL

Micro Macro

No 1.59 2.22 -4.02 -0.92 0.07 -0.28
Yes 1.94 2.60 0.89 -0.27 0.66 1.29

6.7 Study of Baseline Multi-task Models
Compared to MTDNN, MMoE and PLE introduce new hyperpa-
rameters like the number of experts 𝑥 and the number of layers of
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Figure 7: Relative F1 improvements of𝑀𝑀𝑜𝐸 and 𝑃𝐿𝐸 with
different parameters over single task model on QU-3.75M.

each expert 𝑦. We first conducted experiments to select the best
parameters 𝑥 and 𝑦 for MMoE and MTDNN, respectively. MMoE
with 𝑒𝑥𝑙𝑦 represents that it has 𝑥 experts shared by all tasks. PLE
with 𝑒𝑥𝑙𝑦 denotes that the PLE model has 𝑥 experts for each task
and there are another 𝑥 experts shared by all tasks. For MMoE
and PLE, 𝑒𝑥𝑙𝑦 indicates that each expert consists of 𝑦 dense layers.
Every expert in both PLE and MMoE does not change the input
dimension.

The relative improvements of MMoE and PLE models with dif-
ferent 𝑒𝑥𝑙𝑦 parameters over the single task model on QU-3.75M can
be found in Figure 7. For MMoE, with a more complicated structure
introduced, larger 𝑥 and𝑦, the performance decreases. For PLE, e8l1
is the best. The relative improvements of MTDNN, MMoE (e4l1),
and PLE (e8l1) over a single task are shown in Figure 8. MTDNN
enjoys the biggest improvement in the PT and QC tasks among the
three models. For all three models, they obtain worse results on
NER and TW. At last, we choose the MMoE (e4l1) and PLE (e8l1) to
build our EAMT models on top of them.

6.8 Online Experiments
As a preliminary step, we have deployed the baseline 𝑀𝑇𝐷𝑁𝑁
model trained on QU-965M dataset to the production system and
conducted a series of experiments. The first of these was a query-
item relevance test utilizing historical queries. We gained 2.37%
NDCG improvement over the existing system. We then proceeded
to an online interleaving test for top-ranked items. This led to
4.82%𝐴𝑇𝐶 (add to cart) lift over the current production. Finally, we
conducted both the A/B test and the reverse A/B test that yielded
statistical significance lifts over the current production for different
metrics such as: 0.51% lift for 𝐺𝑀𝑉 (gross merchandise value),
0.65% lift on𝑂𝑅𝐷𝐸𝑅, 1.08% lift for𝑈𝑁𝐼𝑇𝑆 of items sold, and 0.65%
lift on 𝐴𝑇𝐶 .

Figure 8: The relative F1 improvements of MTDNN, MMoE,
and PLE over a single task. The coordinates of PT, QC, NER,
and TW are (0,0), (0,1), (1,0), and (1,1), respectively.

As shown in Table 8, we also noticed over 25% latency improve-
ment for 90 percentile (𝑝90) of search traffic, while noticing over
2% average response time reduction over the existing production
system. At the same time, the requirement of GPU machines is

Table 8: Online latency improvement over the current pro-
duction

Avg. p90 p95 p99

2.10% 26.22% 24.96% 18.66%

reduced to 1/4𝑡ℎ , because we replace 4 GPU-required tasks with a
single model.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose a multi-task learning approach to QU
tasks and conduct a comprehensive set of experiments. TheMTDNN
model obtains the best performance on Walmart QU tasks among
three popular multi-task learning models. Online test results sup-
port that MTDNN can improve overall performance, reducing la-
tency and resource usage compared to single tasks. To further
improve the performance, we propose a novel entity-aware scheme
that retrieves entities from engagement data as query context to
augment the query representation. The offline test demonstrates
the effectiveness of our EAMT model. Our model can be easily
extended to other QU tasks as long as the inputs are queries. In fu-
ture work, we will finalize the online test of the 𝐸𝐴𝑀𝑇𝑚𝑡𝑑𝑛𝑛 model
and explore to mitigate the imbalanced learning issue and reduce
negative transfer in multi-task learning.
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