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ABSTRACT
In the realistic settings of expert finding, the evidence for ex-
pertise often comes from heterogeneous knowledge sources.
As some sources tend to be more reliable and indicative
than the others, different data sources need to receive differ-
ent weights to reflect their degrees of importance. However,
most previous studies in expert finding did not differentiate
data sources, which may lead to unsatisfactory performance
in the settings where the heterogeneity of data sources is
present.

In this paper, we investigate how to merge and weight
heterogeneous knowledge sources in the context of expert
finding. A relevance-based supervised learning framework
is presented to learn the combination weights from training
data. Beyond just learning a fixed combination strategy for
all the queries and experts, we propose a series of probabilis-
tic models which have increasing capability to associate the
combination weights with specific experts and queries. In
the last (and also the most sophisticated) proposed model,
the combination weights depend on both expert classes and
query topics, and these classes and topics are derived from
expert and query features. Compared with expert and query
independent combination methods, the proposed combina-
tion strategy can better adjust to different types of experts
and queries. In consequence, the model yields much flexi-
bility of combining data sources when dealing with a broad
range of expertise areas and a large variation in experts.
Empirical studies on a real world faculty expertise testbed
demonstrate the effectiveness and robustness of the proposed
learning based models.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Design, Algorithms, Experimentation
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1. INTRODUCTION
With vast amount of information available in large organi-

zations, there are increasing needs for users to find not only
documents, but also people who have specific knowledge in
a required area. For example, many companies can deliver
efficient customer services if the customer complaints can
be directed to the appropriate staff. Similarly, conference
organizers need to locate the program committee members
based on their research expertise to assign submissions. Aca-
demic institutions want to publicize their faculty expertise to
funding agencies, industry sponsors, and potential research
collaborators. Students are also avid seekers for prospective
advisers with matched research interests. Thus, finding the
right person in an organization with the appropriate exper-
tise is often crucial in many enterprise applications.

The expert finding task is generally defined as follows:
given a keyword query, a list of experts and a collection
of supporting documents, rank those experts based on the
information from the data collection. Expert finding is sim-
ilar to the traditional ad-hoc retrieval task since both tasks
are targeted to find relevant information items given a user
query. The major difference is that in the realistic settings
of expert finding, the supporting evidence for expertise usu-
ally comes from a wide range of heterogeneous data sources
such as research homepages, technical reports, publications,
projects, course descriptions, and email discussions. How-
ever, most previous studies did not differentiate data sources
and consequently how to merge and weight these heteroge-
neous sources in the context of expert finding has not been
fully investigated.

In this paper, we present three discriminative probabilis-
tic models for ranking experts by learning the combination
weights of multiple data sources. The first model can be re-
garded as an application of logistic regression to ranking ex-
perts, which serves as the basis of the other more advanced
models. The other two proposed models consider the la-
tent class variables underlying the observed experts or/and
queries. In the latent expert and query topic model that we
proposed, the combination weights depend on both expert
classes and query topics. In consequence, the weights can
be better adjusted according to what characteristics the ex-
perts have and what types of information needs users express
in the queries. The model offers probabilistic semantics for
the latent expert/query topics and thus allows mixing mul-
tiple expert and query types for a single expert and query.



Although many query dependent resource merging meth-
ods have been proposed (for other IR tasks), to the best of
our knowledge, there is no prior work on modeling the de-
pendencies of the combination strategy on both queries and
searched entities (e.g., documents or experts). In particu-
lar, the dependency on the searched experts is prominent
in the scenario of expert finding. In the experiments, the
proposed discriminative models have shown to have better
performance than the prior solutions on a real world faculty
expertise testbed (i.e., the Indiana Database of University
Research Expertise (INDURE)1). Different versions of the
models with different types of features are also compared.
In addition, we have shown the robustness of the latent ex-
pert and query topic model by evaluating it with different
document retrieval methods.

The next section discusses the related work. Section 3 de-
scribes the discriminative probabilistic models that discern
the sources of expertise evidence. Section 4 explains our
experimental methodology. Section 5 presents the experi-
mental results and the corresponding discussions. Section 6
concludes.

2. RELATED WORK
Initial approaches to expert finding employed a manually

constructed database which listed experts by category and
subcategory [12]. These systems (often in the form of yel-
low pages) require a lot of manual work to classify expert
profiles. More recent techniques locate expertise in an au-
tomatic fashion, but only focus on specific document types
such as software [24] and email [6]. With abundant infor-
mation becoming available on the Web, there is increasing
interest in utilizing varied and heterogeneous sources of ex-
pertise evidence [2]. One early example is the P@noptic
system [11], which builds a representation of each expert
by concatenating all the documents associated with that
expert. The user query is matched against this represen-
tation and thus finding experts is equally to retrieve doc-
uments. [23] treated the problem of ranking experts as a
voting problem and explored 11 different voting strategies to
aggregate over the documents associated to the expert. [2,
3], [14] and [31] proposed more formal methods for expert
finding using language modeling. However, these methods
do not differentiate document types, which may cause un-
satisfactory performance in real world applications where
some data sources are likely more reliable and indicative
than others. Expert finding has attracted a lot of interest
since the launch of Enterprise Track [10] at TREC and rapid
progress has been made in modeling, algorithms, and evalu-
ations. Nearly all the assumptions were made based on the
characteristics of the W3C collection [9]. While in W3C the
authors of documents are ambiguous, in more realistic set-
tings it is reasonable to assume that the document-expert
association is clear [3].

The voting process proposed for the expert finding task is
also closely related to data fusion in metasearch [1] and col-
lection fusion problem in distributed information retrieval [5].
The general retrieval source combination problem has been
examined by a significant body of previous work. [15]’s method
ranked documents based on the min, max, median, or sum
of each document’s normalized relevance scores over a set
of systems. Linear combination and logistic regression mod-

1https://www.indure.org/

els are explored by [30, 34, 33] in the context of data fu-
sion. Although good results are achieved in specific cases,
these techniques have not yet been shown to produce reli-
able improvement, which may come from the fact that their
combination strategy keep constant for different query top-
ics. Recent work [20] has led to query dependent combina-
tion methods, which project the query to the latent query
topic space and learn the combination weights for each query
topic from training data. In multimedia retrieval applica-
tions, the query dependent combination methods [21, 37]
have been shown superior to query-independent combina-
tion. The work that is more closely related to ours is the
work done by [36]. However, the prior work does not con-
sider the dependency of the combination strategy on the
searched entities (e.g., experts). In particular, this depen-
dency is prominent in the case of expert finding. For exam-
ple, some senior faculty do not have homepages and some ju-
nior faculty do not have supervised PhD dissertations. Thus,
for senior faculty we may want to put less weight on home-
pages and similarly for junior faculty we expect less weight
on dissertations.

On the other hand, our approach to expert finding also
fits the paradigm of learning to rank, which is to construct
a model or a function for ranking entities. Learning to
rank has been drawing broad attention in the information
retrieval community recently because many IR tasks are
naturally ranking problems. Benchmark data sets such as
LETOR [22] are also available for research on learning to
rank. There are two general directions to rank learning.
One is to formulate it into an ordinal regression problem by
mapping the labels to an ordered set of numerical ranks [18,
8]. Another direction is to take object pairs as instances, for-
mulate the learning task as classification of object pairs into
two categories (correctly and incorrectly ranked), and train
classification models for ranking [16, 19, 4, 17, 35]. More re-
cently, the listwise approach, ListNet [7], is proposed to min-
imize a probabilistic listwise loss function instead of learn-
ing by minimizing a document pair loss functions. These
methods are built on a solid foundation because it has been
shown that they are closely related to optimizing the com-
monly used ranking criteria [28]. Although valuable work
has been done for learning to rank for ad-hoc retrieval, very
limited research has been conducted for designing learning
models for ranking experts, which are generally associated
with information from heterogeneous information sources.

3. DISCRIMINATIVE PROBABILISTIC MOD-
ELS FOR EXPERT FINDING

3.1 Notations and terminologies
Our approach to expert finding assumes that we have a

heterogeneous document repository containing a set of doc-
uments from a mixture of K different knowledge sources. In
the INDURE faculty expertise testbed, there exist four doc-
ument sources, which are homepages, publications/supervised
PhD dissertations, National Science Foundation (NSF) fund-
ing projects and general faculty profiles such as research key-
words and affiliations. For the document collection, there
are totally M experts and the document-expert association
is clear (e.g., the authors of publications, the owners of
homepages and the principal investigators of NSF projects).
Within a single document source, each expert has a set of



supporting documents and each document is associated with
at least one expert. For a given query q and an expert e, we
can obtain a ranking score, denoted by si(e, q), from the ith

document source. In other words, si(e, q) is the single-source
ranking score for the expert e with respect to the query q. It
is calculated by summing over the retrieval scores of the ex-
pert’s supporting documents d in the single data source (i.e.,
si(e, q) =

∑

d∈Fi(e)
si(d, q) where Fi(e) is the set of support-

ing documents for e in the ith source, and more details are
discussed in Section 4.1). si(d, q) is the retrieval score for a
single document d and can be calculated by any document
retrieval model such as BM25 or language modeling. Obvi-
ously, if there is no document retrieved for e, si(e, q) is equal
to 0. Our goal is to combine si(e, q) from K data sources to
generate a final ranked list of experts.

3.2 Relevance based discriminative combina-
tion framework

Our basic retrieval models cast expert finding into a bi-
nary classification problem that treats the relevant query-
expert pairs as positive data and irrelevant pairs as nega-
tive data. There exist many classification techniques in the
literature and they generally fall into two categories: gen-
erative models and discriminative models. Discriminative
models have attractive theoretical properties [26] and they
have demonstrated their applicability in the field of IR. In
presence of heterogeneous features due to multiple retrieval
sources, the discriminative models generally perform better
than their generative counterparts [25]. Thus, we adopt dis-
criminative probabilistic models to combine multiple types
of expertise evidence. Instead of doing a hard classification,
we can estimate and rank the conditional probability of rel-
evance with respect to the query and expert pair. Formally,
given a query q and an expert e, we denote the conditional
probability of relevance as P (r|e, q) where r ∈ {1,−1} in-
dicating whether the expert e is relevant to the query q or
not. The parametric form of the relevance probability can
be expressed as follows in terms of logistic functions

P (r = 1|e, q) = σ(

K
∑

i=1

ωisi(e, q)) (1)

where σ(x) = 1/(1+ exp (−x)) is the standard logistic func-
tion and ωi is the combination parameter for the ith data
source. This model is also known as logistic regression in
which the parameters can be estimated by Newton’s method.
The experts are then ranked according to the descending or-
der of P (r = 1|e, q).

3.3 Expert dependent probabilistic models
The model introduced in the last section provides a dis-

criminative learning framework to estimate combination weights
of multiple types of expertise evidence. In the model, the
same combination weights are used for every expert to op-
timize the average performance. However, the best combi-
nation strategy for a given expert is not necessarily the best
combination strategy for other experts. For example, many
senior faculty members do not have homepages although
they are probably very accomplished researchers in certain
areas. On the other hand, new faculty members usually do
not have any supervised PhD dissertations and thus it is not
fair to put the same weights on dissertations as for senior
faculty. In addition, many faculty members in the biology

department do not have homepages to show their work in
bioinformatics while most faculty in computer science in this
area do have homepages. It will lead to unsatisfactory per-
formance if we choose the same set of combination weights
for all the experts regardless of their characteristics. Fur-
thermore, real world expertise databases usually have data
source missing problems. For example, some experts may
have their homepages, but for some reason they are miss-
ing in the expertise database (e.g., homepage detection al-
gorithms cannot perfectly discover all the homepages). It is
not fair for these experts to be applied the same combination
strategy as those experts with complete information. There-
fore, we could benefit from developing an expert dependent
model in which we can choose the combination strategy in-
dividually for each expert to optimize the performance for
specific experts. Because it is not realistic to determine the
proper combination strategy for every expert, we need to
classify experts into one of several classes. The combina-
tion strategy is then tuned to optimize average performance
for experts within the same class. Each expert within the
same class shares the same strategy, and different classes of
experts could have different strategies.

We present a latent expert class model (LEC) by introduc-
ing an intermediate latent class layer to capture the expert
class information. Specifically, we can use a multinomial
variable z ∈ N to indicate which expert class the combi-
nation weights ωz· = (ωz1, ..., ωzK) are drawn from. The
choice of z depends on the expert e. The joint probability
of relevance r and the latent variable z is given by

P (r = 1, z|q, e; α, ω) = P (z|e; α)P (r = 1|q, e, z; ω) (2)

where P (z|e;α) denotes the mixing coefficient which is the
probability of choosing hidden expert classes z given expert
q and α is the corresponding parameter. P (r = 1|q, e, z; ω)
denotes the mixture component which is a single logistic
function in our case. ω = {ωzi} is the set of combination
parameters where ωzi is the weight for si under the class z.
By marginalizing out the hidden variable z, the correspond-
ing mixture model can be written as

P (r = 1|q, e; α, ω) =

Nz
∑

z=1

P (z|e; α)σ(
K

∑

i=1

ωzisi(e, q)) (3)

where Nz is the number of latent expert classes. If P (z|e;α)
sticks to the multinomial distribution, the model cannot eas-
ily generalize the combination weights to unseen experts
beyond the training collection, because each parameter in
multinomial distribution specifically corresponds to a train-
ing expert. To address this problem, the mixing proportions
P (z|e; α) can be modeled by a soft-max function 1

Ze
exp(

∑Lz

j=1 αzjej)
where Z is the normalization factor that scales the expo-
nential function to be a proper probability distribution (i.e.,

Ze =
∑

z
exp(

∑Lz

j=1 αzjej)). In this representation, each

expert e is denoted by a bag of expert features (e1, ...eLz )
where Lz is the number of expert features. By plugging the
soft-max function into Eqn. (3), we can get

P (r = 1|q, e;α, ω) =
1

Ze

Nz
∑

z

exp(

Lz
∑

j=1

αzjej)σ(
K

∑

i=1

ωzisi(e, q))

Because αzj is associated with each expert feature instead of



Figure 1: Graphical model representation for the

LEC model. The nodes with known values are

shaded and others are unshaded

each training expert, the above model allows the estimated
αzj to be applied in any unseen expert. The graphical rep-
resentation for this model is shown in Figure 1.

3.3.1 Parameter estimation
The parameters can be determined by maximizing the fol-

lowing data log-likelihood function,

l(ω,α) =
N

∑

u=1

M
∑

v=1

log

(

∑

z

(

1
Zev

exp(
∑Lz

j=1 αzjevj)
)

σ
(

ruv

∑K

i=1 ωzisi(ev, qu)
)

)

(4)

where N is the number of queries, evj denotes the jth feature
for the vth expert ev and ruv denotes the relevance judge-
ment for the pair of (qu, ev). A typical approach to max-
imizing Eqn. (4) is to use the Expectation-Maximization
(EM) algorithm [13], which can obtain a local optimum of
log-likelihood by iterating E-step and M-step until conver-
gence. The E-step can be derived as follows by computing
the posterior probability of z given expert ev and query qu,

P (z|ev, qu) =
exp(

∑Lz

j=1 αzjevj)σ
(

ruv

∑K

i=1 ωzisi(ev, qu)
)

∑

z
exp(

∑Lz

j=1 αzjevj)σ
(

ruv

∑K

i=1 ωzisi(ev, qu)
)

By optimizing the auxiliary Q-function, we can derive the
following M-step update rules,

ω∗

z· = arg max
ωz·

∑

uv

P (z|ev, qu) log
(

σ
(

K
∑

i=1

ωzisi(ev, qu)
)

)

α∗

z· == arg max
αz·

∑

u

(
∑

v

P (z|ev, qu)) log
( 1

Zev

exp(

Lz
∑

j=1

αzjevj)
)

The M-step can be optimized by any gradient descent
method. In particular, we use Quasi-Newton method. When
the log-likelihood converges to a local optimum, the esti-
mated parameters can be plugged back into the model to
compute the probability of relevance for unseen query and

expert pairs. LEC can exploit the following advantages over
the expert independent combination methods: 1) the combi-
nation parameters are able to change across various experts
and hence lead to a gain of flexibility; 2) it offers proba-
bilistic semantics for the latent expert classes and thus each
expert can be associated with multiple classes; and 3) it
can address the data source missing problem in a principled
probabilistic framework.

3.4 Expert and query dependent probabilistic
models

With the similar rationale to the expert dependent prob-
abilistic model, the combination weights should also depend
on specific queries. For example, for the query “history”,
we would like to have less weights put on NSF because the
occurrence of “history” in NSF project descriptions is not
likely to relate to the discipline in liberal arts, but more of-
ten to refer to the history of some technologies. Therefore,
we should use different strategies to assign the combination
weights for the queries coming from different topics. Based
on the dependence of the combination strategy on both ex-
perts and queries, we propose the latent expert and query
topic model (LEQT). The weight ωzti now depends on both
expert class z and query topic t. Assuming z and t are inde-
pendent with each other giving e and q, the joint probability
of relevance r and the latent variables (z, t) is,

P (r, z, t|q, e) = P (t|q)P (z|e)P (r|q, e, z, t) (5)

By marginalizing out the hidden variables z and t, the cor-
responding mixture model can be written as

P (r = 1|q, e) =

Nt
∑

t=1

Nz
∑

z=1

P (t|q)P (z|e)σ(
K

∑

i=1

ωztisi(e, q)) (6)

The graphical representation for this learning model is shown
in Figure 2. By plugging the soft-max functions for P (z|e;α)
and P (t|q; β), Eqn. (6) can then be reformulated as

P (r = 1|q, e) =
1

ZeTq

Nt
∑

t=1

Nz
∑

z=1

exp(

Lz
∑

j=1

αzjej) exp(

Lt
∑

g=1

βtgqg)σ(
K

∑

i=1

ωztisi(e, q))

When Nt = 1, LEQT degenerates to LEC. When both
numbers are equal to 1, LEQT becomes the logistic regres-
sion model in Section 3.2 (which is called expert and query
independent (EQInd) model). Therefore, LEC and EQInd
are all the special cases of LEQT.

For the LEQT model, the EM algorithm can be derived
similarly. The E-step computes the posterior probability of
the latent variables (z, t) given e and q as follows,

P (z, t|ev, qu) =

exp(
∑Lz

j=1
αzjevj ) exp(

∑Lt
g=1

βtgqug)σ(ruv
∑K

i=1
ωztisi(ev ,qu))

∑

zt exp(
∑Lz

j=1
αzjevj ) exp(

∑Lt
g=1

βtgqug)σ(ruv
∑

K
i=1

ωztisi(ev ,qu))

In the M-step, we have the following update rule



Figure 2: Graphical model representation for the

LEQT model. The nodes with known values are

shaded and others are unshaded

ω∗

zt· = arg max
ωzt·

∑

uv

P (z, t|ev, qu) log
(

σ
(

K
∑

i=1

ωztisi(ev, qu)
)

)

α∗

z· = arg max
αz·

∑

v

(
∑

ut

P (z, t|ev, qu)) log
( 1

Zev

exp(

Lz
∑

j=1

αzjevj)
)

β∗

t· = arg max
βt·

∑

u

(
∑

vz

P (z, t|ev, qu)) log
( 1

Tqu

exp(

Lt
∑

g=1

βtgqug)
)

3.5 Feature selection
To define the proposed models, we need to design a set of

informative features for experts and queries. There are two
useful principles to guide the design of suitable features: 1)
they should be able to be automatically generated from ex-
pert and query descriptions, and 2) they should be indicative
to estimate which latent classes the query or expert belongs
to. In the case of academic expert finding, property based
features can be used to investigate different characteristics
of experts, which enable more appropriate usage of expertise
information from different sources. Binary property features
can be included to indicate whether information from differ-
ent sources is available for a specific expert. For example,
one feature will indicate whether the expert has a homepage
and another feature will indicate whether the expert has any
NSF project. These features will enable expert finding algo-
rithms to shift their focus away from unavailable information
sources by assigning appropriate weights. Numerical prop-
erty features can also be utilized. For example, how long
(in linear scale or in logarithmic scale) is a document from
a particular information source such as length in the num-
ber of words or normalized length with respect to all docu-
ments from the same source. In addition, content based fea-
tures can be used to investigate topic representation within
documents from heterogeneous information sources and user
queries, which enable better matching between expertise in-
formation in different sources and user queries. The content
features can be represented as normalized weights for a set
of topics (i.e., a multinomial distribution).

4. EXPERIMENTAL METHODOLOGY

4.1 The INDURE faculty expertise collection
The INDURE faculty expertise collection used in the ex-

periments is constructed from the Indiana Database of Uni-
versity Research Expertise (INDURE) system developed at
Purdue University. The INDURE effort aims at creating a
comprehensive online database of all faculty researchers at
academic institutions in the state of Indiana. Four universi-
ties currently participate in the project including Ball State
University, Indiana University, Purdue University and Uni-
versity of Notre Dame. Together these universities involve
over 12,000 faculty and research staff. The participating in-
stitutions are encouraged to log into the database to submit
the basic information of their faculty such as college, depart-
ment and research areas. The data in INDURE come from 4
different data sources: 1) the profiles filled out by individual
faculty members and/or their department heads; 2) faculty
homepages; 3) NSF funding project descriptions; 4) faculty
publications and supervised PhD dissertations. The profiles
include faculty research areas, which could be keywords from
a predefined taxonomy2 or free keywords that adequately
describe the expertise. In this data collection, document-
author associations are clear and the data is structured and
clean. The collection covers a broad range of expertise areas,
as one can typically find on intranets of universities.

In the INDURE faculty expertise data, some faculty have
far more supervised PhD dissertations or NSF funded projects
than others have. If we sum over all the supporting docu-
ments to calculate the single-source relevance score si(e, q),
it is possible that too many irrelevant documents are counted
to exaggerate the final score. Therefore, in our experiments,
we only consider the top scored supporting documents in an
attempt to avoid the effect of small evidence accumulation
(i.e., si(e, q) =

∑

d∈top(e,k) si(d, q),where top(e, k) denotes

the set of top-k scored documents for e). To train the pro-
posed models, 6,482 relevance judgments with 50 queries
were made as training data. To evaluate the models, 50 test
queries were submitted against the proposed models and the
top 20 results returned by the algorithms for each test query
were examined. Evaluation measures used were precision@5,
@10, @15 and @20. Table 1 includes a subset of queries used
in the evaluation.

Table 1: A subset of queries with relevance judg-

ments used for evaluation

Information retrieval Programming languages
Computational biology Software engineering
Language education Political economy
Mathematics education Agricultural economics
Supply chain management Developmental biology
Database Asian history and civilizations

We apply the Indri retrieval model [32] as the default doc-
ument retrieval method to obtain the single source retrieval
score si(d, q). The Indri toolbox3 is used in the experiments.
21 query features and 34 expert features are chosen for the

2https://www.indure.org/hierarchy.cfm
3http://www.lemurproject.org/indri/



Table 2: Four types of features used in the experi-

ments by the proposed models;

Source indicator
Whether certain data sources are absent
for the given expert

Statistics
Lengthes and variance of the supporting
documents in each data source;
Number of words in the query;
Number of associated NSF projects; etc

Category
Posterior probabilities of the expert and
query belonging to the predefined classes

Others Nubmer of images in the homepage; etc

proposed discriminative learning framework. As presented
in Table 2, the total features can be divided into four sets:
1) source indicators that show whether certain data sources
are absent for the given expert (F1); 2) query and document
statistics (F2); 3) category features that indicate what cat-
egories the query or supporting documents belong to (F3);
4) other features such as the number of images in the home-
pages. The sizes of the corresponding feature sets are 4, 25,
16, and 10, respectively. The category features are obtained
by calculating the posterior probabilities of the expert and
query belonging to predefined categories. Eight categories
such as Computer Science, Economy and Biology are chosen
with a set of documents labeled for each category. Since the
focus of this study is on the probabilistic models rather than
feature engineering, we do not intend to choose a compre-
hensive set of features.

5. RESULTS AND DISCUSSIONS
An extensive set of experiments were designed on the IN-

DURE faculty expertise testbed to address the following
questions of the proposed research:

1) How good is the proposed discriminative probabilistic
models compared with alternative solutions? We compare
the results of the proposed methods with the results from
prior solutions.

2) How good is the proposed LEQT model by utilizing
different expert and query features? Experiments are con-
ducted to evaluate different versions of the proposed model
with different types of features.

3) How does the proposed LEQT model work with dif-
ferent document retrieval methods? Experiments are con-
ducted to evaluate the proposed model when it is provided
with different document retrieval methods for single data
source retrieval.

5.1 Experimental results compared with re-
sults obtained from prior research

The section compares the performance of the proposed
discriminative models with that of three prior methods. Ta-
ble 3 summarizes the results. The “Concatenation” method
represents the combination strategy presented in the P@NOPTIC
system [11], which essentially treats every information source
with equal weights. “expCombSUM” and “expCombMNZ”
are two data fusion methods proposed in [23] for expert find-
ing and they have shown good performance among the 11
voting schemes4. The other four methods in the table are

4In this experiment, instead of aggregating scores over
documents as in [23], we use “expCombSUM” and “exp-

the discriminative models proposed in this paper.

Table 3: Comparison of the experimental results of

the proposed discriminative models with the results

obtained from prior research. The †symbol indicates

statistical significance at 0.9 confidence interval

P@5 P@10 P@15 P@20
Concatenation 0.653 0.592 0.548 0.522
expCombSUM 0.684 0.626 0.608 0.562
expCombMNZ 0.665 0.621 0.596 0.549
EQInd 0.723 0.654 0.630 0.604
LEC 0.771 0.690 0.651 0.646
LEQT 0.816 0.737 0.664 0.650

We can see from Table 3 that “expCombSUM” and “ex-
pCombMNZ” can improve upon “Concatenation”. Between
them, the performance of “expCombSUM” is slightly better
than that of “expCombMNZ”. With the aid of the train-
ing set, “EQInd” that uses learned wights is superior to
“expCombSUM” and “expCombMNZ”. Furthermore, by in-
troducing the expert features and allowing the combination
weights to vary across different experts, additional improve-
ments are achieved by the proposed expert dependent model.
Similarly, by introducing the query features alone also im-
proves upon EQInd. Finally, by having both expert and
query dependencies, we can achieve the best performance in
all the four cases.

5.2 Experimental results by utilizing different
types of features

In this experiment, the expert and query dependent model
is tested on different sets of features. As shown in Table 2,
the total features are divided into four sets. We remove the
first three sets of features from the whole respectively and
experiment on the resulting features accordingly. Table 4
includes the comparisons against the model with all the fea-
tures (All). It is not surprising to see that the utilization
of all the features yields the best result. The performance
does not deteriorate too much after removing the category
features (F3) from the full feature set, which indicates that
the F3 features are weak. On the other hand, the expert
and query statistics feature set (F2) seem more indicative.
In addition, the source indicators (F1) seem quite discrim-
inative given that the total number of them is 4, which is
relatively small. By comparing Table 4 with Table 3, we
can find that LEQT performed always better than EQInd
no matter which feature set is used in LEQT. This observa-
tion suggests that the expert and query independent model
has limited effectiveness by keeping combination strategy
constant for different expert and query topics.

5.3 Experimental results by utilizing different
document retrieval methods

In this experiment, we use three different document re-
trieval models to assess the extent to which the performance
of the proposed discriminative model is affected by the choice
of the underlying document retrieval model. Table 5 shows
the retrieval performance of the proposed expert and query
probabilistic model across three retrieval models, which are

CombMNZ” to aggregate scores over data sources



Table 4: Experimental results of the LEQT model by

utilizing different types of features. “All-X” denotes

the remaining features after removing the feature

set X from all the features

P@5 P@10 P@15 P@20
All-F1 0.742 0.672 0.645 0.621
All-F2 0.728 0.664 0.636 0.615
All-F3 0.770 0.701 0.654 0.639
All 0.816 0.737 0.664 0.650

BM25 [29], PL2 [27], and the default Indri retrieval model
(i.e., Indri language modeling and inference networks [32]).
The full set of features is used in the experiment. From
the table, we can see that the performances on the different
retrieval models are quite similar, which indicates that the
LEQT model is robust to the underlying document retrieval
model. On the other hand, by comparing Table 5 with Table
3, we can observe that LEQT with different retrieval mod-
els always yielded better performance than EQInd and LEC
with the default Indri retrieval model. This observation sug-
gests that the improvements of LEQT over EQInd and LEC
do not come from the underlying retrieval model, but from
the capture of the latent expert classes and query topics.

Table 5: Experimental results of the LEQT model

by utilizing different document retrieval methods

P@5 P@10 P@15 P@20
BM25 0.820 0.738 0.651 0.644
PL2 0.824 0.745 0.650 0.638
Indri 0.816 0.737 0.664 0.650

6. CONCLUSIONS AND FUTURE RESEARCH
Expert finding is an interesting research problem with

many important applications. In this task, the evidence
for expertise usually comes from heterogeneous knowledge
sources, which poses a key challenge to the task. Although
many learning to rank methods have been developed and
successfully applied to ad-hoc retrieval, none of them has
been explicitly proposed for expert finding. In this paper,
we propose a discriminative learning framework along with
three probabilistic models by treating expert finding as a
knowledge source combination problem. The framework is
essentially based on the logistic regression model to esti-
mate the conditional probability of relevance. The proposed
LEQT model is capable to adapt the combination strategy to
specific queries and experts, which leads to much flexibility
of combining data sources when dealing with a broad range
of expertise areas and a large variation in experts. The pa-
rameter estimation can be efficiently done in EM algorithms.
An extensive set of experiments have been conducted on the
INDURE testbed to show the effectiveness and robustness
of the proposed probabilistic models.

There are several directions to improve the research in
this work. First of all, there exists some useful query or
expert information that cannot be described by explicit fea-
ture representation such as the vector representation used

in the paper. For example, the similarity between queries
can be sometimes calculated from the taxonomy of exper-
tise or the similarity between experts can be derived based
on expert affiliations. By utilizing the well-known “kernel
trick”, instead of designing explicit features, we can trans-
form the similarity metric between queries or experts into
the implicit feature space in the form of a Mercer kernel.
The kernel versions of the proposed models can then be
very desirable. Secondly, the proposed discriminative learn-
ing models can also serve as the building block for other
important IR problems such as query expansion and active
learning in the context of expert finding. The applicability
of the LEQT model is even not limited to the expert finding
problems. It can also be used in many other areas involving
knowledge source combination, such as distributed informa-
tion retrieval, question answering, cross-lingual information
retrieval, and multi-sensor fusion.
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[30] J. Savoy, A. Le Calvé, and D. Vrajitoru. Report on
the TREC-5 Experiment: Data Fusion and Collection
Fusion. In Proceedings of the 5th Text REtrieval
Conference (TREC), pages 489–502. National
Institute of Standards and Technology, 1997.

[31] P. Serdyukov and D. Hiemstra. Modeling documents
as mixtures of persons for expert finding. In
Proceedings of 30th European Conference on
Information Retrieval, volume 4956, page 309.
Springer, 2008.

[32] T. Strohman, D. Metzler, H. Turtle, and W. Croft.
Indri: A language model-based search engine for
complex queries. In Proceedings of the International
Conference on Intelligence Analysis, 2004.

[33] C. Vogt and G. Cottrell. Fusion via a linear
combination of scores. Information Retrieval,
1(3):151–173, 1999.

[34] C. Vogt, G. Cottrell, R. Belew, and B. Bartell. Using
relevance to train a linear mixture of experts. In
Proceedings of the 5th Text REtrieval Conference
(TREC), pages 503–515. National Institute of
Standards and Technology, 1997.

[35] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. In Proceedings of the 30th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 391–398. ACM New York, NY, USA, 2007.

[36] R. Yan and A. Hauptmann. Probabilistic latent query
analysis for combining multiple retrieval sources. In
Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 324–331. ACM New
York, NY, USA, 2006.

[37] R. Yan, J. Yang, and A. Hauptmann. Learning
query-class dependent weights in automatic video
retrieval. In Proceedings of the 12th Annual ACM
International Conference on Multimedia, pages
548–555. ACM New York, NY, USA, 2004.


