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A Unified Meta-learning Framework for Fair
Ranking with Curriculum Learning

Yuan Wang, Zhiqiang Tao, Yi Fang

Abstract—In recent information retrieval systems, it is observed that the datasets used to train machine learning models can be
biased, leading to systematic discrimination against certain demographic groups, which means the ranking utility of specific groups is
often lower than others in a biased dataset. Training models on these datasets will further decrease the exposure of the minority
groups. To address this problem, we propose a Meta Curriculum-based Fair Ranking framework (MCFR) which could alleviate the data
bias issue through the weighted loss using gradient-based learning to learn. Specifically, we optimize a meta learner from a sampled
dataset (meta-dataset), and meanwhile train a ranking model on the whole (biased) dataset. The meta-dataset is sampled with a
curriculum learning scheduler to guide the meta learner’s training to gradually mitigate the skewness towards biased attributes. The
meta learner serves as a weighting function to make the ranking loss focus more on the minority group. We formulate the proposed
MCFR as a bilevel optimization problem and solve it using gradients through gradients. Extensive experiments on real-world datasets
demonstrate that our approach can be used as a generic framework to work with various ranking losses and fairness metrics.

Index Terms—Fairness-aware Search, Meta-learning, Learning-to-rank, Curriculum Learning.

✦

1 INTRODUCTION

FAIRNESS in search engines is an important topic, which
focuses on training an unbiased ranking model towards

protected attributes. Typically, when a user query is given,
the ranking model predicts relevant scores among candidate
items and returns items with the highest scores to users.
The data-driven ranking model is usually trained with large
datasets, and thus the ranker will learn user/item patterns
from the training dataset and make predictions based on
them. However, in many cases, the systematic biases such as
exposure bias [1] in the dataset will cause unfairness to the
ranking model. The historical discrimination against the so-
cially underrepresented group [2] will make its way into the
model as the pattern will be observed during the training
process. Such an unfairness problem could be summarized
as the disparate exposure [1], leading to a negative impact
on many real-world ranking problems.

Disparate exposure is prevalent in information retrieval.
For instance, expert search and job recommendation systems
historically underrepresented minority groups like females
and African Americans. Consequently, traditional learning
to rank (LTR) models, such as ListNet [3], often rank these
groups lower due to data biases. Fig. 1 shows ranking scores
from different models on four datasets, highlighting this un-
fairness. Disparate exposure implies uneven group visibility
in algorithm outcomes, especially linked to attributes like
gender or race, distinct from biases like selection or confor-
mity, which challenge algorithmic fairness and efficiency.

To reduce disparate exposure in a ranking context, many
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research works have been proposed recently by designing
fairness-aware algorithms, which can be divided into two
categories: 1) the score-based models and 2) the supervised-
learning models. The score-based models [9], [10], [11],
[12], [13], [14] compute the ranking scores on the fly for a
given candidates list and return the sorted candidates as
the model outcome. The supervised-learning models gen-
erally solve ranking as a prediction problem and focus on
different mitigation strategies, such as the post- [15], in- [6],
[16], [17], [18], [19], [20], [21], and pre-processing [22], [23],
[24] in model training. Although the in-processing models
have achieved promising performance on both fairness and
ranking metrics, learning on biased datasets is still under-
explored and challenging, due to the unbalanced distribu-
tions of protected attributes in the public training datasets.

One possible way to alleviate system discrimination
inherited from data bias is dynamically re-weighting the
minority groups to contribute more penalties in computing
a ranking loss. To this end, meta-learning [25] emerges as
an effective way to enable a learning-to-weight approach by
leveraging a small, unbiased dataset – meta dataset. For the
fairness-aware ranking problem, we propose to mitigate the
exposure issue in the biased dataset by learning a weighting
model (meta-learner) to re-weight the loss of the ranking
model on the biased dataset. The meta-learner will be op-
timized on the meta dataset (unbiased), and the weighted
loss on the training dataset (biased) will be used to optimize
the ranking model. However, due to the distribution shift
between the biased and unbiased datasets, it is non-trivial
to directly train the meta-learner and base learner on these
two datasets where a large training loss may impair ranking
utility and burden convergence speed.

We propose to adopt curriculum learning to gradually
increase the difficulty of training meta-learners to address
the above challenge. Specifically, we define the difficulty as
the exposure of the protected groups in a dataset. We first
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Fig. 1: Illustration of the predicted rankings distribution of two protected attributes on four datasets – (a) Law Student
(gender) [4], (b) Law Student (race) [4], (c) COMPAS [5], and (d) Engineering Student [6]. We report Kendall’s Tau [7] as the
ranking performance. MCFR and MFR [8] improve the protected attributes’ ranking while realizing competitive ranking
performance compared with ListNet [3], demonstrating that our approach could increase the exposure of the minority.

randomly sample a meta dataset that has the same exposure
as the training dataset. Then, we continually increase the
protected groups’ exposure in the meta dataset by sampling
more candidates from this group at each ongoing epoch
until a uniform distribution (equal exposure) is achieved
over sensitive attributes. Intuitively, this incremental con-
cept learning [26] is a good fit to solve the distribution shift
problem, because meta-learners are trained with samples
from the biased dataset at the early epochs, which means
there is less distribution shift between the meta-dataset and
training dataset. The experimental results demonstrate the
effectiveness of curriculum learning and the improved data
efficiency during training.

In this study, we propose a unified meta-learning frame-
work with curriculum learning to formulate the fairness-
aware ranking task as a bilevel optimization problem where
the upper level focuses on learning-to-weight to mitigate the
biased exposure of protected attributes, and the lower level
solves learning-to-rank with a dynamic loss governed by
a meta learner. Specifically, we alleviate the data bias issue
for the protected groups through an automatically weighted
loss. The contributions of this work are as follows.

• We propose a novel Meta Curriculum-based Fair
Ranking framework, namely (MCFR), which ad-
dresses the data bias by automatically re-weighting
the ranking losses. The proposed MCFR is formu-
lated as a bilevel optimization problem and solved
using gradients through gradients.

• The proposed fair ranking algorithm marries in-
processing methods with pre-processing techniques
by seamlessly incorporating curriculum learning into
the construction process of meta datasets.

• We develop MCFR as a general framework appli-
cable to various ranking loss functions and fairness
metrics. A systematic empirical study has been pro-
vided to show the versatility of the proposed frame-
work over different ranking and fairness criteria.

• Experiments on public datasets show our method
matches existing ranking performance and enhances
fairness metrics. Additionally, evaluations confirm
MCFR improves fairness with less training data and
achieves comparable convergence times.

This paper is a substantial extension of our previous
work [8]. The updated version integrates curriculum learn-
ing into the MFR model, offering the first fair ranking frame-
work to utilize both pre-processing and in-processing meth-
ods. This new approach enhances the model’s adaptability
and robustness by allowing for a broader range of loss
functions and dynamically adjusting meta-datasets during
training. Additionally, our framework demonstrates data ef-
ficiency in comparative experiments. We’ve also conducted
more comprehensive tests, incorporating additional baseline
models and performing an ablation study on various fair-
ness terms and ranking losses. Lastly, we’ve updated the
manuscript to include more recent related works, providing
a fuller understanding of fairness in ranking.

The rest of this paper is organized as follows. Section 2
introduces the related works. Section 3 elaborates the pro-
posed Meta Curriculum-based Fair Ranking (MCFR) frame-
work in detail. Section 4 shows the experimental setting,
implementation details, evaluation results, and performance
analysis. Section 5 finally concludes the study.

2 RELATED WORK

The proposed MCFR is related to the general fairness issue
in ranking, the meta-learning on fairness problems, and the
curriculum learning. We discuss in detail the recent works
in the following subsections from these research areas.

2.1 Fairness on Ranking

Zehlike et al. [27] categorized fair ranking models into score-
based and supervised learning models. Score-based models
modify score outcomes or distributions for enhanced fair-
ness. Notable contributions include works by Yang et al. [9],
[10], Celis et al. [11], Stoyanovich et al. [12], Kleinberg et
al. [14], and Asudeh et al. [13].

Supervised fairness models in ranking span pre-
processing, in-processing, and post-processing approaches.
Pre-processing models, exemplified by Lahoti et al. [15],
work on deriving fair training data. In-processing models,
such as Zehlike et al.’s DELTR [6], address fairness during
training, focusing on exposure bias. Similarly, Beutel et
al. [16] introduced a pairwise ranking loss function with
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fairness regularizer, while Ma et al. [17] tackled fairness
in query generation. Haak et al. [18] aimed at search
query bias identification, and Chu et al. [19] highlighted bi-
ases in neural architecture search evaluations. Importantly,
Chen et al. [21] proposed a meta-learning-based debiasing
framework for recommendations. Post-processing models,
conversely, refine model outputs post-training for fairness.
Among these, Zehlike et al.’s works [22], [23] like FA*IR
ensure representation of protected groups and offer contin-
uous fairness interpolation. Additionally, Biega et al. [24]
developed an algorithm optimizing the equity of user atten-
tion through relevance loss function.

Existing fairness ranking models utilize traditional ma-
chine learning, whereas our method employs meta-learning.
We structure MCFR as a bilevel optimization solved via
gradient-based techniques. Our model trains a meta-learner
on a uniformly sampled meta-dataset, enabling the ranking
model to learn unbiasedly from skewed data. Unlike previ-
ous works that fit into processing categories, we introduce a
combined pre-processing and in-processing framework.

2.2 Meta-Learning on Fairness

Meta-learning is a field of study that aims to improve the
learning ability of models by adapting to new tasks or envi-
ronments, and it could be divided into two main categories:
model-based [28], [29] and learning algorithm-based [30]. In
addition to tasks such as few-shot learning [31], continual
learning [32], and hyperparameter optimization [33], fair-
ness is an important field.

Zhao et al. [34] presented the Follow the Fair Meta
Leader (FFML) that learns an online fair classification
model’s primal, delivering both accuracy and fairness. In
a subsequent work, Zhao et al. [35] emphasized the Primal-
Dual Fair Meta-learning, targeting the optimal initialization
of the base model’s weights to rapidly adjust to new fairness
tasks. They further advanced their research in [36], creating
a few-shot discrimination prevention model for unbiased
multi-class classification, rooted in the MAML framework.
Concurrently, Slack et al. [37] introduced Fair-MAML, de-
signed to derive fair models from minimal data for emerg-
ing tasks. This model, like Zhao’s, is built upon the MAML
framework but incorporates fairness regularization and a
specific fairness hyperparameter. On recommender systems,
Chen et al. [21] applied meta-learning principles on the Au-
toDebias framework. This framework is tailored to confront
various biases, from selection to position bias. Thus, meta-
learning’s application in fairness ranking is emerging, and
our MCFR proficiently targets this area.

2.3 Curriculum Learning

Bengio et al. [26] proposed the first curriculum learning
approach, which orders the training examples based on the
difficulty, and Hacohen et al. [38] applied it on deep learning
model training. Generally, the curriculum learning could be
classified into two types: data-level curriculum learning and
model-level curriculum learning. The data-level curriculum
learning aims to learn the data from easy to difficult in terms
of a certain difficulty measurement, and the model-level

curriculum learning would learn increase the model com-
plexity as the training steps increase. Previously, the cur-
riculum learning is applied to many interesting tasks such
as relation extraction [39], transfer learning [40], domain
adaptation [41], class-incremental learning [42], stochas-
tic optimization [43], daily schedule recommendation [44],
and etc. While curriculum learning has been successfully
applied to many tasks, the meta-learning is one of the
under-explored areas. Recently, the work on the relation
extraction [39] combine the meta-learning and curriculum
learning together to quickly adapt model parameters to new
tasks. On few-shot classification, [45] proposed a simple and
novel curriculum schedule that decreases the number of
support size through the training. Also, the hardness aware
meta-learning concept was applied in next point-of-interest
recommendation task [46]. Among the works mentioned
above, the curriculum has not be applied to fairness ranking
problem as the measure of difficulty is not general. To the
best of our knowledge, we propose the first curriculum
learning framework for fairness ranking problem.

3 META CURRICULUM-BASED FAIR RANKING

In this section, we will explain the proposed Meta
Curriculum-based Fair Ranking framework in detail. In the
MCFR framework, we will train an unbiased ranking model
by using a meta-leaner to re-weight the ranking losses. We
formulate it as a bilevel optimization problem and solve
it using gradients through gradients. We also show that
the framework could be trained with various ranking loss
functions and fairness terms. Finally, we describe the design
of the curriculum sampling strategy for meta dataset.

To address bias in datasets, traditional methods have
utilized pre-processing, in-processing, or post-processing
techniques [27], [47]. Our model combines pre-processing
and in-processing, introducing the Meta Curriculum-based
Fair Ranking framework. We derive a smaller dataset for
meta-learner training, which assigns weights to emphasize
the protected group during training. Curriculum learning
adjusts this dataset’s distribution ratio over epochs, facilitat-
ing smoother meta-learner training. This integrates ranking
loss with fairness regularization, using the meta-learner to
guide model training, as depicted in Fig. 2.

3.1 Problem Setting
We denote the set of queries in the training dataset as Qtrain

with the size |Qtrain| = m and the set of items Dtrain with
|Dtrain| = n. Each query q in the Qtrain has a list of item
candidates d(q) from Dtrain. Each pair of query and item is
represented as a feature vector x

(q)
i and is associated with

the relevance score y
(q)
i . In the dataset, the candidates D

have a binary attribute that specifies whether the candidate
d belongs to the protected group or the non-protected group.
For example, the binary attribute could represent gender or
race, and systematic bias exists during the dataset collection.

3.2 A Unified MCFR Framework
To address the fairness problem, we train a meta learner
on the meta-dataset which could help train a fair rank-
ing model with the biased training dataset. We have the
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Fig. 2: MCFR learning algorithm flowchart (steps 4 and 6 in Algorithm 1). Note that f(·;w) is the ranking model, g(·; θ) is
the meta learner, b is the batch size for the training dataset, c is the batch size for the meta-dataset, and α and β are the
learning rates. At each iteration, we firstly update θ in the meta learner using Eq. (8) with the meta-dataset sampled from
the curriculum sampling with update of sampling difficulty at each epoch, and then we update w in the ranking model
using Eq. (9) with the training dataset.

ranking model f(x(q);w) and w is the learnable param-
eters of f , and we denote the output of the model as
ŷ(q) = f(x(q);w). Generally, the model parameter w is opti-
mized by minw

1
m

∑m
i=1 L(y

(q)
i , ŷ

(q)
i ) which could minimize

any given ranking loss function L such as pairwise loss and
listwise loss. However, these loss functions treat L of each
sample equally so that the ranking model will be unfair as
there is a heavy data bias issue towards minority groups in
the training dataset. To mitigate this problem, we introduce
a meta learner g(·; θ) with the learnable parameters θ to
adaptively tune loss weights for each sample to achieve
a fair exposure over diversity, and we could rewrite the
training loss as the following:

Ltrain(w; θ) =
1

m

m∑
i=1

ϕiLi(w) =
1

m

m∑
i=1

ϕiL(y(q)i , ŷ
(q)
i ),

(1)
where ŷ

(q)
i = f(x

(q)
i ;w) denotes the model output, and

ϕi ∈ [0, 1] denotes the i-th sample’s loss weight given by the
aforementioned meta learner g(·; θ). Notably, Ltrain(w; θ)
governed by the meta learner’s output weights depends
on a fixed θ and is used for updating the ranking model’s
parameter w. In short, we write Li(w) as the original loss
value of the i-th training data sample output from the
ranking loss L. For the meta learner g, we use a multi-layer
Perceptron network as proposed in [48], which takes loss
values as input and output weighted loss as

ϕi = g
(
Li(w); θ

)
= g

(
Li

(
y(q), f(x(q);w)

)
; θ
)
, (2)

where i is the sample from the training dataset or the
meta-dataset. We use sigmoid as the last-layer’s activation
function. Then we define a meta training loss function as

Lmeta
(
w(θ)

)
=

1

s

s∑
i=1

Li(w(θ)), (3)

Algorithm 1 Parameter update algorithm of MCFR

Input: A batch of training data xqtrain , yqtrain , a batch of meta-
dataset xqtrain , yqtrain , ranking model’s parameter w(t),
and the meta learner’s parameter θ(t).

Output: Ranking model’s parameter update w(t+1)

1: Update ŵ(t)(θ) by Eq. (5) with {xqtrain , yqtrain}.
2: Update θ(t+1) by Eq. (8) with {xqmeta , yqmeta}.
3: Update w(t+1) by Eq. (9) with {xqtrain , yqtrain}.

where s = |Qmeta|. The goal of the meta learner g(·; θ) is
to leverage the meta-dataset to learn how to re-weight the
loss values to train the model f(·;w) on the biased dataset,
indicating the relationship that the meta-learner plays a
pivotal role in directing the tuning of the ranking model’s
parameters, inherently making w a function of θ. Since w is
a function of θ, we naturally formulate the proposed MCFR
as a bilevel optimization problem and give the objective
function as

min
θ

Lmeta
(
w∗(θ)

)
s.t. w∗(θ) = argmin

w
Ltrain(w; θ). (4)

As illustrated in Fig. 2, our proposed MCFR model takes
advantage of the sampled meta-dataset to learn an unbiased
ranking model. The meta-dataset guide the meta learner to
reweight the training loss, which helps the ranking model
to focus on the candidates from the protected group.

3.3 Parameter Update

Since we formulate the framework as a bilevel optimization
problem, it could be challenging as calculating the optimal
parameters requires two nested loops of optimization. Fol-
lowing the well-known MAML works [48], [51], [52], we
adopt an online strategy with a single optimization loop to
update the ranking model and meta-learner parameters to
guarantee the training efficiency.
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Type Formula

Fairness
Hinge Exposure [6] U(ŷ(q)) = max(0,Exposure(G0|P )− Exposure(G1|P ))2

Squared Exposure U(ŷ(q)) = (Exposure(G0|P )− Exposure(G1|P ))2

Ranking

RankMSE [49] ℓ(y(q), ŷ(q)) = 1
n

∑n
i=1(y

(q)
i , ŷ

(q)
i )2

RankNet [50] ℓ(y(q), ŷ(q)) = 1
n

∑n
i=1

∑n
j=i log(1 + exp

−(y
(q)
i −ŷ

(q)
j )

)

ListNet [3] ℓ(y(q), ŷ(q)) = −
∑n

i=1 Py(q) (i) logPŷ(q) (i)

TABLE 1: Summary of ranking and fairness terms used in the loss function. The loss function used in the framework is
L(y(q), ŷ(q)) = ℓ(y(q), ŷ(q))+γU(ŷ(q)), and we can insert the above exposure terms and ranking loss terms as needed. Note
that n denotes the number of candidates per query.

We update the parameters of the ranking network using
the gradient decent on a batch of a training data with the
loss function in Eq. (1), and we define the update of w(t) as:

ŵ(t)(θ) = w(t)−α
1

b

b∑
i=1

g
(
Ltrain
i (w(t)); θ(t)

)
∇wLtrain

i (w(t)),

(5)
where t is each step of the update, and w(t) is the ranking
model parameters at the step t. To obtain optimal parame-
ters w∗ and θ∗, we minimize the training loss by

w∗(θ) = argmin
w

Ltrain(w; θ) =
1

m

m∑
i=1

ϕiLtrain
i (w), (6)

and the loss for the meta learner by

θ∗ = argmin
θ

Lmeta
(
w∗(θ)

)
=

1

s

s∑
i=1

Lmeta
i

(
w∗(θ)

)
. (7)

Then given ŵ(t)(θ) from Eq. (5), we update θ with the loss
of the ranking model on the meta-dataset as the following:

θ(t+1) = θ(t) − β
1

c

c∑
i=1

∇θLmeta
i

(
ŵ(t)(θ)

)
, (8)

where β is the learning rate, and c is the batch size of the
meta-dataset. Then we update w as the following:

w(t+1)(θ) = w(t) − α
1

b

b∑
i=1

ϕi∇wLtrain
i (w(t)), (9)

where α is the learning rate and b is the batch size of
the training dataset. We adopt an alternating optimization
strategy [48], [51], [52] to implement Eq. (8) and Eq. (9)
instead of using nested optimization loops. The one step
update algorithm is summarised in Alg. 1.

3.4 Ranking and Fairness Loss
The proposed MCFR serves as a unified framework that
aims to improve both the ranking and fairness metrics,
given any ranking and fairness objectives. To achieve this
goal, we propose to include two terms in the loss functions
similar to some in-processing fairness methods such as
DELTR [6], and we develop our loss functions with the
ranking term and fairness term given by:

L(y(q), ŷ(q)) = ℓ(y(q), ŷ(q)) + γU(ŷ(q)), (10)

where U(ŷ(q)) is the fairness term, ℓ(y(q), ŷ(q)) is the ranking
loss term, and γ > 0 is a balancing parameter.

3.4.1 Ranking Terms
For the ranking loss, we use the following loss functions
in the experiments: RankMSE [49], RankNet [50], and List-
Net [3]. RankMSE is a pointwise loss which is based on
least mean squared regression. RankNet proposed the first
pairwise cross entropy loss which consider the preference
relationships between documents. However, it is not pos-
sible to correctly predict the document order in all cases.
ListNet aims to directly compute the ranking loss with
each query and their candidates list instead of computing
pairwise loss one pair by one pair.

It is worth noting that other ranking losses are also
applicable in MCFR as we provide a general framework to
improve the ranking metrics.

3.4.2 Fairness Terms
In this work, we focus on disparate exposure for the fairness
term. For candidates D, there are two different groups:
the non-protected group G0 and the protected group G1.
The candidates from G1 belong to a discriminated group
such as female and African American and have significant
disadvantages in the datasets. Then following the definition
of Singh, et al [1], the exposure of a candidate d in a ranked
list generated by a probabilistic ranking P is given by:

Exposure(x(q)
i |P ) =

n∑
a=1

Pi,a · va, (11)

where va is the position bias of position a. We then follow
the implementation of Zelike, el al [6] to only consider
the position bias of position 1 with v1. Then the average
exposure of candidates in each group G could be written as:

Exposure(G|P ) =
1

|G|
∑

x
(q)
i ∈G

Exposure(x(q)
i |P ). (12)

With the exposure term defined above, we can introduce the
fairness measure by minimizing the difference between the
Exposure(G0|P ) and Exposure(G1|P ). In the experiments,
we use two exposure measurements. Hinge Exposure cal-
culates hinge squared loss from the exposure difference
between two groups, while Square Exposure computes the
squared exposure difference.

The ranking loss terms and exposure terms could be
used in an arbitrary combination, and our framework could
improve both the fairness and ranking metrics given differ-
ent combinations. The ranking terms and fairness terms are
summarised in Table 1.
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Fig. 3: Curriculum sampling strategy illustrated on the En-
gineering Student (Gender) dataset. We use the same ratio
between the unprotected group and protected group in the
meta-dataset as the training dataset at the beginning train-
ing epoch. We gradually decrease the ratio as the training
epoch increase until the ratio becomes 1 which shows a
balanced meta-dataset.

3.5 Curriculum Sampling

The training data shows systematic bias, with fewer can-
didates from protected groups than unprotected ones. To
address this issue, we trained a meta learner using an un-
biased meta-dataset since real unbiased data is rare. While
AutoDebias [21] previously tackled a similar issue for rec-
ommendation systems, it does not fit our ranking-focused
needs. Another approach, used in MFR [8], equally samples
candidates from each group. However, this method creates
a meta-dataset that may fall short of accurately capturing
the real biased data. For tasks like ranking, where the order
and relevance of items are crucial, this mismatch in the
data distribution can significantly hinder the model’s ability
to provide fair and effective rankings in practical applica-
tions, biased situations. To this end, we adopt curriculum
learning [26], a method that starts with easier, less biased
samples and gradually introduces more complex ones. This
mimics natural learning, helping the model adapt better and
become more robust. It’s designed to ease the model into
understanding and correcting biases, ensuring it performs
well and fairly in real-world applications, even with the
underlying biases in the data it was trained on.

In detail, we want to downsample the meta-dataset with
the similar distribution as the training dataset at the early
training epochs, and we gradually change the ratio of the
number of candidates from the protected and unprotected
groups to 1.0. Since we could not collect a real unbiased
dataset, we define 1.0 to be the unbiased ratio of the number
of candidates from the two different groups (d(q)unprotected

vs d
(q)
protected), which means there is an equal number of

candidates from each group. Here the downsampling ratio
is defined as r = |d(q)unprotected|/|d

(q)
protected|. The underlying

assumption behind this curriculum sampling strategy is
that it is easier to train the model when the meta-dataset
and training dataset have similar distribution and that it is
difficult to optimize the parameters in the ranking model
when the meta learner sees a very different meta-dataset
compared to the training dataset. As shown in Fig. 3, we
illustrate the change in the distribution of two groups in the
meta-dataset at different training epochs.

To train the meta learner, we use the curriculum sam-

Algorithm 2 The MCFR Learning Algorithm

Input: Training dataset Qtrain, Dtrain, batch size b, c, max
iterations T .

Output: Ranking model’s parameter w(T )

1: Initialize ranking model’s parameter w(0) and the meta
learner’s parameter θ(0).

2: for t = 0 to T − 1 do
3: {xqmeta , yqmeta} ← CurriculumSampling(Qtrain,Dtrain,

b, t).
4: {xqtrain , yqtrain} ← SampleMiniBatch(Qtrain,Dtrain, c).
5: Update w(t+1) by Alg. 1
6: end for

pled data {xqmeta , yqmeta}. The meta-dataset represents
the meta-knowledge of the true distribution of the pro-
tected group and the other group, where |Qmeta| =
s ≪ m and |Dmeta| = o ≪ n. In the meta-
dataset, we denote the feature vector of each item as
x(qmeta) and the relevance score as y(qmeta) given a
query qmeta from Qmeta. Similar to Ltrain

i (w), we denote
Lmeta
i

(
w(θ)

)
as the loss value for each meta-dataset sam-

ple. Thus we define CurriculumSampling(Qtrain,Dtrain,
b, t) as the following:

r(t) = r − t× (r − 1.0)/T, (13)

where r(t) is the ratio of sampled candidates for each group
for each query. Note that this is a single step scheduler
as the ratio r(t) is updated at each epoch. After exe-
cuting CurriculumSampling at each epoch, the sampling
meta-dataset {xqmeta , yqmeta} should have the property that
|d(q)unprotected|/|d

(q)
protected| = r(t). Intuitively, the Curriculum-

Sampling decreases the ratio epoch by epoch from the
biased ratio to 1.0.

As described in Section 3.2, the meta-dataset is an impor-
tant part of the model training as it is the key data to guide
the meta learner. Since the meta learner aims to reweight
the loss for the ranking model, how well the meta learner is
trained determine the performance of the ranking model.
With the curriculum sampling, we decrease the training
difficulty of the meta learner compared to MFR [8] which
only uses one sampled unbiased dataset. The meta learner
could progressively be trained with a more unbiased meta-
dataset as the epoch increases, which could improve the
meta learner’s performance and lead to a better overall
performance for the ranking model. The whole training
process is summarized in Algorithm 2.

Our framework provides flexibility to solve different
ranking problems as ListNet [3] may not work for all
ranking problems. In other cases, the fairness terms could
also be switched by using different fairness metrics or a
different formula to compute the disparate exposure. As the
exposure issue is not the only fairness problem, the MCFR
is capable of being optimized with other fairness terms such
as position bias and conformity bias.

4 EXPERIMENTS

In the experiments, we train and evaluate the model on
four real-world public datasets. We study both the ranking
and fairness metrics of our approach compared to other
baseline models. We also conduct an ablation study for the
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W3C Experts Engineering Students Engineering Law Students Law Students COMPAS
(gender) (high school type) Students (gender) (gender) (race) (race)

#items/query 200 480.6 480.6 21791 19567 6889
#protected/query 21.5 167.6 97.6 9537 1282 3528

TABLE 2: Summary of dataset statistics. We report the average counts of total and unprotected items per query for the
W3C Experts and Engineering Students datasets. We provide the exact item counts for the Law Students and COMPAS
datasets, each of which contains only one query.

W3C Experts
(gender)

Engineering Students
(high school type)

Engineering
Students (gender)

Precision@10 Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness

ListNet [3] 0.178 0.759 0.390 1.070 0.384 0.858
LambdaMART [53] 0.095 0.738 0.355 1.002 0.326 0.907

DELTR [6] 0.180 0.827 0.391 1.075 0.370 0.976
FA*IR pre [22] 0.180 0.770 0.374 1.020 0.360 0.942
FA*IR post [22] 0.180 0.827 0.391 1.075 0.370 0.976
AutoDebias [21] 0.033 0.829 0.372 0.955 0.372 0.955

FairGBM [20] 0.087 0.941 0.338 0.909 0.336 0.892
MFR 0.126 0.830 0.391 1.086 0.352 1.052

MCFR 0.118 0.843 0.390 1.088 0.350 1.055

Law Students
(gender)

Law Students
(race)

COMPAS
(race)

Kendall’s Tau Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness

ListNet [3] 0.202 0.931 0.184 0.853 0.639 0.836
LambdaMART [53] 0.199 0.979 0.156 0.847 0.542 0.956

DELTR [6] 0.188 0.993 0.130 1.014 0.576 0.970
FA*IR pre [22] 0.203 0.931 0.161 0.895 0.557 1.039
FA*IR post [22] 0.182 0.965 0.140 0.944 0.557 1.040
AutoDebias [21] 0.222 0.894 0.135 1.009 0.644 1.136

FairGBM [20] 0.141 0.998 0.210 1.116 0.550 0.917
MFR 0.225 1.015 0.184 1.654 0.644 1.138

MCFR 0.225 1.023 0.182 1.671 0.644 1.144

TABLE 3: Experimental results with hinge exposure [6]. To measure fairness, we compute the exposure ratio between the
protected and the non-protected group, so the values greater than 1.0 indicate greater visibility for the protected group and
vice versa. For the ranking metric, higher Kendall’s Tau / Precision@10(P@10) scores indicate better performance. The bold
text indicates the model with the best performance, and the results show that the MCFR model is better on the fairness
metrics with comparable performance on the ranking metrics against other state-of-the-art models.

effectiveness of our framework by changing the ranking
loss term and the disparate exposure term. We repeat the
experiment on the same datasets with different settings of
loss functions, and we evaluate the proposed framework by
comparing it with the baseline models. In the analysis, the
following questions are answered:

• What is the proposed MCFR’s performance com-
pared to the baseline models?

• Could MCFR improve both the ranking and fairness
metrics in different loss functions?

• What are the effects of the curriculum sampling?

4.1 Experimental setting

We train and evaluate the model on four real-world public
datasets: (i) Engineering Student; (ii) Law Student, (iii) W3C
Experts; (iv) COMPAS (Correctional Offender Management
Profiling for Alternative Sanctions). The statistics of each
dataset are summarized in Table 2.

W3C experts Dataset This dataset originates from TREC
2005 Enterprise Track [54]. It involves searching for experts
based on a topic, using features from their emails. We
designate gender as the protected attribute, with technical

topics as queries. In this context, females are the protected
group, and males are non-protected. Each query has 200
items, averaging 21.5 from the protected group. Given that
the original dataset ranks retrieved experts equally, we
adopt the DELTER experiments’ setting [6], categorizing ex-
pert candidates as: male experts, female experts, male non-
experts, and female non-experts. For candidate features, we
utilize the Elasticsearch Learning to Rank Plug-in1 for all
query-candidate pair text features.

Law Student Dataset This dataset [4] was collected to
determine if the LSAT (Law School Admission Test in the
US) is biased against ethnic minorities. The dataset contains
information from first-year law students, and the protected
attributes are gender and race. The query is academic year,
and the task is to retrieve students with good LSAT scores.
Since our problem setting is focused on one protected
attribute at a time, we have two datasets: Law Students
(gender) and Law Students (race). In the Law Students
(gender) dataset, females are the protected group among
21,791 candidates, with 9,537 being female. In the Law
Students (race) dataset, African Americans are the protected

1. https://elasticsearch-learning-to-rank.readthedocs.io/en/latest/
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Exposure
Type

W3C Experts
(gender)

Engineering Students
(high school type)

Engineering
Students (gender)

Precision@10 Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness

RankMSE n/a 0.121 0.770 0.187 0.800 0.376 0.836
MFR Hinge 0.115 0.781 0.384 1.049 0.357 1.010

MCFR Hinge 0.115 0.782 0.384 1.052 0.353 1.020
MFR Squared 0.115 0.780 0.384 1.045 0.360 0.982

MCFR Squared 0.115 0.782 0.384 1.045 0.360 0.990

Exposure
Type

Law Students
(gender)

Law Students
(race)

COMPAS
(race)

Kendall’s Tau Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness

RankMSE n/a 0.213 0.874 0.190 0.847 0.493 0.768
MFR Hinge 0.225 0.910 0.191 0.847 0.634 0.911

MCFR Hinge 0.226 0.920 0.190 0.851 0.634 0.911
MFR Squared 0.223 1.010 0.139 0.992 0.633 0.911

MCFR Squared 0.225 1.023 0.138 0.996 0.630 0.928

(a) RankMSE [49]

Exposure
Type

W3C Experts
(gender)

Engineering Students
(high school type)

Engineering
Students (gender)

Precision@10 Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness

RankNet n/a 0.121 0.770 0.131 0.806 0.190 0.800
MFR Hinge 0.121 0.774 0.126 0.925 0.188 0.810

MCFR Hinge 0.123 0.775 0.131 0.867 0.186 0.820
MFR Squared 0.121 0.774 0.126 0.925 0.188 0.810

MCFR Squared 0.121 0.774 0.131 0.867 0.186 0.812

Exposure
Type

Law Students
(gender)

Law Students
(race)

COMPAS
(race)

Kendall’s Tau Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness

RankNet n/a 0.093 0.942 0.105 0.866 0.128 0.768
MFR Hinge 0.131 1.033 0.140 1.284 0.373 0.839

MCFR Hinge 0.132 1.036 0.152 1.370 0.375 0.840
MFR Squared 0.173 1.033 0.105 0.866 0.352 0.832

MCFR Squared 0.220 1.050 0.105 0.866 0.352 0.832

(b) RankNet [50]

Exposure
Type

W3C Experts
(gender)

Engineering Students
(high school type)

Engineering
Students (gender)

Precision@10 Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness

ListNet n/a 0.178 0.759 0.390 1.070 0.384 0.858
MFR Hinge 0.126 0.830 0.391 1.086 0.352 1.052

MCFR Hinge 0.118 0.843 0.390 1.088 0.350 1.055
MFR Squared 0.118 0.803 0.330 1.005 0.358 1.006

MCFR Squared 0.118 0.803 0.341 1.005 0.342 1.018

Exposure
Type

Law Students
(gender)

Law Students
(race)

COMPAS
(race)

Kendall’s Tau Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness

ListNet n/a 0.202 0.931 0.184 0.853 0.639 0.836
MFR Hinge 0.225 1.015 0.184 1.654 0.644 1.138

MCFR Hinge 0.225 1.023 0.182 1.671 0.644 1.144
MFR Squared 0.223 1.010 0.113 1.166 0.340 0.828

MCFR Squared 0.225 1.014 0.079 1.115 0.632 1.068

(c) ListNet [3]

TABLE 4: Ablation study results. We conduct experiments on all 6 combinations of ranking loss terms and fairness terms
on MFR and MCFR. For ListNet, RankMSE and RankNet models, they serves as the baseline model considering no fairness
term during the training. The results show that MCFR could generally improve the fairness metrics with comparable
ranking performance given different ranking loss and fairness terms.
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group out of 19,567 candidates, with 1,282 from this group.
Engineering Students This dataset [6] contains informa-

tion on first-year students at a Chilean university. The quali-
fication features include admission test results in mathemat-
ics, language, and science, the students’ high school grades,
and the number of credits taken at the university. The task
is to predict academic performance, and the protected at-
tributes are high school type and gender. Similarly, we have
two datasets: Engineering Students (high school type) and
Engineering Students (gender). For Engineering Students
datasets, one focuses on high school type, with public high
school students as the protected group, averaging 167.6 out
of 480.6 items per query. The other considers gender, with
females as the protected group, averaging 97.6 out of 480.6
items per query.

COMPAS COMPAS (Correctional Offender Management
Profiling for Alternative Sanctions) is a commercial algo-
rithm for scoring a criminal defendant’s likelihood of re-
cidivism. In the COMPAS dataset [5], it has been observed
that the algorithm is biased towards African American can-
didates. In this dataset, the task is to predict the recidivism
score, and the protected attribute is race. There are 6,889
candidates in total, and 3,528 are African Americans.

4.1.1 Baselines
We integrated several baseline models in our implementa-
tion. ListNet [3] introduces a listwise loss function. Lamb-
daMART [53] combines MART and LambdaRank, trans-
forming ranking tasks with gradient boosting decision trees.
DELTR [6] offers an LTR strategy with listwise fairness met-
rics. FA*IR [22] applies pre and post-processing techniques
for enhanced fairness. AutoDebias [21] presents a debiasing
method for recommendation systems. FairGBM [20] deliv-
ers a fairness-centric classification model for GBDT, while
MFR [8] employs meta-learning for fair LTR. Notably, only
ListNet and LambdaMART focus solely on ranking metrics,
with DELTR and MFR emphasizing fairness-aware ranking.

4.1.2 Implementation Details
To split the datasets, we have 50 queries for training and
10 queries for testing in the W3C dataset, 4 queries for
training and 1 query for testing in the Engineering Stu-
dents dataset, and 80% for training and 20% for testing
in the Law Students dataset and the COMPAS dataset.
We use Precision@10 (P@10) [55] for the W3C dataset and
Kendall’s Tau [7] for other datasets to evaluate the ranking
performance. Kendall’s Tau assesses the correlation between
two ranking sets, calculating the difference between the
number of concordant and discordant pairs divided by the
total number of pairs. It ranges from -1 to 1, indicating
perfect agreement, no correlation, or perfect disagreement
in the rankings, respectively. In details, the Kendall’s Tau is
calculated as the following:

Kendall’s Tau =
p− q√

(p+ q + t)× (p+ q + u)
, (14)

where p is the number of concordant pairs, q the number
of discordant pairs, t the number of ties in the ground
truth rankings, and u the number of ties in the predicted
rankings. To measure fairness, we compute the exposure
ratio between the protected and the non-protected group [6].

Thus, in the fairness metric, values greater than 1.0 indicate
greater visibility for the protected group and vice versa.

In the training, we set the update frequency of the
weighting model parameter θ to be per 2 steps, the opti-
mizer to be SGD [56], the momentum to be 0.98, the learning
rate to be 0.022, the hidden layer dimension to be 30, and
the number of hidden layers to be 3. For the ranking model,
we set the learning rate to be 0.005, the optimizer to be
SGD, the momentum to be 0.95, and the weight decay to
be 0.005. We set different values for γ and training epoch for
different dataset: W3C dataset uses γ = 500 and 100 epochs,
Engineering Students (high school) uses γ = 5,000 and 280
epochs, Engineering Students (Gender) uses γ = 400 and
150 epochs, Law Students(gender) uses γ = 1,200 and 550
epochs, Law Students (race) uses γ = 50,000 and 110 epochs,
and COMPAS (race) uses γ = 2,500 and 45 epochs.

In the ablation study to evaluate the effectiveness of
our framework, we use the same hyperparameters as de-
scribed above for other ranking losses such as RankMSE
and RankNet. In the experiment, we collect results with all
combinations of ranking losses and fairness terms.

4.2 Fair Ranking Performance

In Table 3, we detail the performance of both baseline and
fair ranking models trained with hinge exposure. The pro-
posed MCFR outperforms other baseline models in fairness
metrics across all datasets. When compared to ListNet and
LambdaMART, models like DELTR, MFR, FA*IR, AutoDe-
bias, FairGBM, and MCFR show enhanced results due to
the inclusion of fairness measures during training. Notably,
MCFR’s use of curriculum sampling for the meta-dataset
allows it to surpass MFR in fairness metrics, as the meta-
learner adeptly adjusts the loss distribution. During MCFR
training, curriculum sampling creates the meta-dataset for
the Meta Model. The W3C dataset’s limited items from
the protected group hinder significant distribution shifts in
meta-dataset sampling, affecting its ranking performance.
This constraint primarily contributes to the decreasing rank-
ing performance observed in the model trained on W3C
data. Except on the W3C dataset, MCFR has competitive
results on the ranking metrics compared to the other base-
line models, indicating that training MCFR does not focus
solely on the fairness metrics. For ListNet, the results are
also expected, as they only optimize for ranking metrics and
have better performance in ranking metrics on Engineering
Students (gender) and Law Students (race). Since AutoDe-
bias and FairGBM are tailored for recommendation and
classification tasks respectively, their limited performance
on ranking problems is as expected. In Fig. 1, we also plot
the histogram of ranks on the protected attributes from
the different models. From the plot, we can see that the
distribution of predicted ranks shifts from right to left,
indicating that the MCFR model generally ranks items from
the protected group higher compared to ListNet and MFR.
In the plot, 1 on the x-axis indicates the top rank, and
more candidates falling in bins on the left means the can-
didates receive higher ranks. In ranking algorithms, MCFR
enhances visibility for underrepresented protected groups.
However, fairness doesn’t mean maximizing exposure for
them at the expense of the non-protected group’s visibility.
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(a) Fairness Metric (gender) (b) Ranking Metric (gender) (c) Fairness Metric (race) (d) Ranking Metric (race)

Fig. 4: Evaluation results on the down-sampling experiments. We conduct the experiment on Law Students (gender) and
Law students (race) datasets, and we down-sample the training data from the rate of 0.1 to 0.9. The results show that
MCFR has better data efficiency as it could achieve better fairness metrics with similar ranking performance than MFR and
AutoDebias at different down-sampling rate.

W3C Experts Engineering Students Engineering Law Students Law Students COMPAS
(gender) (high school type) Students (gender) (gender) (race) (race)

DELTR 43.69 14.09 40.92 14.35 17.70 19.67
MFR 21.16 15.24 17.24 51.29 49.72 76.88

MCFR 171.37 92.57 91.64 294.42 293.92 352.96

TABLE 5: Experimental results on total convergence time in seconds. It shows the total convergence time for different
algorithms (DELTR, MFR, and MCFR) across various datasets or scenarios. Based on the table, the MCFR framework
generally has comparable convergence time than the other two algorithms.

4.3 Ablation Studies

In Table 4, we present the ablation study results for MCFR,
which offers flexibility in choosing loss functions and fair-
ness terms. As a generalized framework, MCFR consistently
enhances both ranking and fairness metrics across vari-
ous loss functions and exposure formulas. We employed
RankMSE, RankNet, and ListNet as representatives for
pointwise, pairwise, and listwise losses, which serve as
baseline models in Table 4(a), 4(b), and 4(c).

4.3.1 Ranking Terms Analysis

First, we analyze the performance of MCFR using different
ranking terms in loss functions. When using ListNet, MCFR
has worse ranking performance on the W3C Experts (gen-
der) and Engineering Students (gender) datasets than the
ListNet model. On other datasets, MCFR and the ListNet
model have similar ranking performance. Note that on the
Law Students (gender) dataset, MCFR also improves the
ranking metrics. When using RankMSE, a similar pattern
is observed. On RankNet, MCFR achieves similar ranking
performance on the W3C Experts (gender) dataset and
improves the ranking metrics on the Law Students (gender)
and Law Students (race) datasets, in addition to the fairness
metrics. The consistent improvement in ranking metrics
shows that the proposed MCFR is a generalized framework
that can adapt to many ranking loss functions.

4.3.2 Fairness Terms Analysis

Second, we evaluate different fairness terms in loss func-
tions. When using ListNet as the ranking loss term, MCFR
greatly improves the fairness metrics on the W3C Experts
(gender) and Engineering Students (gender) datasets. On
other datasets, MCFR outperforms the ListNet model on the
fairness metrics with similar ranking performance. When
using RankMSE, MCFR also improves the fairness metrics

on the Law Students (gender) and Law Students (race)
datasets. We see that MCFR can improve the fairness metrics
with various ranking loss terms.

4.3.3 Curriculum Sampling Analysis
Moreover, we compare the performance of MCFR and MFR
to show the effectiveness of curriculum learning using dif-
ferent losses. Note that in MFR, we use the same settings
in loss functions as in MCFR to have a fair comparison.
When using the Hinge exposure, MCFR usually has bet-
ter fairness performance with minor trade-offs in ranking
metrics, except on the W3C Experts (gender) dataset using
ListNet. While using the Squared exposure, except on the
Law Students (race) dataset, MCFR improves both rank-
ing and fairness metrics compared to MFR. These results
demonstrate the effectiveness of curriculum learning.

4.3.4 Data Efficiency
To assess curriculum learning’s effect on data efficiency, we
compare with MCFR, MFR, and AutoDebias using down-
sampled training data, varying from 10% to 90% of the
original data. Figure 4 illustrates how MCFR outperforms
MFR and AutoDebias across most sampling rates in fair-
ness for gender-related data, achieving fair metrics close
to 1.0 while maintaining high ranking performance. MCFR
demonstrates superior fairness with reduced training data.
For race-related data, MCFR achieves better ranking perfor-
mance and higher fairness metrics, indicating our curricu-
lum strategy effectively enhances fairness of the protected
groups even with less data.

4.3.5 Training and Inference Efficiency
To enhance ranking fairness with MCFR, we sought a bal-
ance between fairness and efficiency. As shown in Table 5,
MCFR has a training complexity comparable to methods
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like DELTR, and the curriculum sampling extends the train-
ing time linearly with sampling rounds. Notably, during
the inference, MCFR, MFR, and DELTR will show consis-
tent efficiency since these algorithms share the same base
ranking model with the same number of parameters and
layers and there is only one forward pass for predictions.
Table 5 shows MCFR’s extended convergence time due to
curriculum sampling and added epochs. MCFR’s fairness
benefits are clear, yet we value efficiency in time-sensitive
applications. Overall, these results demonstrate that the
curriculum learning in MCFR enhances fairness without
compromising ranking performance, also making training
more efficient.

5 CONCLUSION AND FUTURE WORK

In this study, we introduced the Meta Curriculum-based
Fair Ranking (MCFR) framework to address data bias in
search problems. By employing a meta-learner trained on
a curriculum-learning-sampled meta-dataset, our approach
re-weights the training loss from the target ranker on biased
data. This re-weighted loss aids in developing an unbiased
ranking model, enhancing exposure for minority groups.
Comparative experiments on real-world datasets confirm
MCFR’s superiority over fair ranking models lacking meta-
learning and curriculum learning components. Future work
will explore handling multiple protected attributes and ex-
panding MCFR’s applicability to diverse ranking tasks and
datasets, probing its adaptability and potential constraints.
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