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In this article we propose a robust probabilistic multivariate calibration (RPMC) model in an attempt to
identify linear relationships between two sets of observed variables contaminated with outliers. Instead of
the Gaussian assumptions that predominate in classical statistical models, RPMC is closely related with
the multivariate Student t-distribution over noises and latent variables. Thus RPMC diminishes the effect
of outlying data points by regulating the thickness of the distribution tails. RPMC is essentially a ro-
bustified version of the supervised probabilistic principal component analysis (SPPCA) that has emerged
recently. We show that RPMC encompasses probabilistic principal component analysis and SPPCA as
limiting cases. We also derive an efficient EM algorithm for parameter estimation in RPMC. Based on
a probabilistic description of latent variables, we present a procedure for the detection of outliers. The
experimental results from both simulated examples and real life data sets demonstrate the effectiveness
and robustness of our proposed approach.

KEY WORDS: Expectation-maximization algorithm; Latent variable model; Multivariate Student
t-distribution; Outlier detection; Probabilistic principal component analysis; Supervised
probabilistic principal component analysis.

1. INTRODUCTION

Outliers are observations that seem extreme or unusual with
respect to the rest of the data and to previous knowledge about
what values are plausible (Ghoshdastider and Schafer 2003). In
recent years, the need to deal with huge amounts of data has
become a common problem in research laboratories and in in-
dustrial operations across most research disciplines and their
commercial applications. It is well known that all large data
sets contain outliers (Wold, Berglund, and Kettaneh 2002), and
that the manual evaluation of these outliers is extremely dif-
ficult. Most conventional multivariate calibration methods are
sensitive to outliers because they are based on least squares or
a similar loss function in which even a single outlier has a huge
impact on the development of a model. Thus automatic outlier
detection and robust methods are of paramount importance in a
multivariate calibration model.

Some simple approaches to screening outliers exist, includ-
ing trimming and winsorizing (Tukey 1962). These intuitive
methods have a common major drawback in their discarding
of data. These missing data in turn create a situation likely to
lead to biased estimates. Many sophisticated robust approaches
have been proposed as alternatives to these simple techniques.
Among the alternatives, considerable attention has been given
to replacing the nonrobust least squares estimate with a robust
estimate. Notable examples of these robust estimates include
M-estimates (Huber 1964), the Stahel–Donoho estimate (Sta-
hel 1981; Donoho 1982), least median of squares (Rousseeuw
1984), and S-estimators (Davies 1987; Lopuhaa 1989); a re-
cent overview of these robust estimates has been given by
Moller, Frese, and Bro (2005). Most of these methods are at-
tempts to improve the robustness of common multivariate re-
gression techniques, such as principal component regression
(PCR) (Chatterjee and Price 1977) and partial least squares

(PLS) (Wold 1966). An alternative to giving such attention to
data-analytic activities is to use the capability of an experimen-
tal design that explicitly includes consideration of instrumental
and environmental factors (Thomas and Ge 2000). Although
these approaches are sometimes effective, none defines a gen-
erative model or normalized probability for the data.

Another notorious problem with high-dimensional data is
what Bellman (1961) termed the curse of dimensionality, in
which both the number of computations required for a predic-
tive model and the amount of data required for calibration grow
exponentially with the increased dimensionality of the feature
vectors. Although PCR and PLS do reduce data dimensionality,
they do not define a proper probability model underlying the
data generation; in other words, they cannot use the model to
tell us how well new data fit.

In this article we propose an approach that we term robust
probabilistic multivariate calibration (RPMC) in the frame-
work of latent variable models. RPMC models outliers by
probabilistic description instead of by simply removing them.
RPMC also yields more robust estimates at contaminated data.
Using these accurate estimates, we provide a statistically prin-
cipled way to identify outliers. Moreover, we analyze the re-
lationships between RPMC and other recently proposed latent
variable models. Finally, we derive an efficient expectation-
maximization (EM) algorithm (Dempster, Laird, and Rubin
1977) for parameter estimation in RPMC. Section 2 summa-
rizes previous work with latent variable models. Section 3
presents the RPMC model and the EM algorithm for learning
parameters, and Section 4 gives experimental results obtained
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from various data sets. Section 5 contains some concluding re-
marks and maps out some directions for future studies.

2. LATENT VARIABLE MODELS

Latent variables, also called hidden variables, are variables
that are not observed directly but instead are inferred from other
variables that are measured directly. A latent variable model
is a statistical model used to investigate the dependence of a
set of manifest (observed) variables on a set of latent variables
(Everitt 1984). A general latent variable model has the form

p(x) =
∫

p(x|t)h(t)dt,

where x = [x1, . . . , xM]T represents the observable variables
and t = [t1, . . . , tP]T represents the latent variables. The num-
ber of latent variables, P, is usually far fewer than the number
of observable variables, M. In essence, all latent variable mod-
els assume that x has a joint probability distribution conditional
on t, denoted by p(x|t). Based on some assumptions, we can in-
fer the density functions, p and h, from the known or assumed
density of x to explore how the manifest variables depend on
the latent variables. Latent variable models rest on a key as-
sumption of conditional independence. This assumption holds
that observable variables are independent of one another, given
the values of latent variables. In other words, the observed in-
terdependence among the observable variables results wholly
from their common dependence on the latent variables. Once
the latent variables are fixed in place, the behavior of the ob-
servable variables is essentially random. Mathematically, this
can be expressed as

p(x) =
∫

h(t)
M∏

i=1

p(xi|t)dt.

Depending on the different assumptions made about latent
variables, different classes of latent variable models can be con-
structed. The best known of these is factor analysis, which was
initially developed by psychologists (Spearman 1904). Recent
research has found that many popular multivariate statistical
techniques are closely related to latent variable models; no-
table examples include vector quantization, independent com-
ponent analysis (ICA) models, Kalman filter models, and hid-
den Markov models (HMMs) (Roweis and Ghahramani 1999).

2.1 Probabilistic Principal Component Analysis

Principal component analysis (PCA) (Pearson 1901;
Hotelling 1936) is a widely used statistical tool for reducing
the dimensionality of high-dimensional data sets for ease of
analysis. Although PCA originates from the analysis of data
variances, recently it has been connected to the maximum like-
lihood solution for a generative latent variable model, which is
called probabilistic PCA (PPCA) (Tipping and Bishop 1999b)
and is defined as

x = Wxt + μx + εx, (1)

where x ∈ �M is the observed variable, t ∈ �P is the latent vari-
able, Wx is a M ×P matrix called factor loading, and εx defines
a noise process. In addition, we have the parameter μx which

allows nonzero means for the data. In this probabilistic model,
the latent variable t is conventionally assumed to satisfy a stan-
dard multivariate Gaussian distribution [i.e., t ∼ N(0, I)], and
εx takes an isotropic Gaussian form as εx ∼ N(0, σ 2

x I). Tipping
and Bishop (1999b) showed that the maximum likelihood esti-
mator of Wx is given as

W̃x = UP(EP − σ 2
x IP)1/2R, (2)

where UP is the matrix of the P principal eigenvectors (corre-
sponding to the P largest eigenvalues) of the sample covariance
matrix Sx = 1

n

∑n
i=1(xi − x̃)(xi − x̃)T , EP ∈ R

P×P is the diag-
onal matrix of the corresponding eigenvalues, IP ∈ R

P×P is the
P-dimensional identity matrix, and R is an arbitrary P × P or-
thogonal matrix. The expected projection t̃ for new observation
x∗ is given as

t̃ = RT(EP − σ 2
x IP)1/2E−1

P UT
P(x∗ − μx).

PCA is recovered when the covariance of the noise becomes
infinitesimally small. This probabilistic formulation provides
additional advantages over conventional PCA, including a prin-
cipled way of handling missing values, a fast EM learning pro-
cedure, and the availability of a Bayesian treatment. In addition,
PPCA has strong connections to factor analysis (Tipping and
Bishop 1999b).

2.2 Supervised Probabilistic Principal
Components Analysis

In many applications, each data observation is associated not
only with input x, but also with output y = [y1, . . . , yK]T ∈ R

K .
Therefore, an unsupervised learning method, such as PCA or
PPCA, may not be able to project the data into useful subspaces.
Many supervised learning methods have been proposed to make
use of output information, including PCR, PLS, linear dis-
criminant analysis (LDA), and supervised principal component
methods (Bair, Hastie, Paul, and Tibshirani 2006). Based on
latent variable models, supervised probabilistic PCA (SPPCA)
was recently introduced (Yu, Yu, Tresp, Kriegel, and Wu 2006).
Like PPCA, SPPCA uses the key assumption of latent variable
models that all of the observations are conditionally indepen-
dent, given the latent variables. In SPPCA, the observed data
(x,y) are generated from a latent variable model as

x = Wxt + μx + εx,
(3)

y = Wyt + μy + εy.

A unit-isotropic Gaussian distribution is assumed for the
P-dimensional latent variable t and independent for the er-
ror terms εx and εy, that is, t ∼ N(0, I), εx ∼ N(0, σ 2

x I), and
εy ∼ N(0, σ 2

y I). It can be shown that the maximum likelihood
solutions of Wx and Wy are given by Yu et al. (2006) as

W̃x = σxUM(EP − IP)1/2R

and

W̃y = σyUK(EP − IP)1/2R,

where UM (UK ) contains the first M (or last K) rows of eigen-
vectors of the normalized sample covariance matrix S for cen-
tered observations {(xi,yi)}n

i=1, EP ∈ R
P×P is the diagonal
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matrix of the corresponding eigenvalues, IP ∈ R
P×P is the

P-dimensional identity matrix, and R is an arbitrary P × P or-
thogonal matrix. The projected latent variable t∗ for centered
new input x∗ is given by

t∗ = 1

σx
RT(EP − IP)1/2[UT

MUM + (EP − IP)−1]−1UT
Mx∗.

(4)

When K > 0, SPPCA explains not only the intracovariances
of inputs Sx and output Sy, but also the intercovariance between
input and output, Sxy and Syx. In contrast to SPPCA, PCA only
explains the covariance of inputs; as for PLS, it finds the max-
imal covariance between inputs and outputs but ignores the in-
tracovariance of both inputs and outputs.

3. ROBUST PROBABILISTIC MULTIVARIATE
CALIBRATION MODEL

3.1 Multivariate Student’s t-Distribution

Both PPCA and SPPCA take advantage of the Gaussian
assumption about noise, based on the fact that the convolu-
tion of two independent Gaussian-distributed quantities also is
Gaussian-distributed. This nice analytical property of Gaussian
distributions often yields tractable algorithms for linear Gaus-
sian models. One major limitation of such Gaussian models,
however, is their sensitivity to outliers. This can be readily un-
derstood by recalling the linear Gaussian regression models in
which the maximization of likelihood function is equivalent to

finding the least squares solution, which is well known for its
lack of robustness (Svensen and Bishop 2004).

The Student t-distributions have heavier tails compared with
a Gaussian distribution (Fig. 1). By assigning higher probabil-
ity densities to outliers, the effect of outliers on model devel-
opment is diminished. A t-distribution is commonly used in
robust regression (Lange, Little, and Taylor 1989). Previous
work has replaced Gaussian distributions with t-distributions
(Archambeau, Delannay, and Verleysen 2006) as a way to in-
crease the robustness of PPCA and probabilistic canonical cor-
relation analysis (Bach and Jordan 2005). The t-distributions
also have proven effective in computer vision and mixture mod-
eling (Peel and McLachlan 2000; Torre and Black 2001; Ar-
chambeau 2005).

Specifically, the t-distribution for the M-dimensional vari-
able x is defined as (Svensen and Bishop 2004)

S(x|μ,�, ν) = �(ν/2 + M/2)|�|−1/2

�(ν/2)(νπ)M/2

(
1 + �2

ν

)−(v+M)/2

,

where μ and � are the mean and covariance matrix of x
�2 = (x − μ)T�−1(x − μ) is the squared Mahalanobis dis-
tance from x to μ, and �(·) denotes the gamma function, that
is, �(z) = ∫ ∞

0 yz−1e−y dy. The parameter ν > 0 is the degree of
freedom, which controls the thickness of the distribution tails
and thus regulates the degree of robustness to outliers. Max-
imum likelihood estimation of μ and � is robust in the sense
that outliers with large squared Mahalanobis distance are down-
weighted (Lange et al. 1989). When parameter v goes to infin-
ity, t-distributions approach Gaussian distributions.

(a) (b)

Figure 1. Heavy tails of t-distributions S(x|μ,�, ν) with fixed μ = 0 and various ν on (a) a normal scale and (b) a log scale ( ν = 1;
ν = 5; ν → ∞).
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3.2 The Robust Probabilistic Multivariate
Calibration Model

We now formally describe our proposed model, which we
cal the robust probabilistic multivariate calibration (RPMC)
approach. RPMC is a latent variable model whose compo-
nents have a t-distribution instead of a Gaussian distribution.
In RPMC, the observed input and output (x,y) are generated
from a latent variable model defined as

p(θ) = G

(
θ

∣∣∣ v

2
,

v

2

)
,

p(t|θ) = N(t|0, θ−1IP),
(5)

p(x|t, θ) = N(x|Wxt + μx, θ
−1σ 2

x IM),

p(y|t, θ) = N(y|Wyt + μy, θ
−1σ 2

y IK),

where G(·) represents a gamma distribution, that is, G(θ |α,

β) = βα

�(α)
θα−1e−βθ .

Similar to in SPPCA, here t is the latent variable shared by
observed variables x and y; the difference is that RPMC defines
an extra latent variable θ behind the observed variable (x,y)

and the latent variable t. Writing μ = (μx
μy

)
, � = (σ 2

x I 0
0 σ 2

y I

)
, and

W = (Wx
Wy

)
, our goal is to infer the latent variables H = {θ, t}

and the parameters 
 = {�,W,μ, ν} from the observed data
(x,y). Graphical representations of PPCA, SPPCA, and RPMC
are shown in Figure 2.

Next, we link RPMC with a t-distribution by Theorem 1 and
show its close relationships with SPPCA and PPCA by Propo-
sitions 1 and 2 (see App. A for proofs).

Theorem 1. For the RPMC model, the marginal distribution
of t and of x and y conditional on t is given by

p(t) = S(t|0, IP, ν),

p(x|t) = S(x|Wxt + μx, σ
2
x IM, ν), (6)

p(y|t) = S(y|Wyt + μy, σ
2
y IK, ν).

Theorem 1 actually demonstrates an intimate relationship be-
tween RPMC and model (6) defined by the Student t-distribu-
tion, which assumes that the noise is drawn from a t-distribu-
tion, as is the latent variable t. This model can be considered a

robustified version of SPPCA by changing the Gaussian distri-
bution on noise and latent variables to t-distributions. But the
model (6) lacks a closed-form solution or even a tractable EM
algorithm for maximization of likelihood. Fortunately, we can
derive a tractable EM algorithm for model (5), which is closely
related to model (6).

Proposition 1. If ν goes to infinity, then RPMC is equivalent
to SPPCA.

Proposition 2. If ν goes to infinity and K = 0, then RPMC is
equivalent to PPCA.

Propositions 1 and 2 show that PPCA and SPPCA are the
limiting cases of RPMC.

3.3 EM Algorithm for Parameter Estimation

Parameter estimation in latent variable models can be re-
duced to maximization of data likelihood with respect to all
of the model’s parameters. After observing n pairs of in-
put and output, the likelihood of all of the observations F =
{(xi,yi)}n

i=1, with iid assumption, is p(F) = ∏n
i=1 p(xi,yi).

In the case of the RPMC model (5), the log-likelihood of the
whole observation is defined as

L̃ = log
n∏

i=1

p(zi|ti, θi,μ,W,�)p(ti|θi)p(θi|ν), (7)

where zi = (xi yi).
Manipulating (7) and omitting the constant terms with re-

spect to 
 gives

L̃ = 1

4

n∑
i=1

n log |�| + nν

2
log

ν

2
+

(
ν

2
− 1

) n∑
i=1

log θi

− 1

2

n∑
i=1

θi(zi − Wti − μ)T�(zi − Wti − μ)

− n

2
log |�| − n log�

(
ν

2

)
− ν

2

n∑
i=1

θi,

where | · | calculates the determinant of the square matrix.
The absence of a closed-form solution to maximum likeli-

hood of (7) contrasts with the linear Gaussian models. Fortu-
nately, we can derive an EM algorithm that is applicable to the

(a) (b) (c)

Figure 2. Graphical models of PPCA (a), SPPCA (b), and RPMC (c). The shaded nodes are observed variables; the arrows represent condi-
tional dependencies between random variables.
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model. The EM algorithm alternates between performing an ex-
pectation E-step and a maximization M-step. The parameters
found in the M-step are then used to begin another E-step, and
the process is repeated. In the E-step, we compute the expecta-
tion of (7), averaging over the latent variables H = {θi, ti}, given
the current estimate of the parameters 
 = {�,W,μ, ν}. In the
M-step, we fix this expectation and maximize the complete-data
likelihood with respect to the parameters. In this section we give
only the updated equations; we provide the details of the deriva-
tion in Appendix B.

Statistics sufficient to update the parameters for the M-step
are then given by

〈θi〉 = M + K + ν

(zi − μ)T(WWT + �)−1(zi − μ) + v
(8)

〈ti〉 = (IP + WT�−1W)−1WT�−1(zi − μ), (9)

〈log θi〉 = ψ

(
M + K + ν

2

)

− log

(
(zi − μ)T(WWT + �)−1(zi − μ) + v

2

)
,

and

〈θititT
i 〉 = 〈θi〉〈ti〉〈ti〉T + (IP + WT�−1W)−1,

where 〈·〉 is the expectation operator and ψ(·) denotes the
digamma function, that is, ψ(x) = �′(x)

�(x) .
In the M-step, we estimate parameters 
 = {�,W,μ, ν} by

maximizing the expected likelihood found on the E-step, that
is,


j+1 = arg max



ϒ(
|
j),

where ϒ(
|
j) = E[L̃|H,
j], denoting the conditional expec-
tation of L̃ being taken with 
 in the conditional distribution of

H fixed at 
j. Then we set ∂ϒ(
|
j)
∂


= 0 to estimate 
.
Therefore, the mean vector is updated by

μ =
∑n

i=1〈θi〉(zi − W〈ti〉)∑n
i=1〈θi〉 . (10)

The factor loading matrices are updated by

W =
(

n∑
i=1

〈θi〉(zi − μ)〈ti〉T

)(
n∑

i=1

〈θititT
i 〉

)−1

. (11)

The noise levels are updated by

σ 2
x = 1

M × n

n∑
i=1

{
tr{〈θititT

i 〉WT
x Wx} + 〈θi〉(xi − μx)

T(xi − μx)

− 2〈θi〉(xi − μx)
TWx〈ti〉

}
,

(12)

σ 2
y = 1

K × n

n∑
i=1

{
tr{〈θititT

i 〉WT
y Wy} + 〈θi〉(yi − μy)

T(yi − μy)

− 2〈θi〉(yi − μy)
T Wy〈ti〉

}
,

where tr(·) calculates the trace of the matrix.

Finally, the maximum likelihood solution of ν is calculated
by solving

1

n

n∑
i=1

{〈log θi〉 − 〈θi〉} + log

(
ν

2

)
+ 1 − ψ

(
ν

2

)
= 0. (13)

In this EM algorithm, only the dimensionality P of the latent
variable must be specified. One general way to select P is to
maintain a balance between a good fit of the data and a reason-
able number of parameters, which normally takes the form of
a penalized likelihood function such as the Akaike information
criterion (Akaike 1974), Bayes information criterion (Schwarz
1978), or ICOMP (Bozdogan 1988). We can readily adapt the
EM algorithm presented here to this principle by just adding a
penalty term that increases monotonically with the number of
parameters. But there is no substitute for careful consideration
in the context of each individual problem. In many real appli-
cations, we may have sufficient domain or prior knowledge to
help guide our choice.

3.4 Outlier Detection

Outliers often are of primary interest. No matter the source of
outliers, detecting them is an important task, because they imply
that some form of action is necessary. Numerous terms, includ-
ing “anomaly detection,” have been used to denote outlier de-
tection. The standard method for multivariate outlier detection
is the Mahalanobis distance in conjunction with comparison
with critical value of the chi-squared distribution (Rousseeuw
and Van Zomeren 1990), which is based on a Gaussian assump-
tion of the data. In this section we propose taking SPPCA and
RPMC as the underlying probabilistic models for data genera-
tion, because both result in a low-dimensional Gaussian latent
variable that can be measured by the chi-squared metrics.

3.4.1 Outlier Detection by SPPCA. Yu et al. (2006) show-
ed that in SPPCA, the observed data, z = (x y), are jointly
Gaussian-distributed as

z ∼ N(μ,WWT + �),

where

μ =
(

μx
μy

)
, � =

(
σ 2

x I 0

0 σ 2
y I

)
, W =

(
Wx
Wy

)
,

and μx, μy, σx, σy, Wx, and Wy are as defined in the SPPCA
model.

The chi-squared statistic for a new observation is given by

C = (z − μ)T(WWT + �)−1(z − μ).

If the distribution of z ∈ �d is multivariate Gaussian, then the
statistic is approximately chi-squared distributed with d degrees
of freedom (χ2

d ). Multivariate outliers can now be defined as
observations having a large squared Mahalanobis distance, C.
For this purpose, a quantile of the chi-squared distribution (e.g.,
the 95% quantile) could be considered.

But a recent rigorous mathematical analysis has validated
a widely observed empirical fact, that a Gaussian distribu-
tion is often an accurate density model for low-dimensional
data but very rarely for high-dimensional data (Dasgupta,
Hsu, and Verma 2006). Therefore, instead of dealing with
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high-dimensional observed variable z, we monitor the low-
dimensional latent variable t defined in (4), which is supposed
to satisfy an isotropic Gaussian distribution. This replacement
makes sense, because the outliers in the original data space
generally are anomalous in the latent variable space. The corre-
sponding chi-squared statistic is simply

C = tT t. (14)

3.4.2 Outlier Detection by RPMC. In SPPCA, the estima-
tor for t may be substantially biased by the presence of outliers.
Instead, we can use the robust parameters through RPMC in
which the effect of outliers is downweighted. We still use the
chi-squared statistic C defined in (14) as the criterion for mea-
suring anomalies. The only difference from the procedure de-
scribed in Section 3.4.1 is the use of RPMC to infer the latent
variable t. We compare two estimators in case studies in the
next section.

4. EXPERIMENTS

In this section we use various data sets—including artificial
data, low-dimensional data with a single response, and high-
dimensional data with multiple responses—to compare the per-
formance of RPMC with that of the conventional multivariate
calibration methods such as PLS, robust PLS (Hubert and Bran-
den 2003), and SPPCA.

4.1 Simulation Study

In this section we report the results of a simulation study con-
ducted to evaluate the robustness of RPMC. We show that in the
absence of outliers, RPMC finds the same principal directions
as SPPCA. Moreover, RPMC can reduce the effect of any out-
liers present in the data sets.

First, we consider a case without outliers. We generated
20 samples from each of two multivariate two-dimensional
Gaussian distributions as C1 ∼ N(μ1,�1) and C2 ∼ N(μ2,

�2), where μ1 = [−6,0]T ,μ2 = [6,0]T , and �1 = �2 =[
3 1.5

1.5 3

]
. The data are shown in Figure 3.

We assigned a different binary output label for each class.
We used SPPCA and RPMC for separate projections of the data
into one-dimensional space (i.e., P = 1). In our experiments, to
choose the initial values of the EM algorithm described in Sec-
tion 3.3, we first used several different random initial estimates
and chose the combination that produced the highest likelihood
(Wang and Zhang 2006), which may increase the probability
of hitting global maxima. (See Ueda and Nakano 1998; Elidan,
Friedman, and Schuurmans 2002; Karciauskas et al. 2004 for
more sophisticated strategies for the choice of initial values.) In
this experiment, the initial values of the EM algorithm were
�0 = identity matrix, W0 = .3 × 1,μ0 = mean of observed
(x,y), and ν0 = 5. Figure 3 includes the resulting principal di-
rections. It clearly shows that in the absence of outliers, RPMC
was able to recover the same principal direction as SPPCA.

In our second experiment, we added two outliers of n1 =
[5,3]T and n2 = [10,8]T (indicated by circles in Fig. 4) into
the data set. Figure 4 shows the principal directions found by
SPPCA and RPMC. The two outliers had a significant im-
pact on SPPCA. The principal direction found by SPPCA with

Figure 3. The first principal direction found in the absence of out-
liers by SPPCA and the one found by RPMC ( Class 1; Class 2;

SPPCA; RPMC). The data are drawn from two different mul-
tivariate two-dimensional Gaussian distributions.

outliers (black) was substantially skewed from the one found
(gray) in the absence of outliers. In contrast, RPMC found ap-
proximately the same subspace as SPPCA found in the absence
of outliers.

4.2 Case Study 1: Fish Data

Here we illustrate the RPMC approach on a low-dimensional
example introduced by Naes (1985). This data set includes
45 observations of fish. The input variables consist of highly

Figure 4. The first principal direction found by SPPCA and that
found by RPMC in presence of two outliers, indicated by circles
( Class 1; Class 2; SPPCA without outliers; SPPCA with
outliers; RPMC with outliers). The data are drawn from two dif-
ferent multivariate two-dimensional Gaussian distributions.
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Figure 5. Forty-five input observations of the fish data set.

correlated spectra at nine wavelengths. The single output vari-
able is the fat concentration of the fish. The goal of the analysis
is to identify the relationship between the spectra and the fat
concentration. The input variables are shown in Figure 5, in
which observations 1 and 39–45 are highlighted. Naes (1985)
reported that observations 39–45 are outliers. By observation,
we can determine that each of these except observation 42 has
a spectrum that apparently deviates from the majority.

The total data set was divided into two parts: a calibration
set and a validation set. The calibration set was used to train
the predictive models of PLS, RPLS, SPPCA, and RPMC, and
the validation set was used to test the predictive performance of
these models. Because our interest lies in determining the im-
pact of outliers on model development, we included the outliers
in the calibration set; specifically, observations 1–15 and 31–45
were taken for the calibration set, and the others were used
for validation purposes. We then used between three and eight
components of P in conjunction with PLS, RPLS, SPPCA, and
RPMC. Table 1 contains the mean squared errors (MSEs) for
the calibration and validation sets. The best prediction at each
P is highlighted. Among the six total cases, RPLS generated
four best predictions, and RPMC obtained two best results. The
overall best prediction on the validation set was achieved by
RPLS at P = 4. An interesting observation is that RPLS was
the best when P was relatively small, and RPMC outperformed
RPLS as P increased. This indicates that RPMC may be par-
ticularly suitable to high-dimensional data, where a large P is
usually required. It also is noteworthy that in many cases the
test error is even lower than the training error. This can be ex-
plained by the presence of outliers in the training data set and
their absence in the test data set.

To identify the outliers, we applied the method proposed
in Section 3.4. The data (x,y) were assumed to be generated
by a latent variable model. Any observation with the Maha-
lanobis distance (chi-squared statistic) larger than the cutoff
value χ2

P,.95 was considered an outlier. In this experiment, all
of the observations were included in model development. Fig-
ure 6(a) shows the chi-squared statistic for each observation, as
well as the 95% quantile threshold obtained when the SPPCA

Table 1. MSEs for the fish validation data set with various P

P Model Calibration Validation Model Calibration Validation

3 PLS 1.9440 1.6293 SPPCA 2.3523 2.3436
RPLS 3.0192 .5055 RPMC 2.2723 1.3543

4 PLS 1.6936 1.4706 SPPCA 1.7015 1.5373
RPLS 2.5849 .4604 RPMC 2.1041 .8749

5 PLS 1.6617 1.3720 SPPCA 1.6841 1.4162
RPLS 2.1337 .6185 RPMC 1.9586 .7270

6 PLS 1.3732 1.3763 SPPCA 1.6738 1.3905
RPLS 2.5625 .4997 RPMC 1.9910 .7096

7 PLS 1.3459 1.3463 SPPCA 1.6622 1.3802
RPLS 1.8145 .8092 RPMC 1.7540 .7298

8 PLS 1.3352 1.2085 SPPCA 1.5874 1.3340
RPLS 9.3236 .9815 RPMC 1.6850 .7701

NOTE: The minimum error at each P is highlighted.

model was assumed; in contrast, Figure 6(b) shows the re-
sults obtained by the RPMC model. The plots clearly show
that RPMC identified observations 1 and 39–45 as outliers and
that SPPCA produced too many misclassifications. Hubert and
Branden (2003) reported that the RPLS approach did not detect
observation 42 as an outlier and also misclassified observation
12 as an outlier. To the best of our knowledge, the performance
of RPMC in detecting outliers in this data set is the most accu-
rate of any technique used to date.

4.3 Case Study 2: Biscuit Dough Data

In this experiment we applied RPMC to the well-known
high-dimensional biscuit dough data set with multiple re-
sponses (Osborne, Fearn, Miller, and Douglas 1984). The study
aims to predict the constituents of biscuit dough based on the
spectral characteristics of the dough as measured using near-
infrared (NIR) spectroscopy. The preprocessing step suggested
by Hubert, Rousseeuw, and Verboven (2002) resulted in a data
set of NIR spectra in 600 dimensions (input). Figures 7(a)
and 7(b) show the spectra signals of the input and the output.
The data set originally contained four output variables—the
concentrations of fat, flour, sucrose, and water—contained in
40 observations of the biscuit dough. As suggested by Hubert
et al. (2002), we removed the output concentration of fat, be-
cause it had a higher variance and was not highly correlated
with the other output variables. Although observation 23 is a
known outlier, we still included it in the model development.

We used observations 1–35 as a calibration set and the oth-
ers as a validation set. We then performed PLS, RPLS, SPPCA,
and RPMC on the data with P = 3, 4, and 5. (As suggested
in Hubert and Branden 2003, P = 3 is sufficient for PLS.) Ta-
ble 2 summarizes the MSE results. Of the nine prediction tasks,
RPMC and RPLS performed the best in four cases. Overall,
RPMC had the minimum MSE on two responses (flour and wa-
ter) and PLS had the minimum MSE on one response (sucrose).
These results indicate that even when the data have few outliers,
RPMC remains superior to traditional methods. As a wider fam-
ily of Gaussian distributions, t-distributions seem more flexible
in adjusting themselves to real-life data that do not exactly fit
the Gaussian assumptions in most cases.
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(a) (b)

Figure 6. Outlier detection results for the fish data set obtained by monitoring the latent variable from (a) SPPCA and (b) RPMC. The circles
represent the chi-squared statistic of the observations; the line indicates the threshold of the 95% quantile of the chi-squared distribution with 3
degrees of freedom.

We applied the proposed outlier detection procedure to the
data; Figure 8 graphs the results. In Figure 8(b), which shows
the results obtained with RPMC, observation 23 stands out as
a clear outlier, with a large chi-squared statistic (>20). This
result is consistent with our previous knowledge. In contrast,
SPPCA produced a false alarm on observation 7, as illustrated
in Figure 8(a). We also applied RPMC separately to each out-
put dimension (i.e., flour, sucrose, and water); Figure 9 gives
the outlier detection plots. We can see that some false alarms
were generated based on the 95% chi-squared statistic, although
observation 23 still was identified as an outlier. Therefore, the
true outlier is likely to be associated with the three outputs as a
whole, not with any single response. This result also illustrates
the strength of RPMC, which has a principled way of dealing
with multiple response variables.

5. CONCLUSIONS

In this article we report a RPMC model constructed based on
Student t-distributions. RPMC aims to use a set of latent vari-
ables to identify the relationship between input and output. We
proved that RPMC is a wider family of latent variable mod-
els that encompasses PPCA and SPPCA as limiting cases. The
t-distribution diminishes the impact of outliers on model devel-
opment. Consequently, RPMC produces parameter estimators
that can be used with greater confidence. Using these more ac-
curate estimators, we presented an outlier detection approach
based on a chi-squared statistic. We also derived a tractable EM
algorithm for parameter estimation in RPMC. The approach
works well on artificial data as well as on well-known public
data sets. Another potential advantage of RPMC is its ability to

(a) (b)

Figure 7. The input (a) and output (b) observations of the biscuit dough data set ( , fat; , flour; , sucrose; , water).
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Table 2. MSEs for the biscuit dough validation data set

Calibration Validation

P Flour Sucrose Water Flour Sucrose Water

3 PLS 1.2949 2.2783 .2365 .2425 .4565 .0474
SPPCA 1.5160 3.4759 .2372 .2543 .5636 .0419
RPLS 1.6442 2.5534 .3295 .1982 .4416 .0216
RPMC 1.6138 2.7112 .4347 .1941 .4208 .0243

4 PLS 1.1060 1.7750 .2142 .2093 .3779 .0413
SPPCA 1.3320 2.3054 .2373 .2443 .4949 .0425
RPLS 1.7406 2.7325 .3244 .1998 .4997 .0200
RPMC 1.9319 3.9956 .3968 .2072 .4832 .0208

5 PLS .4264 .6509 .1573 .3964 .6360 .0508
SPPCA 1.3058 2.2923 .2355 .4170 .6501 .0507
RPLS 1.6261 2.5038 .2809 .2140 .4817 .0278
RPMC 2.3670 3.4659 .5019 .1463 .4935 .0073

NOTE: The minimum error at each P is highlighted.

interpret data. As a class of latent variable models, factor analy-
sis has been heavily used in psychometrics to identify underly-
ing causes or factors by explaining latent variables. As we have
shown, RPMC is also a latent variable model, and in some ap-
plications its latent variables may involve domain-specific im-
plications.

Our future work includes building nonlinear versions of
RPMC. A possible approach to this is to use the kernel trick
by constructing a dual form of RPMC (Scholkopf and Smola
2002; Fukumizu, Bach, and Jordan 2004). Another approach
might be mixture models of RPMC. The probabilistic formu-
lation of RPMC very likely will lead to a well-defined mixture
model whose parameters can be determined using an EM algo-
rithm, as in the formulation of PPCA mixture models (Tipping
and Bishop 1999a).
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APPENDIX A: PROOFS

Proof of Theorem 1

Here we sketch the proof only of the marginal distribution
over t, because the marginal distributions of x and y (condi-
tional on t) can be derived in a similar fashion. Write

Jμ,� ≡ (t − μ)T�−1(t − μ).

By noting a useful definition of the gamma function (Liu and
Rubin 1995; Khan and Dellaert 2004),∫ ∞

0
e−(αθ)β θτ dθ = �

(
τ + 1

β

)/
(βατ+1),

we can obtain that

p(t) =
∫ ∞

0
p(t|θ)p(θ)dθ

(a)

(b)

Figure 8. Outlier detection results from monitoring the latent vari-
able from SPPCA (a) and RPMC (b) for the biscuit dough data set with
three outputs. The circles represent the chi-squared statistic of the ob-
servations; the line indicates the threshold of the 95% quantile of the
chi-squared distribution with 5 degrees of freedom.

∝
∫ ∞

0
θP/2e−(θ/2)J0,IP θν/2−1e−νθ/2 dθ

∝
∫ ∞

0
θ(ν+P)/2−1e−θ/2(J0,IP+ν) dθ

∝
(

J0,IP

ν
+ 1

)−(ν+P)/2

,

which has the form of a Student t-distribution with ν degrees of
freedom, with the normalized term

(νπ)−P/2�

(
ν + P

2

)/
�

(
ν

2

)
.

Proof of Proposition 1

By Theorem 1, we obtain the equivalent model (6) of RPMC.
The Student t-distribution approaches the Gaussian distribution
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(a)

(b)

(c)

Figure 9. Outlier detection results by monitoring the latent variable
from RPMC for the biscuit dough data set with single output flour (a),
sucrose (b), and water (c). The circles represent the chi-squared sta-
tistic of the observations; the line indicates the threshold of the 95%
quantile of the chi-squared distribution with 5 degrees of freedom.

as ν → ∞. It follows that (6) degrades to the SPPCA model as
defined in (3).

Proof of Proposition 2

According to Proposition 1, the RPMC model degrades to
SPPCA as ν → ∞. In addition, if K = 0, then the SPPCA
model is unsupervised and then degrades to PPCA (Yu et al.

2006). It follows that RPMC is equivalent to PPCA as defined
in (1) when the two conditions are satisfied.

APPENDIX B: EM ALGORITHM FOR RPMC

a. When both input and output zi = (xi yi) are observed, the
posterior distribution of the latent variable θi can be obtained as

p(θi|zi) ∝ p(zi|θi)p(θi)

= G

(
θi

∣∣∣M + K + ν

2
,

(zi − μ)T(WWT + �)−1(zi − μ) + ν

2

)
.

This can be readily obtained using the fact that the gamma dis-
tribution is conjugate to the exponential family. It follows for-
mula (8) by noting that for the gamma distribution,

G(θ |α,β) = βα

�(α)
θα−1e−βθ and 〈θ〉 = α

β
.

b. By Bayes’s theorem, the posterior distribution of the la-
tent vector ti is given by

p(ti|zi, θi) ∝ p(zi|ti, θi)p(ti|θi)

= N
(
ti|(WT�−1W + IP)−1WT�−1(zi − μ),

θ−1
i (WT�−1W + IP)

)
.

This readily follows formula (9).

c. Setting ∂ϒ(
|
j)
∂μ = 0, we readily obtain formula (10).

d. Given the formulas of the trace derivatives (Golub and
Van Loan 1996; Khan and Dellaert 2004),

∂ tr(XTCXD)

∂X
= 2CXD,

we can obtain

∂ϒ(
|
j)

∂W
=

n∑
i=1

[
∂

∂W

〈
θitT

i WT�−1(zi − μ)

− 1

2
θi tr(WT�−1WtitT

i )

〉]

=
n∑

i=1

[
�−1(zi − μ)〈θiti〉T − �−1W〈θititT

i 〉].

By setting ∂ϒ(
|
j)
∂W = 0, it follows formula (11).

e. Using the formula

(zi − Wti − μ)T�(zi − Wti − μ)

= tr
(
�−1(zi − μ)(zi − μ)T) + tr(WT�−1WtitT

i )

− 2tT
i WT�−1(zi − μ)

and the formulas of the trace derivatives

∂ tr(X−1C)

∂X
= −X−1CTX−1 and

∂ tr(CTX−1D)

∂X
= −X−1CDTX−1,
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we have

∂ϒ(
|
j)

∂�

=
n∑

i=1

[
∂

∂�

〈
−1

2
log |�| − 1

2
θitr

(
�−1(zi − μ)(zi − μ)T)

+ θitT
i WT�−1(zi − μ) − 1

2
tr(WT�−1WθititT

i )

〉]

=
n∑

i=1

[−�−1 + 〈θi〉�−1(zi − μ)(zi − μ)T�−1

− 2�−1W〈θiti〉(zi − μ)T�−1

+ �−1W〈θititT
i 〉WT�−1].

Simplifying this and setting ∂ϒ(
|
j)
∂� = 0, we can obtain for-

mula (12).
f.

νj+1 = arg max
ν

[
nν

2
log

ν

2
+

(
ν

2
− 1

) n∑
i=1

〈log θi〉

− ν

2

n∑
i=1

〈θi〉 − n log�

(
ν

2

)]
.

By setting ∂ϒ(
|
j)
∂ν

= 0, we need only solve the one-dimension-
al nonlinear equation (13).

[Received February 2007. Revised June 2007.]
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