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ABSTRACT
As the amount of textual data has been rapidly increasing over
the past decade, e�cient similarity search methods have become a
crucial component of large-scale information retrieval systems. A
popular strategy is to represent original data samples by compact
binary codes through hashing. A spectrum of machine learning
methods have been utilized, but they o�en lack expressiveness and
�exibility in modeling to learn e�ective representations. �e re-
cent advances of deep learning in a wide range of applications has
demonstrated its capability to learn robust and powerful feature
representations for complex data. Especially, deep generative mod-
els naturally combine the expressiveness of probabilistic generative
models with the high capacity of deep neural networks, which is
very suitable for text modeling. However, li�le work has leveraged
the recent progress in deep learning for text hashing.

In this paper, we propose a series of novel deep document gen-
erative models for text hashing. �e �rst proposed model is un-
supervised while the second one is supervised by utilizing docu-
ment labels/tags for hashing. �e third model further considers
document-speci�c factors that a�ect the generation of words. �e
probabilistic generative formulation of the proposed models pro-
vides a principled framework for model extension, uncertainty
estimation, simulation, and interpretability. Based on variational
inference and reparameterization, the proposed models can be in-
terpreted as encoder-decoder deep neural networks and thus they
are capable of learning complex nonlinear distributed representa-
tions of the original documents. We conduct a comprehensive set
of experiments on four public testbeds. �e experimental results
have demonstrated the e�ectiveness of the proposed supervised
learning models for text hashing.
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1 INTRODUCTION
�e task of similarity search, also known as nearest neighbor search,
proximity search, or close item search, is to �nd similar items given
a query object [36]. It has many important information retrieval
applications such as document clustering, content-based retrieval,
and collaborative �ltering [34]. �e rapid growth of Internet has
resulted in massive textual data in the recent decades. In addition
to the cost of storage, searching for relevant content in gigantic
databases is even more daunting. Traditional text similarity com-
putations are conducted in the original vector space and could
be prohibitive to use for large-scale corpora since these methods
are involved with high cost of numerical computation in the high-
dimensional spaces.

Many research e�orts have been devoted to approximate similar-
ity search that is shown to be useful for practical problems. Hashing
[6, 29, 39] is an e�ective solution to accelerate similarity search
by designing compact binary codes in a low-dimensional space so
that semantically similar documents are mapped to similar codes.
�is approach is much more e�cient in memory and computation.
A binary representation of each document o�en only needs 4 or
8 bytes to store, and thus a large number of encoded documents
can be directly loaded into the main memory. Computing similar-
ity between two documents can be accomplished by using bitwise
XOR operation which takes only one CPU instruction. A spectrum
of machine learning methods have been utilized in hashing, but
they o�en lack expressiveness and �exibility in modeling, which
prevents them from learning compact and e�ective representations
of text documents.

On the other hand, deep learning has made tremendous progress
in the past decade and has demonstrated impressive successes in a
variety of domains including speech recognition, computer vision,
and natural language processing [19]. One of the main purposes
of deep learning is to learn robust and powerful feature represen-
tations for complex data. Recently, deep generative models with
variational inference [15, 28] have further boosted the expressive-
ness and �exibility for representation learning by integrating deep
neural nets into the probabilistic generative framework. �e seam-
less combination of generative modeling and deep learning makes
them suitable for text hashing. However, to the best of our knowl-
edge, no prior work has leveraged them for hashing tasks.

In this paper, we propose a series of novel deep document gener-
ative models for text hashing, inspired by variational autoencoder
(VAE) [15, 28]. �e proposed models are the marriage of deep
learning and probabilistic generative models [1]. �ey enjoy the
good properties of both learning paradigms. First, with the deep
neural networks, the proposed models can learn �exible nonlin-
ear distributed representations of the original high-dimensional
documents. �is allows individual codes to be fairly general and
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concise but their intersection to be much more precise. For exam-
ple, nonlinear distributed representations allow the topics/codes
“government,” “ma�a,” and “playboy” to combine to give very high
probability to the word “Berlusconi,” which is not predicted nearly
as strongly by each topic/code alone.

Meanwhile, the proposed models are probabilistic generative
models and thus there exists an underlying data generation process
characterizing each model. �e probabilistic generative formula-
tion provides a principled framework for model extensions such
as incorporating supervisory signals and adding private variables.
�e �rst proposed model is unsupervised and can be interpreted as
a variant of variational autoencoder for text documents. �e other
two models are supervised by utilizing the document label/tag in-
formation. �e prior work in the literature [37] has demonstrated
that the supervisory signals are crucial to boost the performance of
semantic hashing for text documents. �e third model further adds
a private latent variable for documents to capture the information
only concerned with the documents but irrelevant to the labels,
which may help remove noises from document representations. Fur-
thermore, speci�c constraints can be enforced by making explicit
assumptions in the models. One desirable property of hash code is
to ensure the bits are uncorrelated so that the next bit cannot be
predicted based on the previous bits [39]. To achieve this property,
we can just assume that the latent variable has a prior distribution
with independent dimensions.

In sum, the probabilistic generative formulation provides a prin-
cipled framework formodel extensions, interpretability, uncertainty
estimation, and simulation, which are o�en lacking in deep learning
models but useful in text hashing. �e main contributions of the
paper can be summarized as follow:

� We proposed a series of unsupervised and supervised deep
document generative models to learn compact represen-
tations for text documents. To the best of our knowledge,
this is the �rst work that utilizes deep generative models
with variational inference for text hashing.

� �e proposed models enjoy both advantages of deep learn-
ing and probabilistic generative models. �ey can learn
complex nonlinear distributed representations of the origi-
nal high-dimensional documents while providing a princi-
pled framework for probabilistic reasoning.

� We derived tractable variational lowerbounds for the pro-
posed models and reparameterize the models so that back-
propagation can be applied for e�cient parameter estima-
tion.

� We conducted a comprehensive set of experiments on four
public testbeds. �e experimental results demonstrate sig-
ni�cant improvements in our supervised models over sev-
eral well-known semantic hashing baselines.

2 RELATEDWORK
2.1 Hashing
Due to computational and storage e�ciencies of compact binary
codes, hashing methods have been widely used for similarity search,
which is an essential component in a variety of large-scale infor-
mation retrieval systems [34, 36]. Locality-Sensitive Hashing (LSH)

[2] is one of the most popular hashing methods with interesting as-
ymptotic theoretical properties leading to performance guarantees.
While LSH is a data-independent hashing method, many hashing
methods have been recently proposed to leverage machine learning
techniques with the goal of learning data-dependent hash functions,
ranging from unsupervised and supervised to semi-supervised set-
tings. Unsupervised hashing methods a�empt to integrate the data
properties, such as distributions and manifold structures to design
compact hash codes with improved accuracy. For instance, Spectral
Hashing (SpH) [39] explores the data distribution by preserving the
similarity between documents by forcing the balanced and uncorre-
lated constraints into the learned codes, which can be viewed as an
extension of spectral clustering [26]. Graph hashing [22] utilizes
the underlying manifold structure of data captured by a graph rep-
resentation. Self Taught Hashing (STH) [42] is the state-of-the-art
hashing method by decomposing the learning procedure into two
steps: generating binary code and learning hash function.

Supervised hashing methods a�empt to leverage label/tag infor-
mation for hash function learning. It has a�racted more and more
a�ention in recent years. For example, Wang et al. [37] propose
Semantic Hashing using Tags and Topic Modeling (SHTTM) to
incorporate tags to obtain more e�ective hashing codes via a matrix
factorization formulation. To utilize the pairwise supervision in-
formation in the hash function learning, Kernel-Based Supervised
Hashing (KSH) proposed in [21] used a pairwise relationship be-
tween samples to achieve high-quality hashing. Binary Reconstruc-
tive Embedding (BRE) [16] was proposed to learn hash functions
by minimizing the reconstructed error between the metric space
and Hamming space. Moreover, there are also several works using
the ranking order information to design hash functions. Ranking-
based Supervised Hashing (RSH) [35] was proposed to leverage
listwise supervision into the hash function learning framework.
Semi-supervised learning paradigm was also employed to design
hash functions by using both labeled and unlabeled data [33]. �e
hashing-code learning problem is essentially a discrete optimiza-
tion problem which is di�cult to solve. Most existing supervised
hashing methods try to solve a relaxed continuous optimization
problem and then threshold the continuous representation to ob-
tain a binary code. Abundant related work, especially on image
hashing, exists in the literature. Two recent surveys [34, 36] provide
a comprehensive literature review.

2.2 Deep Learning
Deep learning has drawn increasing a�ention and research e�orts
in a variety of arti�cial intelligence areas including speech recog-
nition, computer vision, and natural language processing. Since
one main purpose of deep learning is to learn robust and power-
ful feature representations for complex data, it is very natural to
leverage deep learning for exploring compact hash codes which can
be regarded as binary representations of data. Most of the related
work has focused on image data [4, 17, 20, 40] rather than text doc-
uments probably due to the e�ectiveness of the convolution neural
networks (CNNs) to learn good low-dimensional representations of
images. �e typical deep learning architectures for hash function
learning consist of CNNs layers for representation learning and
hash function layers which then transform the representation to
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supervisory signals. �e loss functions could be pointwise [20],
pairwise [4], or listwise [17].

Some recent works have applied deep learning for several IR
tasks such as ad-hoc retrieval [10], web search [12], and ranking
pairs of short texts [30]. However, very few has investigated deep
learning for text hashing. �e representative work is semantic
hashing [29]. It builds a stack of restricted Boltzmann machines
(RBMs) [11] to discover hidden binary units which can model input
text data (i.e., word-count vectors). A�er learning a multilayer RBM
through pretraining and �ne tuning on a collection of documents,
the hash code of any document is acquired by simply threshold-
ing the output of the deepest layer. A recent work [41] exploited
convolutional neural network for text hashing, which relies on
external features such as the GloVe word embeddings to construct
text representations.

Recently, deep generative models have made impressive progress
with the introduction of the variational autoencoders (VAEs) [15,
28] and Generative Adversarial Networks (GANs) [9]. VAEs are
especially an appealing framework for generative modeling by cou-
pling the approach of variational inference [32] with deep learning.
As a result, they enjoy the advantages of both deep learning and
probabilistic graphical models. Deep generative models parameter-
ized by neural networks have achieved state-of-the-art performance
in unsupervised and supervised learning [14, 15, 25]. To the best
of our knowledge, our proposed models are the �rst work that uti-
lizes variational inference with deep learning for text hashing. It is
worth pointing out that both semantic hashing with stacked RBMs
[29] and our models are deep generative models, but the former
is undirected graphical models, and the la�er is directed models.
�e underlying generative process of directed probabilistic models
makes them easy to interpret and extend. �e proposed models
are very scalable since they are trained as deep neural networks by
e�cient backpropagation, while the stacked RBMs are o�en much
harder to train [11].

3 VARIATIONAL DEEP SEMANTIC HASHING
�is section presents three novel deep document generative models
to learn low-dimensional semantic representations of documents
for text hashing. In Section 3.1, we introduce the basic model which
is essentially a variational autoencoder for text modeling. Section
3.2 extends the model to utilize label information to learn a more
sensible representation. Section 3.3 further incorporates document
private variables to model document-speci�c information. Based
on the variational inference, all the three models can be viewed as
having an encoder-decoder neural network architecture where the
encoder compresses a high-dimensional document to a compact
latent semantic vector and the decoder reconstructs the document
(or the labels). Section 3.4 discusses two thresholding methods
to convert the continues latent vector to a binary code for text
hashing.

3.1 Unsupervised Learning (VDSH)
In this section, we present the basic variational deep semantic
hashing (VDSH)model for the unsupervised learning se�ing. VDSH
is a probabilistic generative model of text which aims to extract a
continuous low-dimensional semantic representation s 2 RK for

each document. Let d 2 RV be the bag-of-words representation of
a document and wi 2 f0; 1gV be the one-hot vector representation
of the ith word of the document where V is the vocabulary size. d
could be represented by di�erent term weighting schemes such as
binary, TF, and TFIDF [24]. �e document generative process can
be described as follows:

� For each document d ,
– Draw a latent semantic vector s � P (s ) where P (s ) =

N (0; I ) is the standard Gaussian distribution.
– For the ith word in the document,

� Draw wi � P (wi j f (s;θ )).
�e conditional probability over words wi is modelled by multino-
mial logistic regression and shared across documents as below:

P (wi j f (s;θ )) =
exp(wT

i f (s;θ ))PV
j=1 exp(wT

j f (s;θ ))
(1)

While P (s ) is a simple Gaussian distribution, any distribution can
be generated by mapping the simple Gaussian through a su�ciently
complicated function [3]. �us, f (s;θ )) is such a highly �exible
function approximator usually a neural network. In other words,
we can learn a function which maps our independent, normally-
distributed s values to whatever latent semantic variables might
be needed for the model, and then generate the word wi . How-
ever, introducing a highly nonlinear mapping from s to wi results
in intractable data likelihood

R
s P (d js )P (s )ds and thus intractable

posterior distribution P (s jd ) [15]. Similar to VAE, we use an approx-
imation Q (s jd ;ϕ) for the true posterior distribution. By applying
the variational inference principle [32], we can obtain the following
tractable lowerbound of the document log likelihood (see [15] and
Appendix):

L1 = EQ
f NX

i=1
log P (wi j f (s;θ ))

g
� DKL (Q (s jd ;ϕ) k P (s )) (2)

where N is the number of words in the document and DKL ( k )
is the Kullback-Leibler (KL) divergence between the approximate
posterior distribution Q (s jd ;ϕ) and the prior P (s ). �e variational
distributionQ (s jd ;ϕ) acts as a proxy to the true posterior P (s jd ). To
enable a high capacity, it is assumed to be aGaussianN (µ; diag(σ2))
whose mean µ and variance σ2 are the output of a highly nonlinear
function of d denoted as д(d ;ϕ) parameterized by ϕ, once again
typically a neural network.

In training, the variational lowerbound in Eqn.(2) is maximized
with respect to the model parameters. Since P (s ) is a standard
Gaussian prior, the KL DivergenceDKL (Q (s jd ;ϕ) k P (s )) in Eqn.(2)
can be computed analytically. �e �rst term EQ can be viewed as
an expected negative reconstruction error of the words in the docu-
ment and it can be computed based on the Monte Carlo estimation
[8].

Based on Eqn.(2), we can interpret VDSH as a variational autoen-
coder with discrete output: a feedforward neural network encoder
Q (s jd ;ϕ) compresses document representations into continuous
hidden vectors, i.e., d ! s; a so�max decoder PN

i=1 P (wi j f (s;θ ))
reconstructs the documents by independently generating the words
s ! fwi g

N
i=1. Figure 1(a) illustrates the architecture of VDSH. In
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Figure 1: Architectures of (a) VDSH, (b) VDSH-S, and (c) VDSH-SP. �e dashed line represents a stochastic layer.

the experiments, we use the following speci�c architecture for the
encoder and decoder.

Encoder Q (s jд(d ;ϕ)) :
t1 = ReLU(W1d + b1)

t2 = ReLU(W2t1 + b2)

µ = W3t2 + b3

logσ = W4t2 + b4

s � N (µ(d ); diag(σ2 (d )))

Decoder P (wi j f (s;θ )) :

ci = exp(�sT Gwi + bwi )

P (wi js ) =
ciPV

k=1 ck

P (d js ) =

NY
i=1

P (wi js )

�is architecture is similar to the one presented in VAE [28] except
that VDSH has the so�max layer to model discrete words while
VAE is proposed to model images as continuous output. Here, the
encoder has two Recti�ed Linear Unit (ReLU) [8] layers. ReLU
generally does not face gradient vanishing problem as with other
activation functions. Also, it has been shown that deep neural
networks can be trained e�ciently using ReLU even without pre-
training [8].

In this architecture, there is a stochastic layer which is to sam-
ple s from a Gaussian distribution N (µ(d ); diag(σ2 (d ))), as repre-
sented by the dashed lines in the middle of the networks in Figure
1. Backpropagation cannot handle stochastic layer within the net-
work. In practice, we can leverage the “location-scale” property of
Gaussian distribution, and use the reparameterization trick [15] to
turn the stochastic layer of s to be deterministic. As a result, the
encoder Q (s jd ;ϕ) and decoder P (wi j f (s;θ )) form an end-to-end
neural network and are then trained jointly by maximizing the
variational lowerbound in Eqn.(2) with respect to their parameters
by the standard backpropagation algorithm [8].

3.2 Supervised Learning (VDSH-S)
In many real-world applications, documents are o�en associated
with labels or tags which may provide useful guidance in learning
e�ective hashing codes. Document content similarity in the original
bag-of-word space may not fully re�ect the semantic relationship
between documents. For example, two documents in the same
category may have low document content similarity due to the
vocabulary gap, while their semantic similarity could be high. In

this section, we extend VDSH to the supervised se�ing with the
newmodel denoted as VDSH-S.�e probabilistic generative process
of a document with labels is as follows:

� For each document d ,
– Draw a latent semantic vector s � P (s ) where P (s ) =

N (0; I ) is the standard Gaussian distribution.
– For the ith word in the document,

� Draw wi � P (wi j f (s;θ )).
– For the jth label in the label set,

� Draw yj � P (y j f (s;τ )).
where yj 2 f0; 1gL is the one-hot representation of the label j in
the label set and L is the total number of possible labels (the size of
the label set). Let us use Y 2 f0; 1gL represent the bag-of-labels of
the document (i.e., if the document has label j, the jth dimension
of Y is 1; otherwise, it is 0). VDSH-S assumes that both words and
labels are generated based on the same latent semantic vecotor.

We assume a general multi-label classi�cation se�ing where
each document could have multiple labels/tags. P (yj j f (s;τ )) can
be modeled by the logistic function as follows:

P (yj j f (s;τ )) =
1

1 + exp(�yT
j f (s;τ ))

(3)

Similar to VDSH, f (s ;τ ) is parameterized by a neural network with
the parameter τ so that we can learn an e�ective mapping from the
latent semantic vector to the labels. �e lowerbound of the data
log likelihood can be similarly derived and shown as follows:

L2 = EQ
f NX

i=1
log P (wi j f (s;θ )) +

LX
j=1

log P (yj j f (s;τ ))
g

�DKL (Q (s jd;Y ;ϕ) k P (s )) (4)

Compared to Eqn.(2) in VDSH, this lowerbound has an extra term,
EQ

f PL
j=1 log P (yj j f (s;τ ))

g
, which can be computed in a simi-

lar way with EQ
f PN

i=1 log P (wi j f (s;θ ))
g
in Eqn.(2), by using the

Monte Carlo estimation. In addition, we can drop the dependence
on variable Y in the variational distribution Q (s jd;Y ;ϕ) since we
may not have the label information available for new documents.
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�e architecture of the VDSH-S model is shown in Figure 1(b).
It consists of a feedforward neural network encoder of a document
d ! s and a decoder of the words and labels of the document
s ! fwi g

N
i=1; fyj g

L
j=1. It is worth pointing out that the labels still

a�ect the learning of latent semantic vector by their presence in
the decoder despite their absence in the encoder. By using the
reparameterization trick, the model becomes a deterministic deep
neural network and the lowerbound in Eqn.(4) can be maximized
by backpropagation (see Appendix).

3.3 Document-speci�c Modeling (VDSH-SP)
VDSH-S assumes both document and labels are generated by the
same latent semantic vector s . In some cases, this assumption may
be restrictive. For example, the original document may contain
information that is irrelevant to the labels. It could be di�cult to
�nd a common representation for both documents and labels. �is
observation motivates us to introduce a document private variable
v , which is not shared by the labels Y . �e generative process is
described as follows:

� For each document d ,
– Draw a latent semantic vector s � P (s ) where P (s ) =

N (0; I ) is the standard Gaussian distribution.
– Draw a latent private vectorv � P (v ) where P (v ) =

N (0; I ) is the standard Gaussian distribution.
– For the ith word in the document,

� Draw wi � P (wi j f (s + v ;θ )).
– For the jth label in the label set,

� Draw yj � P (y j f (s;τ )).
As we can see, s models the shared information between document
and labels whilev only contains the document-speci�c information.
We can view adding private variables as removing the noise from
the original content that is irrelevant to the labels. With the added
private variable, we denote this model as VDSH-SP. �e tractable
variational lowerbound of data likelihood can be derived as follows:

L3 = EQ
f NX

i=1
log P (wi j f (s + v ;θ )) +

LX
j=1

log P (yj j f (s;τ ))
g

�DKL (Q (s jd ;ϕ) k P (s )) � DKL (Q (v jd ;ϕ) k P (v )) (5)

Similar to the other two models, VDSH-SP can be viewed as a
deep neural network by applying variational inference and reparametriza-
tion. �e architecture is shown in Figure 1(c). �e Appendix con-
tains the detailed derivations of the model.

3.4 Binary Hash Code
Once a VDSH model has been trained, we can generate a com-
pact continuous representation for any new document dnew by the
encoder function µnew = д(dnew ;ϕ), which is the mean of the dis-
tribution Q (s jd ;ϕ). �e binary hashing code can then be obtained
by thresholding µnew . �e most common method of thresholding
for binary code is to take the median value of the latent semantic
vector µ in the training data [37]. �e rationale is based on the
maximum entropy principle for e�ciency which yields balanced
partitioning of the whole dataset [39]. �us, we set the threshold
for binarizing the pth bit to be the median of the pth dimension of

s in the training data. If the pth bit of document latent semantic
vector µnew is larger than the median, the pth binary code is set to
1; otherwise, it is set to -1. Another popular thresholding method
is to use the Sign function on µnew , i.e., if the pth bit of µnew is
nonnegative, the corresponding code is 1; otherwise, it is -1. Since
the prior distribution of the latent semantic vector is zero mean,
the Sign function is also a reasonable choice. We use the median
thresholding as the default method in our experiments, while also
investigate the Sign function in Section 5.3.

3.5 Discussions
�e computational complexity of VDSH for a training document
is O (BD2 + DSV ). Here, O (BK2) is the cost of the encoder, where
B is the number of the layers in the encoder network and D is
the average dimension of these layers. O (DNV ) is the cost of the
decoder, where S is the average length of the documents and V
is the vocabulary size. �e computational complexity of VDSH-S
and VDSH-SP is O (BD2 + DS (V + L)) where L is the size of the
label set. �e computational cost of the proposed models is at the
same level as the deterministic autoencoder. Model learning could
be quite e�cient since the computations of all the models can be
parallelized in GPUs, and only one sample is required during the
training process.

�e proposed deep generative model has a few desirable proper-
ties for text hashing. First of all, it has the capacity of deep neural
networks to learn sophisticated semantic representations for text
documents. Moreover, being generative models brings huge ad-
vantages over other deep learning models such as Convolutional
Neural Network (CNN) because the underlying document genera-
tive process makes the model assumptions explicit. For example,
as shown in [39], it is desirable to have independent feature dimen-
sions in hash codes. To achieve this, our models just need to assume
the latent semantic vector is drawn from a prior distribution with
independent dimensions (e.g., standard Gaussian). �e probabilistic
approach also provides a principled framework for model exten-
sions as evident in VDSH-S and VDSH-SP. Furthermore, instead
of learning a particular latent semantic vector, our models learn
probability distributions of the semantic vector. �is can be viewed
as �nding a region instead of a �xed point in the latent space for
document representation, which leads to more robust models. Com-
pared with other deep generative models such as stacked RBMs
and GANs, our models are computationally tractable and stable
and can be estimated by the e�cient backpropagation algorithm.

4 EXPERIMENTAL SETUP
4.1 Data Collections
We use the following four public document collections for evalu-
ation. 1) Reuters Corpus Volume I (RCV1). It is a large collection
of manually labeled 800,000 newswire stories provided by Reuters.
�ere are totally 103 classes. We use the full-topics version avail-
able at the LIBSVM website1. 2) Reuters215782. A widely used
text corpus for text classi�cation. �is collection has 10,788 docu-
ments with 90 categories and 7,164 unique words. 3) 20Newsgroups3.
1h�ps://www.csie.ntu.edu.tw/�cjlin/libsvmtools/datasets/multilabel.html
2h�p://www.nltk.org/book/ch02.html
3h�p://ana.cachopo.org/datasets-for-single-label-text-categorization

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
http://www.nltk.org/book/ch02.html
http://ana.cachopo.org/datasets-for-single-label-text-categorization
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RCV1 Reuters
Methods 8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits
LSH [2] 0.4180 0.4352 0.4716 0.5214 0.5877 0.2802 0.3215 0.3862 0.4667 0.5194
SpH [39] 0.5093 0.7121 0.7475 0.7559 0.7423 0.6080 0.6340 0.6513 0.6290 0.6045
STHs [42] 0.3975 0.4898 0.5592 0.5945 0.5946 0.6616 0.7351 0.7554 0.7350 0.6986

Stacked RBMs [29] 0.5106 0.5743 0.6130 0.6463 0.6531 0.5113 0.5740 0.6154 0.6177 0.6452
KSH [21] 0.9126 0.9146 0.9221 0.9333 0.9350 0.7840 0.8376 0.8480 0.8537 0.8620

SHTTM [37] 0.8820 0.9038 0.9258 0.9459 0.9447 0.7992 0.8520 0.8323 0.8271 0.8150
VDSH 0.7976 0.7944 0.8481 0.8951 0.8444 0.6859 0.7165 0.7753 0.7456 0.7318
VDSH-S 0.9652y 0.9749y 0.9801y 0.9804y 0.9800y 0.9005y 0.9121y 0.9337y 0.9407y 0.9299y
VDSH-SP 0.9666y 0.9757y 0.9788y 0.9805y 0.9794y 0.8890y 0.9326y 0.9283y 0.9286y 0.9395y

20Newsgroups TMC
Methods 8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits
LSH [2] 0.0578 0.0597 0.0666 0.0770 0.0949 0.4388 0.4393 0.4514 0.4553 0.4773
SpH [39] 0.2545 0.3200 0.3709 0.3196 0.2716 0.5807 0.6055 0.6281 0.6143 0.5891
STH [42] 0.3664 0.5237 0.5860 0.5806 0.5443 0.3723 0.3947 0.4105 0.4181 0.4123

Stacked RBMs [29] 0.0594 0.0604 0.0533 0.0623 0.0642 0.4846 0.5108 0.5166 0.5190 0.5137
KSH [21] 0.4257 0.5559 0.6103 0.6488 0.6638 0.6608 0.6842 0.7047 0.7175 0.7243

SHTTM [37] 0.2690 0.3235 0.2357 0.1411 0.1299 0.6299 0.6571 0.6485 0.6893 0.6474
VDSH 0.3643 0.3904 0.4327 0.1731 0.0522 0.4330 0.6853 0.7108 0.4410 0.5847
VDSH-S 0.6586y 0.6791y 0.7564y 0.6850y 0.6916y 0.7387y 0.7887y 0.7883y 0.7967y 0.8018y
VDSH-SP 0.6609y 0.6551y 0.7125y 0.7045y 0.7117y 0.7498y 0.7798y 0.7891y 0.7888y 0.7970y

Table 1: Precision of the top 100 retrieved documents on four datasets with di�erent numbers of hashing bits. �e bold font
denotes the best result at that number of bits. y denotes the improvement over the best result of the baselines is statistically
signi�cant based on the paired t-test (p-value < 0:01).

�is dataset is a collection of 18,828 newsgroup posts, partitioned
(nearly) evenly across 20 di�erent newsgroups/categories. It has
become a popular dataset for experiments in text applications of
machine learning techniques. 4) TMC4. �is dataset contains the air
tra�c reports provided by NASA and was used as part of the SIAM
text mining competition. It has 22 labels, 21,519 training documents,
3,498 test documents, and 3,498 documents for the validation set.
All the datasets are multi-label except 20Newsgroups.

Each dataset was split into three subsets with roughly 80% for
training, 10% for validation, and 10% for test. �e training data
is used to learn the mapping from document to hash code. Each
document in the test set is used to retrieve similar documents based
on the mapping, and the results are evaluated. �e validation set is
used to choose the hyperparameters. We removed the stopwords
using SMART’s list of 571 stopwords5. No stemmingwas performed.
We use TFIDF [24] as the default term weighting scheme for the
raw document representation (i.e., d). We experiment with other
term weighting schemes in Section 5.4.

4.2 Baselines and Settings
We compare the proposedmodels with the following six competitive
baselines which have been extensively used for text hashing in the
prior work [37]: Locality Sensitive Hashing (LSH)6 [2], Spectral
Hashing (SpH)7 [39], Self-taught Hashing (STH)8 [42], Stacked

4h�ps://catalog.data.gov/dataset/siam-2007-text-mining-competition-dataset
5h�p://www.lextek.com/manuals/onix/stopwords2.html
6h�p://pixelogik.github.io/NearPy/
7h�p://www.cs.huji.ac.il/�yweiss/SpectralHashing/
8h�p://www.dcs.bbk.ac.uk/�dell/publications/dellzhang sigir2010/sth v1.zip

Restricted Boltzmann Machines (Stacked RBMs) [29], Supervised
Hashing with Kernels (KSH) [21], and Semantic Hashing using Tags
and Topic Modeling (SHTTM) [37]. We used the validation dataset
to choose the hyperparameters for the baselines.

For our proposed models, we adopt the method in [7] for weight
initialization. �e Adam optimizer [13] with the step size 0.001 is
used due to its fast convergence. Following the practice in [38], we
use the dropout technique [31] with the keep probability of 0.8 in
training to alleviate over��ing. �e number of hidden nodes of
the models is 1,500 for RCV1 and 1,000 for the other three smaller
datasets. All the experiments were conducted on a server with 2
Intel E5-2630 CPUs and 4 GeForce GTX TITAN X GPUs. �e pro-
posed deep models were implemented on the Tensor�ow9 platform.
For the VDSHmodel on the Reuters21578, 20Newsgroups, and TMC
datasets, each epoch takes about 60 seconds, and each run takes
30 epochs to converge. For RCV1, it takes about 3,600 seconds per
epoch and needs fewer epochs (about 15) to get satisfactory perfor-
mance. Since RCV1 is much larger than the other three datasets,
this shows that the proposed models are quite scalable. VDSH-S
and VDSH-SP take slightly more time to train than VDSH does
(about 40 minutes each on Reuters21578, 20Newsgroups, and TMC,
and 20 hours on RCV1).

4.3 Evaluation Metrics
To evaluate the e�ectiveness of hashing code in similarity search,
each document in the test set is used as a query document to search
for similar documents based on the Hamming distance (i.e., number

9h�ps://www.tensor�ow.org/

https://catalog.data.gov/dataset/siam-2007-text-mining-competition-dataset
http://pixelogik.github.io/NearPy/
http://www.cs.huji.ac.il/~yweiss/SpectralHashing/
http://www.dcs.bbk.ac.uk/~dell/publications/dellzhang_sigir2010/sth_v1.zip
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Figure 2: �e Precision within the Hamming distance of 2 on four datasets with di�erent hashing bits.

of di�erent bits) between their hashing codes. Following the prior
work in text hashing [37], the performance is measured by Precision,
as the ratio of the number of retrieved relevant documents to the
number of all retrieved documents. �e results are averaged over
all the test documents.

�ere exist various ways to determine whether a retrieved doc-
ument is relevant to the given query document. In SpH [39], the
K closest documents in the original feature space are considered
as the relevant documents. �is metric is not desirable since the
similarity in the original feature space may not well re�ect the
document semantic similarity. Also, it is hard to determine a suit-
able K for the cuto� threshold. Instead, we adopt the methodology
used in KSH [33], SHTTM [37] and other prior work [33], that is
a retrieved document that shares any common test label with the
query document is regarded as a relevant document.

5 EXPERIMENTAL RESULTS
5.1 Baseline Comparison
Table 1 shows the results of di�erent methods over various numbers
of bits on the four testbeds. We have several observations from the
results. First of all, the best results at di�erent bits are all achieved
by VDSH-S or VDSH-SP. �ey consistently yield be�er results than
all the baselines across all the di�erent numbers of bits. All the
improvements over the baselines are statistically signi�cant based
on the paired t-test (p-value< 0:01). VDSH-S andVDSH-SP produce
comparable results between them. Adding private variables does
not always help because it increases the model �exibility whichmay
lead to over��ing to the training data. �is probably explains why
VDSH-SP generally yield be�er performance when the number of
bits is 8 which corresponds to a simpler model.

Secondly, the supervised hashing techniques (i.e., VDSH-S, VDSH-
SP, KSH) outperform the unsupervisedmethods on the four datasets
across all the di�erent bits. �ese results demonstrate the impor-
tance of utilizing supervisory signals for text hashing. However,
the unsupervised model, STHs, outperforms SHTTM on the orig-
inal 20 categories Newsgroups. One possible explanation is that
SHTTM depends on LDA to learn an initial representation. But
many categories in Newsgroup are correlated, LDA could assign
similar topics to documents from related categories (i.e. Christian,
Religion). Hence SHTTM may not e�ectively distinguish two re-
lated categories. Evidently, SHTTM and KSH deliver comparable

results except on the 20Newsgroups testbed. It is worth noting that
there exist substantial gaps between the supervised and unsuper-
vised proposed models (VDSH-S and VDSH-SP vs VDSH) across
all the datasets and con�gurations. �e label information seems
remarkably useful for guiding the deep generative models to learn
e�ective representations. �is is probably due to the high capacity
of the neural network component which can learn subtle pa�erns
from supervisory signals when available.

�irdly, the performance does not always improve when the
number of bits increases. �is pa�ern seems quite consistent across
all the compared methods and it is likely the result of model over-
��ing, which suggests that using a long hash code is not always
helpful especially when training data is limited. Last but not least,
the testbeds may a�ect the model performance. All the best results
are obtained on the RCV1 dataset whose size is much larger than
the other testbeds. �ese results illustrate the importance of using
a large amount of data to train text hashing models.

It is worth noting that some of the baseline results are di�er-
ent from what were reported in the prior work. �is is due to the
data preprocessing. For example, [37] combined some categories
in 20Newsgroup to form 6 broader categories in their experiments
while we use all the original 20 categories for evaluation. [42]
focused on single-label documents by discarding the documents ap-
pearing in more than one category while we use all the documents
in the corpus.

5.2 Retrieval with Fixed Hamming Distance
In practice, IR systems may retrieve similar documents in a large
corpus within a �xed Hamming distance radius to the query docu-
ment. In this section, we evaluate the precision for the Hamming
radius of 2. Figure 2 shows the results on four datasets with dif-
ferent numbers of hashing bits. We can see that the overall best
performance among all nine hashing methods on each dataset is
achieved by either VDSH-S or VDSH-SP at the 16-bit. In general,
the precision of most of the methods decreases when the number
of hashing bits increases from 32 to 128. �is may be due to the
fact that when using longer hashing bits, the Hamming space be-
comes increasingly sparse and very few documents fall within the
Hamming distance of 2, resulting in more queries with precision
0. Similar behavior is also observed in the prior work such as KSH
[21] and SHTTM [37]. A notable exception is Stacked RBMs whose
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RCV1 Reuters
Median Sign Median Sign

VDSH 0.8481 0.8514 0.7753 0.7851
VDSH-S 0.9801 0.9804 0.9337 0.9284
VDSH-SP 0.9788 0.9794 0.9283 0.9346

20Newsgroups TMC
Median Sign Median Sign

VDSH 0.4354 0.4267 0.7108 0.7162
VDSH-S 0.7564 0.7563 0.7883 0.7879
VDSH-SP 0.6913 0.6574 0.7891 0.7761

Table 2: Precision@100 of using di�erent thresholding func-
tions (Median vs Sign) for the proposed models on four
testbeds with the 32-bit hash code

performance is quite stable across di�erent numbers of bits while
lags behind the best performers.

5.3 E�ect of �resholding
�resholding is an important step in hashing to transform a con-
tinuous document representation to a binary code. We investigate
two popular thresholding functions: Median and Sign, which are
introduced in Section 3.4. Table 2 contains the precision results of
the proposed models with the 32-bit hash code on the four datasets.
As we can see, the two thresholding functions generate quite similar
results and their di�erences are not statistically signi�cant, which
indicates all the proposed models, whether being unsupervised or
supervised, are not sensitive to the thresholding methods.

5.4 E�ect of TermWeighting Schemes
In this section, we investigate the e�ect of term weighting schemes
on the performance of the proposed models. Di�erent term weights
result in di�erent bag-of-word representations of d as the input to
the neural network. Speci�cally, we experiment with three term
weighting representations for documents: Binary, Term Frequency
(TF), Term Frequency and Inverse Document Frequency (TFIDF)
[24]. Figure 3 illustrates the results of the proposed models with the
32-bit hash code on the four datasets. As we can see, the proposed
models generally are not very sensitive to the underlying term
weighting schemes. �e TFIDF weighting always gives the best
performance on all the four datasets. �e improvement is more
noticeable with VDSH-S and VDSH-SP on 20Newsgroups. �e
results indicate more sophisticated weighting schemes may capture
more information about the original documents and thus lead to
be�er hashing results. One the other hand, all the three models
yield quite stable results on RCV1, which suggests that a large-
scale dataset may help alleviate the shortcomings of the basic term
weighting schemes.

5.5 �alitative Analysis
In this section, we visualize the low-dimensional representations
of the documents and see whether they can preserve the semantics
of the original documents. Speci�cally, we use t-SNE10 [23] to
generate the sca�er plots for the document latent semantic vectors
10h�ps://lvdmaaten.github.io/tsne/
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Figure 3: Precision@100 for di�erent term weighting
schemes on the proposed models with the 32-bit hash code.

in 32-dimensional space obtained by SHTTM and VDSH-S on the
20Newsgroup dataset. Figure 4 shows the results. Here, each data
point represents a document which is associated with one of the 20
categories. Di�erent colors represent di�erent categories based on
the ground truth.

As we can see in Figure (4)(b), VDSH-S generates well separated
clusters with each corresponding to a true category (each number
in the plot represents a category ID). On the other hand, the clus-
tering structure from SHTTM shown in Figure (4)(a) is much less
evident and recognizable. Some closeby clusters in Figure (4)(b) are
also semantically related, e.g., Category 7 (Religion) and Category
11 (Atheism); Category 20 (Middle East) and Category 10 (Guns);
Category 8 (WinX) and Category 5 (Graphics).

We further sampled some documents from the dataset and see
where they are represented in the plots. Table 3 contains the Do-
cIDs, categories, and subjects of the sample documents. Doc5780
discusses some trade rumor in NHL and Doc5773 is about NHL
team leaders. Both documents belong to the category of Hockey
and should be close to each other, which can be clearly observed
in Figure (4)(b) by VDSH-S. However, these two documents are
projected far away from each other by SHTTM as shown in Figure
(4)(a). For another random pair of documents Doc3420 and Doc3412
in the plots, VDSH-S also puts them much closer to each other than
SHTTM does. �ese results demonstrate the great e�ectiveness
of VDSH-S in learning low-dimensional representations for text
documents.

6 CONCLUSIONS AND FUTUREWORK
Text hashing has become an important component in many large-
scale information retrieval systems. It a�empts to map documents
in a high-dimensional space into a low-dimensional compact repre-
sentation, while preserving the semantic relationship of the docu-
ments as much as possible. Deep learning is a powerful representa-
tion learning approach and has demonstrated its e�ectiveness of

https://lvdmaaten.github.io/tsne/
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Figure 4: Visualization of the 32-dimensional document latent semantic vectors by SHTTM and VDSH-S on the 20Newsgroup
dataset using t-SNE. Each point represents a document and di�erent colors denote di�erent categories based on the ground
truth. In (b)VDSH-S, each number is a category ID and the corresponding categories are shown below the plot.

DocId Category Title/Subject
Doc5780 Hockey Trade rumor: Montreal/O�awa/Phillie
Doc5773 Hockey NHL team leaders in +/-
Doc3420 ForSale Books For Sale [Ann Arbor, MI]
Doc3412 ForSale *** NeXTstation 8/105 For Sale ***

Table 3: �e titles of the four sample documents in Figure 4

learning e�ective representations in a wide range of applications,
but there is very li�le prior work on utilizing it for text hashing
tasks. In this paper, we exploit the recent advances in variational
autoencoder and propose a series of deep generative models for text
hashing. �e models enjoy the advantages of both deep learning
and probabilistic generative models. �ey can learn subtle nonlin-
ear semantic representation in a principled probabilistic framework,
especially when supervisory signals are available. �e experimen-
tal results on four public testbeds demonstrate that the proposed
supervised models signi�cantly outperform the competitive base-
lines.

�is work is an initial step towards a promising research direc-
tion. �e probabilistic formulation and deep learning architecture
provide a �exible framework for model extensions. In future work,
we will explore deeper and more sophisticated architectures such as
Convolutional Neural Network (CNN), Recurrent Neural Network
(RNN) [19], autoregressive neural network (NADE, MADE) [5, 18]
for encoder and decoder. �ese more sophisticated models may be
able to capture the local relations (by CNN) or sequential informa-
tion (by RNN, NADE, MADE) in text. Moreover, we will utilize the
probabilistic generative process to sample and simulate new text,
which may facilitate the task of Natural Language Generation [27].
Last but not least, we will adapt the proposed models to hash other
types of data such as images and videos.

APPENDIX
In this section, we show the derivations of the proposed models.
Due to the page limit, we only focus on VDSH-SP, the most sophis-
ticated one among the three models. �e other two models can be
similarly derived.

�e likelihood of document d and labels Y is:

log P (d;Y ) = log
Z

s;v
P (d;Y ; s;v )dsdv

= log
Z

s;v
Q (s;v jd;Y )

P (d;Y ; s;v )

Q (s;v jd;Y )
dsdv

Based on the Jensen’s Inequality [8],

log P (d;Y ) � EQ (s;v )[log P (d;Y ; s;v ) � logQ (s;v jd;Y )]
= EQ (s;v )[log P (d js;v )P (Y js )] + EQ (s;v )[log P (s )

+ log P (v ) � logQ (s;v jd; Y )] (6)
= EQ (s;v )[log P (d js;v )P (Y js )] + EQ (s;v )[log P (s ) � logQ (s jd )]
+ EQ (s;v )[log P (v ) � logQ (v jd )] (7)
= EQ (s;v )[log P (d js;v )P (Y js )] � DKL (Q (s jd ) k P (s ))

� DKL (Q (v jd ) k P (v )) (8)
= EQ (s;v )[log P (d js;v )] + EQ (s;v )[log P (Y js )]
� DKL (Q (s jd ) k P (s )) � DKL (Q (v jd ) k P (v )) (9)

= EQ (s;v )

f NX
i=1

log P (wi j f (s + v ;θ )) +

LX
j=1

log P (yj j f (s;τ ))
g

� DKL (Q (s jd ;ϕ) k P (s )) � DKL (Q (v jd ;ϕ) k P (v )) (10)

In Eqn.(6), we factorize the joint probability based on the generative
process. �us, P (d; Y; s;v ) = P (d js;v )P (Y js )P (s )P (v ). In Eqn.(7),
the variational distribution, Q (s;v jd; Y ) is equal to the product
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of Q (s jd ) and Q (v jd ) by assuming the conditional independence
ofs;v; Y given d . Eqn.(8) and Eqn.(9) are the results of rearranging
and simplifying terms in Eqn.(7). Plugging the individual words
and labels, we obtain the �nal lowerbound objective function in
Eqn.(10) (also in Eqn.(5)).

Because of the Gaussian assumptions on latent semantic vector
s and latent private variable v , the two KL divergences in Eqn.(10)
have analytic forms. We let µs and σs are mean and standard
deviation of s . µv and σv are similar de�ned. We use subscript k

to denote the kth element of the vector. �e following derivation
is an analytical form for a single KL divergence term:

DKL (Q (s jd ;ϕ) k P (s )) = EQ (s )[log P (s )] � EQ (s )[logQ (s jd ;ϕ)]

=
1
2

KX
k=1

(1 + logσ2
s,k � µ

2
s,k � σ

2
s,k ) (11)

DKL (Q (v jd ;ϕ) k P (v )) can be derived in the same way. �e
expectation terms in Eqn.(10) do not have a closed form solution,
but we can approximate them by the Monte Carlo simulation as
follows:

EQ (s;v )[log P (d j f (s + v ;θ ))] + EQ (s;v )[log P (Y js )]

=
1
M

MX
m=1

 
log P (d j f (s (m) + v (m) ;θ )) + log P (Y js (m) )

!
(12)

�e superscript m denotes the mth sample. By shi� and scale
transformation, we have s (m) = ϵ

(m)
s � σs + µs . We denote ϵs as

a sample drawn from a standard multivariate normal and � is an
element-wise multiplication. Also, v (m) is obtained in the same
way, v (m) = ϵ

(m)
v � σv + µv . By using this trick, we can obtain

multiple samples of ϵ and feed them as the deterministic input to the
neural network. �e model becomes an end-to-end deterministic
deep neural network with the following objective function:

L =
1
M

MX
m=1

 
log P (d j f (s (m) + v (m) ;θ )) + log P (Y js (m) )

!

+
1
2

KX
k=1

(2 + logσ2
s,k � µ

2
s,k � σ

2
s,k + logσ2

v,k � µ
2
v,k � σ

2
v,k )

(13)
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