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ABSTRACT
Vision-language models, pre-trained on web-scale datasets, have
the potential to greatly enhance the intelligence of web applica-
tions (e.g., search engines, chatbots, and art tools). Precisely, these
models align disparate domains into a co-embedding space, achiev-
ing impressive zero-shot performance on multi-modal tasks (e.g.,
image-text retrieval, VQA). However, existingmethods often rely on
well-prepared data that less frequently contain noise and variability
encountered in real-world scenarios, leading to severe performance
drops in handling out-of-distribution (OOD) samples. This work
first comprehensively analyzes the performance drop between in-
distribution (ID) and OOD retrieval. Based on empirical observa-
tions, we introduce a novel approach, Evidential Language-Image
Posterior (ELIP), to achieve robust alignment between web images
and semantic knowledge across various OOD cases by leveraging
evidential uncertainties. The proposed ELIP can be seamlessly in-
tegrated into general image-text contrastive learning frameworks,
providing an efficient fine-tuning approach without exacerbating
the need for additional data. To validate the effectiveness of ELIP,
we systematically design a series of OOD cases (e.g., image distor-
tion, spelling errors, and a combination of both) on two benchmark
datasets to mimic noisy data in real-world web applications. Our
experimental results demonstrate that ELIP improves the perfor-
mance and robustness of mainstream pre-trained vision-language
models facing OOD samples in image-text retrieval tasks. Our im-
plementation is available at https://github.com/heliossun/ELIP.
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Figure 1: Average performance in terms of Recall@K (R@K)
for the image-text retrieval. To measure the vulnerability
of large-scale pretraining (e.g., CLIP and BLIP) facing OOD
samples, we evaluate them under various noisy cases.

1 INTRODUCTION
Web applications [9–11, 13, 19, 35, 45, 47], such as search engines,
recommendation systems, etc., greatly benefit daily life, dealing
with complicated data formats from different domains (e.g., search
engines require massive semantic knowledge, recommendation
systems rely on image and text data, etc). Among these web ap-
plications, multi-modal data of vision and language (VL) usually
play an indispensable role [32], which have attracted remarkable re-
search efforts [41, 43] in recent years. Particularly, CLIP [31] aligns
vision and language domains into a shared embedding space, show-
ing a promising zero-shot learning capacity for broad applications.
However, web data frequently face many practical challenges, such
as low-resolution images due to unreliable internet connections
and text marred by garbled characters, leading to numerous out-of-
distribution (OOD) samples compared with the clean, well-prepared
training data. This gap raises a question – will the pre-trained VL
models be vulnerable to OOD samples in web applications?

To investigate the above question, Fig. 1 shows an empirical
study of two pre-trained VL models (CLIP [31] and BLIP [20]) for
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Figure 2: Generated OOD web images and text for cross-
modal retrieval. We present web OOD images (e.g., zoom
blur, snow, low resolution) paired with one ID and two web
OOD texts (e.g., synonym replacement (sr) and formal).

image and text retrieval over in-distribution (ID) and OOD samples.
The performance drop between ID and OOD retrieval of these
two state-of-the-art models inevitably casts a shadow of directly
applying VL models to handle the wild web data. While fine-tuning
the VL model with OOD data (varying with different domains)
could be a solution, it is highly costly and generally infeasible due
to the unknown data on the fly. Thus, we will propose an efficient
uncertainty-aware fine-tuning approach to mitigate the negative
impact of OOD samples on the pre-trained VL models.

Typically, there are three categories of uncertainty modeling: 1)
deep ensemble [18], 2) variational inference [3, 5, 6, 16, 26], and 3)
deep evidential learning [1, 2, 33, 46]. Accounting for the large size
of recent VL models, the first two uncertainty estimation methods
may be less applicable since they both require multiple inference
steps, which can be computationally expensive, especially for the
image-text ranking problem (where the pairwise calculation occurs).
By contrast, deep evidential learning [8] provides explicit uncer-
tainty representations based on a single forward pass, enriching
uncertainty knowledge without additional inference costs, which,
however, is still under-explored in large-scale VL models.

In this study, we fill in the gap of reasoning uncertainty for VL
models by marrying deep evidential uncertainty into a parameter-
efficient tuning framework. Concretely, we propose a novel Evi-
dential Language-Image Posterior (ELIP) method, which leverages
evidential learning with VL alignment to improve the generaliza-
tion and reliability of pre-trained VL models in both ID and OOD
cases. The proposed ELIP develops adapter [12, 15] layers to fine-
tune the pre-trained VL models to acquire evidence knowledge by
optimizing an evidential loss. Compared to traditional contrastive

learning methods that primarily focus on point estimation for the
class probability of a sample, the evidential loss considers the en-
tire probability distribution over all samples [33], improving the
model’s robustness against OOD samples and disclosing less confi-
dent predictions. Based on the ID and OOD retrieval settings, we
conduct extensive experiments to demonstrate the effectiveness
of ELIP. Our method outperforms state-of-the-art VL models on
image-text retrieval in most OOD cases, showcasing the potential
of evidential learning for VL models and its importance in improv-
ing model reliability for realistic web scenarios. We summarize the
main contributions of this work as follows.

• We introduce and design multiple OOD cases to investigate
the vulnerability of large VL models in handling various
noises on web data. We provide analysis of the MultiModal
Impact (MMI) [30] score and uncertainty estimation based on
ID and OOD samples, thoroughly discussing the robustness
and reliability of VL models for image-text retrieval tasks.

• We propose a novel uncertainty-aware, parameter-efficient
tuning method, namely ELIP. The proposed ELIP adopts
evidential learning to integrate image-text matching and
uncertainty estimation in a single forward pass.

• Extensive experiments show that our method improves state-
of-the-art VL models, CLIP [31] and BLIP [20], in image-text
retrieval tasks consisting of diverse OOD samples.

2 OUT-OF-DISTRIBUTION SCENARIOS
We introduce two OOD scenarios based on benchmark datasets
(e.g., MS-COCO and FLickr30k), aiming to mimic diverse practical
web noisy data to assess the reliability of our model and other
mainstream VL models.

We first introduce simple OOD cases by adding random Gauss-
ian noise into each image with the normal distribution variance
as 0.1 or subjecting each image to a random rotation within 0 to
180 degrees. For textual input, we adopt the implementation in [27]
to generate naturally noisy text encompassing various error as-
pects, including diacritics, casing, spelling, suffix/prefix alterations,
punctuation variations, whitespace anomalies, word order shifts,
insertions, and replacements. Notably, these noisy samples are gen-
erated without the reliance on manually designed rules, enhancing
the diversity of the perturbations.

Secondly, we introduce web OOD cases (Fig. 2). In realistic web
applications, massive amounts of low-quality images are uploaded
to the web every day. Some common cases include non-focus im-
ages, overexposed images, and compressed images. To mimic such
noises, we follow [30] by utilizing blur (zoom), weather (snow), and
compression (JPEG) as image-OOD perturbations. Also, the web
contains many noisy image descriptions, including spelling and dis-
ordered issues. This paper uses word-level synonym replacement
(sr) and sentence-level (formal) perturbation to generate noisy cap-
tions. We analyze the results aggregated across five perturbation
levels for each type of web OOD case. This paper mainly focuses
on testing the model’s robustness facing OOD cases. As shown in
Fig. 3, we have 10% of simple OOD cases and 90% of web OOD cases
over image and text domains. More OOD cases and generation
details can be referred to Appendix A.1.
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Figure 3: Illustration of the percentage of different OOD cases
in the image and text domain. We show rotation, Gaussian,
and natural for simple OOD, and provide snow, zoom, JPEG,
formal, and synonym replacement (sr) for web OOD.

3 METHODOLOGY
3.1 Overall Architecture
Vision-language Contrastive Learning. Recent vision-language
(VL) models use vision transformers as the image encoder to encode
an input image 𝐼 into a sequence of embeddings as {𝑣𝑐𝑙𝑠 , 𝑣1, · · · , 𝑣𝑁 }.
They employ a transformer network as the text encoder to project
text 𝑇 into a sequence of embeddings {𝑤𝑠𝑜𝑠 ,𝑤1, · · · ,𝑤𝑒𝑜𝑠 }, where
𝑣𝑐𝑙𝑠 and the activation of the highest layer of the transformer of
𝑤𝑒𝑜𝑠 are treated as extracted features are normalized and linearly
projected into a multi-modal 𝐷-dimension embedding space. We
denote 𝑣 ∈ R𝐷 and𝑤 ∈ R𝐷 as image and text features, respectively.

Contrastive learning is leveraged to learn a similarity function
and capture uni-modal representations. Specifically, the image-to-
text and text-to-image similarities between one query sample and
𝑀 other samples in the target set are computed as

𝜌𝑖2𝑡 = ]
〈
𝑣⊤𝑊0, · · · , 𝑣⊤𝑊𝑀

〉
,

𝜌𝑡2𝑖 = ]
〈
𝑤⊤𝑉0, · · · ,𝑤⊤𝑉𝑀

〉
,

(1)

where ] is a logit-scale, 𝑉 ∈ R𝑀∗𝐷 and𝑊 ∈ R𝑀∗𝐷 are image-text
pairs representations, and 𝜌𝑖2𝑡 and 𝜌𝑡2𝑖 can be used to find the
correct matching in a top-K list (retrieval), such that parallel image-
text pairs should return higher similarity scores. Let𝑦𝑖2𝑡 and𝑦𝑡2𝑖 be
the one-hot label, representing positive samples as 1 and negative
samples as 0. The contrastive loss, consisting of image-to-text and
text-to-image matching, is defined as

L𝑖𝑡𝑐 =
1
2
[ℓ (𝑦𝑖2𝑡 , 𝜎 (𝜌𝑖2𝑡 )) + ℓ (𝑦𝑡2𝑖 , 𝜎 (𝜌𝑡2𝑖 ))], (2)

where 𝜎 is a softmax function and ℓ (·, ·) computes the cross-entropy.
However, Eq. (2) only considers the alignment between correct pairs,
without modeling the uncertainty between the query and all the
other target samples. To estimate uncertainty in cross-alignment,
we introduce evidential knowledge to contrastive learning by learn-
ing a distribution over the similarities between cross-embeddings.
Bottleneck Adapter. Adapter module [7, 12, 15] can be easily
plugged into existing networks to enable parameter-efficient trans-
fer learning. Specifically, the adapter is a bottleneck structure with

linear layers governed by a residual connection between the block’s
input and output. This work uses the pre-trained CLIP [31] and
BLIP [20] as backbonemodels. Following [12], we insert one adapter
after the self-attention and MLP layers, respectively, in each trans-
former layer of the vision and language encoders (see Fig. 4). Even-
tually, the CLIP model has 64M trainable additional parameters,
accounting for 13% of the entire model, while the BLIP model has
141M trainable extra parameters, which is 38%. We obtain new
image and text features after passing through the pre-trained nor-
malization and linear projection layers. These features are then
used to compute the similarities 𝜌𝑖2𝑡 and 𝜌𝑡2𝑖 in Eq. (1).

3.2 Uncertainty Estimation with Cross
Embedding

The evidential deep learning [1, 33, 37] methods overcome the
limitations of the standard softmax-based model for uncertainty
estimation. Specifically, the softmax function mainly adopts point
estimation to quantify the degree of similarity between a given
query and multiple targets, which may exhibit low uncertainty in
OOD cases. Differently, the evidential deep learning framework
models the uncertainty by placing a Dirichlet distribution (Dir)
over the prediction probability distribution, allowing to quantify
uncertainties under a well-defined theoretical framework based
on the Subjective Logic (SL) theory [14]. Typically, SL is beneficial
when there are multiple sources of information with varying levels
of trustworthiness or when dealing with subjective opinions and
beliefs. In this paper, image-text retrieval involves feature alignment
and a ranking process that contains multiple sources of information
and different levels of trustworthiness, respectively. Therefore, we
consider using SL to quantify cross-modal retrieval uncertainty.

The SL reasoning framework generally studies K mutually ex-
clusive singletons (e.g., class labels) by computing belief mass as

𝑏𝑘 =
𝑒𝑘∑𝐾

𝑖=1 (𝑒𝑖 + 1)
, (3)

for each singleton 𝑘 = 1, · · · , 𝐾 , where 𝑒𝑘 > 0 denotes the 𝑘𝑡ℎ
singleton’s evidence. Note that the overall uncertainty mass 𝑢 and
all non-negative belief masses are sums up to one, i.e.,

𝑢 = 1 −
∑︁𝐾

𝑘=1
𝑏𝑘 =

𝐾∑𝐾
𝑖=1 (𝑒𝑖 + 1)

. (4)

The uncertainty 𝑢 is inversely related to the total amount of evi-
dence

∑
𝑖 𝑒𝑖 . When there is no evidence for any single entity (each

having zero evidence), the aggregate belief equals zero, leading
to a maximum uncertainty value of one. Generally, the evidence
assigned corresponds to a Dir with parameters 𝛼𝑘 = 𝑒𝑘 + 1. Follow-
ing [33], given a sample 𝑥𝑘 and a classifier 𝑓 (\ ) with parameters \ ,
the corresponding Dir has parameters 𝛼𝑘 = 𝑓 (𝑥𝑘 | \ ) + 1.

This work considers cross-domain information, which differs
from the previous methods that use single-domain data. Specifically,
we use multi-modal embeddings and define 𝛼 using the cross-modal
similarities between 𝑀 image-text pairs. Therefore, the subject
opinion (belief mass)𝑏 (𝑖 )

𝑗
for the 𝑖𝑡ℎ query and the 𝑗𝑡ℎ target sample

can be computed from the parameters of the corresponding Dir by

𝑏
(𝑖 )
𝑗

=
𝛼
(𝑖 )
𝑗

−1∑𝑀
𝑙=1 (𝛼

(𝑖 )
𝑙

)
. (5)
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Figure 4: Illustration of the proposed ELIP model. Our method can perform image-text retrieval and uncertainty estimation
in a single forward step. The image and text encoders are fine-tuned by different adapters with scalable parameters on clean
data without augmentation. We develop a new evidential loss (L𝑒𝑣) to implement image-text matching tasks, and the learned
Dirichlet distribution (Dir) posterior is used for uncertainty estimation and OOD detection.

Let 𝛼 (i) =< 𝛼
(𝑖 )
1 , · · · , 𝛼 (𝑖 )

𝑀
> be the parameter of a Dir for cross-

modal similarities. Then, we can obtain (𝛼 (𝑖 )
𝑗

− 1) as the evidence
estimated by the matching similarity between the 𝑖𝑡ℎ query and
the 𝑗𝑡ℎ target sample, 1 ≤ 𝑖, 𝑗 ≤ 𝑀 . Upon the obtained parameters,
Eq. (4) analytically calculates predictive uncertainties for queries.

To be specific, we define evidence as a measurement of the
amount of similarity between the query and target samples in favor
of aligning the positive sample and pushing away the negative
samples. For convenience, we use the similarity metrics 𝜌 ∈ R𝑀∗𝑀

computed in Eq. (1) to denote 𝜌𝑖2𝑡 or 𝜌𝑡2𝑖 , since image-to-text and
text-to-image similarities share the same computation process for
evidence. Also, we assign 𝛼 to represent 𝛼𝑖2𝑡 and 𝛼𝑡2𝑖 . This work
defines the Dir over cross-embeddings between the query and the
target samples. By taking the cross-modal similarities 𝜌 (𝑖 ) ∈ R𝑀
(the 𝑖𝑡ℎ row in 𝜌) between the 𝑖𝑡ℎ query and all the target samples,
the 𝑗𝑡ℎ parameter 𝛼 (𝑖 )

𝑗
of the Dir 𝛼 (𝑖 ) is computed as

𝛼
(𝑖 )
𝑗

= exp (𝜌 (𝑖 )
𝑗

) + 1, (6)

where 𝜌 (𝑖 )
𝑗

represents the 𝑗𝑡ℎ element in 𝜌 (𝑖 ) . We apply exp(·)
as an activation function to ensure positive evidence for all the
cross-embeddings. Because 𝜌 (𝑖 ) is the cross similarity between
image and texts, the value is greater than zero only for the parallel
pair. Eventually, Eq. (6) takes input computed in Eq. (1), and the
output 𝛼 can be used to calculate uncertainty in Eq. (4). Notably,
our proposed 𝛼 in Eq.(6) could connect cross-modal alignment and
evidential learning in a single forward pass.

Given 𝛼 (𝑖 )
𝑗

, our model updates the Dir by using the image-text
similarity as subjective opinions and collects evidence that leads to
those opinions. During training, the expected matching similarity

for the 𝑖𝑡ℎ query and the 𝑗𝑡ℎ target sample is computed by

E[𝑝 (𝑖 )𝑗 ] =
𝛼
(𝑖 )
𝑗∑𝑀

𝑙=1 𝛼
(𝑖 )
𝑙

, (7)

where 𝑝 (𝑖 )
𝑗

∈ [0, 1] indicates the possible values of the probability
mass 𝑝 . For convenience, we assign 𝑝 to represent 𝑝𝑖2𝑡 or𝑝𝑡2𝑖 when
no confusion occurs. Throughout the training process, new obser-
vations (evidence) would be accumulated to the relevant Dirichlet
distribution parameters whenever a query sample corresponds with
one of the 𝑀 target samples. The increment matching similarity
between image and text may contribute to its feature alignment,
which benefits image/text encoder learning.

3.3 Learning with Evidential Knowledge
So far, we have introduced using a Dirichlet distribution to capture
evidence knowledge across modalities. In the following, we outline
our strategy for fine-tuning the model to optimize the parameters
of this distribution. The VL model aims to align two domains into
a unified space. Following this concept, we initially compute the
cross-embedding similarity. Rather than employing the matching
score directly for calculating gradients, we enhance the learning
process through two separate steps: 1) gathering model evidence to
support correct alignment and 2) minimizing evidence uncertainty
when there is poor alignment. Eventually, this allows us to adapt
our data to the evidential model at a high level while enforcing a
prior to mitigate false evidence and vacuity uncertainty.
Evidential Loss. For better clarity, we denote 𝛼 (𝑖 ) by 𝛼𝑖2𝑡 /𝛼𝑡2𝑖

as the cross similarities between the 𝑖𝑡ℎ query and all target sam-
ples per image-to-text (i2t) or text-to-image (t2i) retrieval. Given
the learned Dirichlet parameters 𝛼𝑖2𝑡 /𝛼𝑡2𝑖 , we define evidential
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matching losses as the following:

L𝑖2𝑡 =
∑︁𝑀

𝑗=1
𝑦𝑖2𝑡𝑗 (𝜓 (𝑆𝑖2𝑡 ) −𝜓 (𝛼𝑖2𝑡𝑗 )),

L𝑡2𝑖 =
∑︁𝑀

𝑗=1
𝑦𝑡2𝑖𝑗 (𝜓 (𝑆𝑡2𝑖 ) −𝜓 (𝛼𝑡2𝑖𝑗 )),

(8)

where𝜓 (·) is the digamma function and 𝑆 =
∑𝑀
𝑗=1 𝛼 𝑗 takes𝛼

𝑖2𝑡
𝑗

/𝛼𝑡2𝑖
𝑗

computed by Eq. (6), denoting 𝑆𝑖2𝑡 or 𝑆𝑡2𝑖 , is the Dirichlet strength.
Minimizing Evidence on Errors. The evidential loss aims to
align the distribution of image and text features with observed data
by optimizing the evidence in favor of the model’s predictions. How-
ever, due to the negative samples in the training batch, the model
may be misdirected and put strong evidence for the wrong pre-
diction. Thus, we regularize the training by imposing an incorrect
evidence penalty, and minimize the evidence of incorrect matching.
We define 𝑎 = 𝑦 + (1 − 𝑦) ⊙ 𝑎, where 𝑎 and 𝑦 represent 𝑎𝑖2𝑡 /𝑎𝑡2𝑖
and𝑦𝑖2𝑡 /𝑦𝑡2𝑖 . Consequently, we incorporate a Kullback-Leibler (KL)
divergence term into the matching loss in (8), where the KL term
works as a regularization by penalizing those divergences from
negative samples that do not contribute to semantics alignment.

Overall, the evidential loss L𝑒𝑣 (\ ) consists of the matching loss
and a KL regularization scaled by _𝑡 as

L𝑖2𝑡
𝑒𝑣 = L𝑖2𝑡 + _𝑡KL[𝐷 (𝑝𝑖2𝑡 |�̃�𝑖2𝑡 ) | |𝐷 (𝑝𝑖2𝑡 | ⟨1, · · · , 1⟩) ],

L𝑡2𝑖
𝑒𝑣 = L𝑡2𝑖 + _𝑡KL[𝐷 (𝑝𝑡2𝑖 |�̃�𝑡2𝑖 ) | |𝐷 (𝑝𝑡2𝑖 | ⟨1, · · · , 1⟩) ],

(9)

where _𝑡 =𝑚𝑖𝑛(1.0, 𝑡/15) is the annealing coefficient, t is the index
of the current training epoch,𝐷 (𝑝 | ⟨1, · · · , 1⟩) is the uniformDirich-
let distribution, and 𝛼 is the Dirichlet parameters of misleading evi-
dence from𝛼 . The KL divergence term𝐾𝐿[𝐷 (𝑝 |𝛼) | |𝐷 (𝑝 | ⟨1, · · · , 1⟩)]
can be computed as

log(
Γ (𝑆 )

Γ (𝑀 )∏𝑀
𝑗=1 Γ (𝛼 𝑗 )

) +
𝑀∑︁
𝑗=1

(�̃� 𝑗 − 1) [𝜓 (�̃� 𝑗 ) −𝜓 (𝑆 ) ] .

We use dynamic scaling _𝑡 to modify the weights of the 𝐾𝐿 term,
leading the model to focus on learning relationships between pos-
itive pairs at the beginning and gradually put more attention on
negative pairs. Specifically, we enable neural networks to search
the parameter space by controlling the impact of the KL divergence,
which prevents the network from converging to a uniform distri-
bution for samples that are mis-aligned. Finally, the total loss L𝐸𝑉
would evenly update image/text encoders by

L𝐸𝑉 =
1
2
(L𝑖2𝑡𝑒𝑣 + L𝑡2𝑖𝑒𝑣 ) . (10)

We fine-tune the pre-trained CLIP and BLIP models using the
evidential loss in (10). By optimizing the inserted adapters, ELIP
can preserve high performance on ID retrieval tasks while achiev-
ing reliable performance on OOD retrieval tasks (refer to Table 1).
During training with high-level embeddings, the model captures
deeper connections between images and text, which enables the
generation of evidence for pairwise feature alignment based on
these patterns, thereby minimizing the overall loss.

4 EXPERIMENTS
Datasets and Evaluation Metrics. We train and evaluate our
model on the MS-COCO [23] and Flickr30K dataset [44]. We eval-
uate the performance of our model using the common Recall@K

(R@K) metric, which measures the proportion of correct matches
among the top K retrieved results. Based on different OOD cases
across modalities, Table 1 illustrates five evaluation scenarios. Take
an example of image retrieval, we report R@K over ID retrieval (T
→ I), text OOD (T∗ → I), image OOD (T→ I∗), multi-OOD (T∗ →
I∗), and MultiModal Impact score (MMI) [30] (% of performance
drop between ID and OOD retrieval), where the MMI is computed
as 𝑀𝑀𝐼 = (𝑅@𝐾𝐼𝐷 − 𝑅@𝐾𝑂𝑂𝐷 )/𝑅@𝐾𝐼𝐷 . We apply the similar
five evaluations for text retrieval in Table 1.
Implementation Details. Our approach is designed to enhance
the robustness of pre-trained vision-language models through ev-
idential learning. Therefore, we initialize our implementation by
loading the pre-trained CLIP zero-shot and BLIP fine-tuning, namely
ELIP and ELIP+, respectively. To fine-tune the model efficiently,
we modify the image and text encoder by inserting adapters inde-
pendently. Specifically, we set the bottle-neck feature dimension to
half of the feature dimension from the previous layer, and we use
RELU as the activation function. In order to sustain the pre-trained
zero-shot performance, we initialize all new parameters of adapters
with values drawn from the normal distribution with ` = 0, and
𝜎 = 0.001. In this work, we leverage deep ensemble [18] to imple-
ment an adapter ensemble called CLIP-ensemble, serving as a strong
uncertainty-aware baseline. Specifically, CLIP-ensemble freezes the
pre-trained CLIP and trains adapters independently with different
random seeds. We set the ensemble size as 5 for CLIP-ensemble
and took the average prediction during inference. We fine-tuned 15
epochs with a batch size of 200 for ELIP+ and 15 epochs with a 280
batch size for other experiments. We use the AdamW [24] optimizer
with an initial learning rate of 5e-5, and the weight decayed with a
rate of 0.02 for all the experiments.

4.1 Evaluation on Image-Text Retrieval
4.1.1 MS-COCO. We split the experimental results into two groups
(simple OOD and web OOD). Table 1 provides image-text retrieval
and MMI [30] score under simple OOD cases. As can be seen, both
ELIP and ELIP+ outperform all baseline models on the MMI bench-
mark, underscoring the efficacy of our approach in simple OOD
scenarios. Despite having fewer trainable parameters, ELIP out-
performs previous methods, ALBEF, CLIP, and BLIP, in most OOD
retrieval tasks. There is a performance gap between ELIP+ and BLIP
among retrieval tasks, which is predictable since ELIP+ is built upon
the simplified version of BLIP. Specifically, BLIP incorporates three
types of losses: Image-Text Contrastive (ITC), Image-Text Matching
(ITM), and Language Modeling (LM). In its ITC component, BLIP
utilizes a momentum encoder for soft label generation, enhancing
vision-language comprehension and overall model effectiveness.
Nonetheless, this encoder is parameter-heavy and requires sig-
nificant overhead. In contrast, ELIP+ adapts BLIP’s approach but
streamlines its structure by omitting momentum encoders, opting
for a more efficient fine-tuning method. We also compare ELIP and
CLIP-ensemble in terms of performance, robustness, and efficiency.
As shown in Table 1, ELIP surpasses CLIP-ensemble on all bench-
marks, proving the effectiveness of our method. Also, empirically,
ELIP shows less training and inference time than CLIP-ensemble,
since it does not require a multi-forward pass over an ensemble.
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Table 1: Comparison of performance in terms of Recall@K (R@K) and average MMI score among ID and simple-OOD retrieval
on MS-COCO. CLIP and BLIP are pre-trained zero-short, and the others are fined-tuned on clean MS-COCO. ELIP and ELIP+ are
trained based on the pre-trained CLIP and BLIP, respectively.

Image Retrieval T→ I T → I∗ T∗ → I T∗ → I∗ MMI

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP [31] 35.3 60.0 70.2 30.4 54.4 65.3 27.7 50.8 61.3 24.2 46.4 56.9 ↓22.3% ↓15.8% ↓12.9%
BLIP [20] 56.9 80.8 87.9 43.1 67.8 76.5 50.0 74.7 82.8 36.9 60.6 70.1 ↓23.8% ↓16.2% ↓13.0%
ALBEF [21] 60.7 84.3 90.5 47.8 72.0 80.3 51.9 76.8 85.6 41.2 65.6 74.7 ↓22.6% ↓15.2% ↓11.4%
BLIP [20] 64.3 85.7 91.5 51.4 74.5 82.1 57.2 80.3 87.4 45.2 68.8 77.2 ↓20.3% ↓13.0% ↓10.1%
CLIP-ensemble 58.7 82.8 89.3 50.5 76.3 84.7 50.5 75.8 84.5 42.9 69.0 78.5 ↓18.2% ↓11.0% ↓7.5%
ELIP (ours) 60.4 83.5 90.2 51.9 76.7 84.1 52.3 77.0 85.0 44.5 70.0 79.2 ↓17.9% ↓10.7% ↓8.2%
ELIP+ (ours) 63.7 85.4 91.3 51.0 74.5 82.3 57.0 80.0 87.2 45.6 69.3 77.8 ↓19.6% ↓12.6% ↓9.7%

Text Retrieval I → T I∗ → T I→ T∗ I∗ → T∗ MMI

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP [31] 56.0 79.6 86.9 46.3 71.1 79.9 46.1 71.5 80.5 36.6 62.5 73.0 ↓23.3% ↓26.7% ↓10.5%
BLIP [20] 72.5 90.0 94.7 52.1 73.4 81.0 67.6 87.9 93.3 48.2 71.1 78.9 ↓22.8% ↓13.9% ↓10.9%
ALBEF [21] 77.6 94.3 97.2 59.8 79.5 85.3 71.0 90.6 94.9 54.7 75.7 82.4 ↓20.3% ↓13.1% ↓9.9%
BLIP [20] 81.9 95.4 97.8 64.8 82.6 87.6 76.4 93.3 96.5 59.8 79.5 85.5 ↓18.2% ↓10.8% ↓8.1%
CLIP-ensemble 76.3 93.2 96.6 65.4 86.1 91.9 69.2 89.6 94.3 59.0 81.8 88.9 ↓15.5% ↓7.9% ↓5.1%
ELIP (ours) 78.4 93.6 97.0 67.2 86.4 92.0 72.0 90.6 94.8 59.7 82.7 89.4 ↓15.4% ↓7.5% ↓5.1%
ELIP+ (ours) 81.3 95.2 97.7 64.6 82.6 87.8 76.2 92.9 96.2 59.9 79.6 85.4 ↓17.7% ↓10.7% ↓8.1%

Table 2: Comparisons of average MMI scores in OOD retrieval. We utilize five web OOD cases generated from MS-COCO,
including OOD-image (zoom blur, snow noise, JPEG compression) and OOD-text (synonym replacement (sr), formal).

Image Retrieval MMI by I∗𝑧𝑜𝑜𝑚 MMI by I∗𝑠𝑛𝑜𝑤 MMI by I∗
𝐽 𝑃𝐸𝐺

MMI by T∗𝑠𝑟 MMI by T∗
𝑓 𝑜𝑟𝑚𝑎𝑙

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ALBEF [21] ↓51.9% ↓39.1% ↓32.7% ↓26.0% ↓15.8% ↓11.7% ↓8.9% ↓5.1% ↓3.4% ↓13.7% ↓7.8% ↓5.5% ↓0.8% ↓0.5% ↓0.2%
BLIP [20] ↓50.5% ↓37.7% ↓31.7% ↓22.7% ↓13.1% ↓9.5% ↓6.5% ↓3.2% ↓2.2% ↓13.7% ↓7.2% ↓5.2% ↓1.2% ↓0.5% ↓0.3%
ELIP (ours) ↓32.7% ↓20.7% ↓15.8% ↓13.0% ↓6.6% ↓4.0% ↓2.5% ↓1.7% ↓1.0% ↓7.0% ↓4.6% ↓3.3% ↓0.5% ↓0.5% ↓0.4%
Text Retrieval R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ALBEF [21] ↓62.1% ↓45.8% ↓38.1% ↓33.9% ↓18.6% ↓12.8% ↓7.6% ↓3.4% ↓1.9% ↓9.7% ↓3.9% ↓2.2% ↓0.0% ↓0.2% ↓0.2%
BLIP [20] ↓62.5% ↓45.3% ↓37.6% ↓28.8% ↓15.6% ↓10.9% ↓5.4% ↓2.3% ↓1.4% ↓9.4% ↓3.1% ↓1.7% ↓0.2% ↓0.2% ↓0.2%
ELIP (ours) ↓47.9% ↓29.4% ↓22.5% ↓22.2% ↓9.9% ↓6.1% ↓1.4% ↓1.2% ↓0.6% ↓5.8% ↓2.7% ↓1.1% ↓0.0% ↓0.3% ↓0.0%

In Table 2, we conduct an analysis of ELIP and other baseline
models under web OOD cases. Following [30], we leverage zoom
blur, snow noise, and JPEG compression in the vision domain and
synonym replacement (sr) and formal (replace normal words with
formal words) in the language domain, which are commonly en-
countered in real-world web applications. The observations reveal
that ELIP consistently outperforms all the other baseline models in
the context of image-text retrieval in terms of the MMI score. To
further test the robustness of ELIP, we provide comparison results
on more OOD cases and evaluation metrics in Appendix A.1.

To sum up, we draw our observations for the experiments on MS-
COCO as follows. 1) Our proposed method improves the robustness
of pre-trained models (e.g., CLIP and BLIP) when facing a broad
range of OOD cases. 2) We improve the efficiency of finetuning a
robust prediction vision-language model, achieving a performance
boost, especially compared with existing deep uncertainty methods
such as deep ensemble [18]. 3) We found that ELIP can capture

reliable similarities between OOD images and OOD text. Specif-
ically, when all inputs are OOD, ELIP can return more accurate
retrieval results than ELIP w/o EV based on limited information.
However, when image and text are highly damaged without helpful
information, the top 1 retrieval will be significantly affected (see
Appendix A.1 for detail).

4.1.2 Flickr30k. We further perform our study on the Flickr30K
dataset. As shown in Table 3, ELIP outperforms most of the base-
line models on simple-OOD retrieval tasks. Also, ELIP and ELIP+
have the smallest performance drop between ID and OOD retrieval.
Interestingly, we find that ELIP improves the pre-trained model
more than ELIP+. This may be attributed to two factors: 1) the
pre-trained CLIP constructs a better cross-embedding than BLIP,
and 2) ELIP+ is built upon the simplified version of BLIP, where
the model structure, batch size, and query size are minimized to
fit our implementation, reducing the model performance empiri-
cally. Additionally, the comparison between ELIP and ELIP w/o EV
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Table 3: Comparison of performance in terms of Recall@K (R@K) and MMI score among ID and simple-OOD retrieval on
Flickr30k. CLIP and BLIP are pre-trained zero-short, and the others are fined-tuned on clean Flickr30K. ELIP and ELIP+ are
transfer learned from pre-trained CLIP and BLIP. I: ID image, I∗: OOD image, T: ID text, and T∗: OOD text.

Image Retrieval T → I T→ I∗ T∗ → I T∗ → I∗ MMI

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP [31] 64.5 86.7 92.2 58.0 82.8 89.2 53.6 79.0 85.6 48.1 74.2 81.5 ↓17.5% ↓9.3% ↓7.3%
BLIP [20] 78.2 94.0 96.8 61.0 81.2 87.1 71.3 90.0 93.8 54.6 75.9 82.6 ↓20.3% ↓12.4% ↓9.3%
ALBEF [21] 85.5 97.5 98.9 68.8 86.6 91.0 78.6 94.4 96.8 62.4 82.2 87.7 ↓18.2% ↓10.0% ↓7.1%
BLIP [20] 87.3 97.6 98.9 72.3 89.0 92.8 78.2 94.0 96.8 61.0 81.2 87.1 ↓19.2% ↓9.8% ↓6.7%
ELIP w/o EV 85.3 97.9 99.0 78.3 94.3 97.0 78.2 94.2 96.9 70.7 89.1 93.3 ↓11.2% ↓5.5% ↓3.3%
ELIP (ours) 86.7 98.0 99.2 78.8 94.4 97.0 79.0 94.5 97.1 71.1 89.9 93.9 ↓12.0% ↓5.2% ↓3.2%
ELIP+ (ours) 86.5 97.1 98.3 78.0 94.6 97.4 80.4 94.2 96.3 70.0 89.5 93.3 ↓12.0% ↓4.5% ↓2.7%

Text Retrieval I → T I∗ → T I→ T∗ I∗ → T∗ MMI

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP [31] 84.3 97.9 99.3 76.0 93.7 96.6 76.4 94.5 97.5 67.1 90.0 93.7 ↓13.2% ↓5.3% ↓3.4%
BLIP [20] 87.4 98.1 99.2 69.1 85.4 89.9 85.8 97.6 98.7 66.4 85.7 89.8 ↓15.6% ↓8.7% ↓6.5%
ALBEF [21] 95.9 99.8 100.0 77.2 89.3 91.9 92.4 99.7 99.9 73.9 87.5 90.3 ↓15.4% ↓7.6% ↓6.0%
BLIP [20] 97.2 99.9 100.0 81.6 92.5 94.8 87.4 98.1 99.2 69.1 85.4 89.9 ↓13.0% ↓7.9% ↓5.4%
ELIP w/o EV 96.4 99.8 99.9 88.7 96.6 98.6 91.8 99.5 100.0 84.5 95.4 97.0 ↓8.4% ↓2.6% ↓1.4%
ELIP (ours) 95.8 99.8 100.0 88.9 97.1 98.6 94.2 99.6 100.0 85.9 96.1 97.9 ↓6.4% ↓2.2% ↓1.2%
ELIP+ (ours) 96.2 99.9 100.0 87.9 96.8 98.3 93.9 99.7 100.0 84.3 95.1 96.7 ↓7.8% ↓2.7% ↓1.7%

Table 4: Ablation study of the proposed ELIP in terms of average Recall@1 and MMI score in ID and OOD retrieval on MS-COCO.
All the models are fine-tuned on MS-COCO.

Method I → T T → I I∗ → T T → I∗ I → T∗ T∗ → I I∗ → T∗ T∗ → I∗ MMI𝑖2𝑡 MMI𝑡2𝑖
ELIP w/o A 60.2 44.5 51.7 38.4 49.8 36.1 43.1 30.6 ↓19.9% ↓21.3%
ELIP w/o IA 71.3 52.8 62.1 45.6 63.8 44.3 55.1 38.1 ↓15.4% ↓19.2%
ELIP w/o TA 76.6 60.1 63.8 51.0 68.0 51.5 55.6 42.3 ↓18.5% ↓19.7%
ELIP w/o EV 76.7 60.3 64.3 51.4 70.5 51.9 58.2 43.3 ↓16.1% ↓19.0%
ELIP (ours) 78.4 60.4 67.2 51.9 72.0 52.3 59.7 44.5 ↓15.4% ↓17.9%

Table 5: Domain generalization of image-text retrieval on
Flickr30K. All the methods are fine-tuned on MS-COCO.

Method I → T T → I

R@1 R@5 R@10 R@1 R@5 R@10

CLIP 88.0 98.7 99.4 68.7 90.6 95.2
ALBEF 94.1 99.5 99.7 82.8 96.3 98.1
BLIP 94.8 99.7 100.0 84.9 96.7 98.3
ELIP w/o EV 93.4 99.3 99.7 82.3 96.2 98.2
ELIP 95.2 99.6 99.9 83.9 97.1 98.6

demonstrates the effectiveness of evidential loss, enabling ELIP to
achieve more reliable OOD image-text retrieval.

4.1.3 Domain Generalization. To test the transferability across
domains, we use the clean Flickr30k as the target domain and treat
MS-COCO as the source domain. All the methods (except CLIP)
are fine-tuned on the source domain and then tested on the target
domain. We report the zero-shot CLIP performance as a baseline.
Table 5 summarizes the comparison results on the Flickr30K dataset.

As can be seen, ELIP surpasses other methods in most cases and
has proved to have good transferability across domains.

4.1.4 Limitation Discussion. Although ELIP enables better vision-
language modeling for OOD image-text retrieval, it may face the
following limitations. 1) Parameter searching. The evidential uncer-
tainty is relatively sensitive to the hyperparameter controlling the
KL term. This issue might be alleviated by further incorporating
hyperparameter optimization techniques [4, 36, 42] or tailoring the
activation functions [28] in evidential learning. 2) Lack of training
resources. The performance of our approach has not been fully opti-
mized due to the lack of sufficient computational resources, e.g., we
have not applied large batch sizes and larger pre-trained models.

4.2 OOD Detection
ELIP demonstrates an ability to discern between ID and OOD re-
trieval by using uncertainty as a scoring criterion. As illustrated in
Fig. 5, ELIP exhibits a potential to identify anomalous retrieval out-
comes when both query and target samples fall in the OOD category.
This capability becomes apparent as the estimated uncertainties for
OOD image-text retrieval results converge towards a value of 1.0
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following the application of evidential learning. Conversely, during
ID retrieval tasks, ELIP consistently furnishes meaningful uncer-
tainty estimations, where the majority of ID retrieval instances
yield uncertainties below the threshold of 0.8 since retrieval tasks
involve more complex Dirichlet distributions (larger class space)
than regular classification tasks, which makes the distribution of un-
certainty closer to relative large value. Consequently, ELIP emerges
as a reliable uncertainty estimation method, particularly when con-
fronted with OOD problems within the image-text retrieval tasks. It
would also be interesting to incorporate recent metric optimization
techniques [38, 39] into ELIP toward the OOD setting. Overall, ELIP
shows a promising prospect for cross-modal OOD detection.

4.3 Ablation Study
In Table 4, we investigate the impact of each component in the pro-
posed ELIP method. By fine-tuning the model on the same data and
using the consistent pre-trained weights, we observe that adding
image adapters (ELIP w/o TA) has a more considerable improve-
ment than adding text adapters (ELIP w/o IA). This observation
implies that the pre-trained vision encoder can extract better se-
mantic knowledge with the assistance of adapters, leading to better
cross-modal alignment. Further, the model becomes more robust
after training using evidential loss (ELIP) compared to the model
fine-tuned without the evidential loss (ELIP w/o EV). When utiliz-
ing all components, the effects of adapters and evidential learning
complemented each other, resulting in substantial improvements
compared to regular image-text contrastive learning. Therefore,
ELIP achieves the best OOD retrieval and MMI score, improving
the robustness of pre-trained models when facing OOD samples.

5 RELATEDWORK
Vision-language Modeling and its Web Application. There
are two types of mainstream large-scale vision-language (VL) pre-
training models: encoder-based and encoder-decoder structures.
Encoder-based methods mainly adopt single-stream or two-stream
network architectures. The single-stream uses an individual trans-
former encoder to concatenate image and text embeddings, e.g.,
VL-BERT [34], ImageBERT [29], Unified VLP [48], ViLBERT [25],
and VisualBERT [22]. In comparison, two-stream methods em-
ploy image and text encoders to extract features separately, e.g.,
CLIP. Some encoder-decoder models leverage cross-modal attention
and combine multi-tasks (e.g., image-text retrieval, image caption-
ing) to achieve better performance and higher flexibility on many
downstream tasks, e.g., BLIP. In the meantime, due to the demand
for large-scale data and the limitation of human-annotated data,
most methods use image-data pairs collected from the Web like
LAION [32] and VG [17]. In our work, we exploit CLIP, a two-
stream approach renowned for its superior image-text alignment
capabilities. CLIP represents a significant advancement in creat-
ing a flexible and applicable zero-shot classifier; it has a relatively
simple structure, with two transformer networks used to extract
the image and text features and finally cross-connect during loss
calculation. Owing to the impressive zero-shot performance, many
works leverage the power of large-scale VL pre-training and bene-
fit the development of web applications [41, 43]. Therefore, large

Figure 5: OOD detection by uncertainty of ELIP on ID and
OOD image-text retrieval on MS-COCO. The uncertainty val-
ues are in the range (0.75–1.00) within each distribution.

vision-language pre-training plays a significant role in recent web
application studies.
Uncertainty Estimation. Recent studies have shown that uncer-
tainty estimation in DNN contains four different steps [8]: (1) data
acquisition, (2) DNN building, (3) applied inference model, and (4)
predictive uncertainty model, leading to several factors that may
cause model and data uncertainties. Many research efforts have
been made to achieve uncertainty estimation. Single deterministic
methods predict uncertainty based on the forward pass [1, 2, 33, 46].
Bayesian neural network [3] and its variational approximation [6]
have also been applied in modeling weight uncertainty. Plus, the
evidential deep learning (EDL) [37] starts to attract attention due to
its rich, analytical uncertainty representations and efficient compu-
tation. Existing works have applied EDL in uncertainty estimation
for both regression [1, 2] and classification tasks [33, 46]. To the
best of our knowledge, this study is the first research attempt that
incorporates EDL into large vision-language modeling, coping with
uncertainty estimation in ODD image/text retrieval tasks.

6 CONCLUSIONS
In this study, we have proposed ELIP to efficiently improve the
pre-trained vision-language networks in terms of robustness and
performance when handling ID and OOD cases in image-text re-
trieval tasks via evidence knowledge. Specifically, the proposed
ELIP develops cross-domain similarity evidence to approximate the
subject opinion of multi-modal alignment during training. More-
over, our method sustains a simple and efficient inference process,
making large vision-language models adaptable. ELIP also bridges
the gap between evidential learning and fully fine-tuning by lever-
aging trainable adapters. Our method can easily extend small vision
and language encoders to larger ones with more layers. We have
provided extensive experimental results encompassing multiple
scenarios, catering to ID and OOD image-text retrieval tasks, as
well as a detailed ablation study and OOD detection. Particularly,
the OOD retrieval covers various noisy settings, including simple
noisy and web-style noisy images and texts. Empirical evidence on
two public benchmarks has demonstrated the effectiveness of ELIP
in facilitating reliable image-text retrieval and precise uncertainty
quantification. Our approach’s inherent efficiency and scalability
make it particularly valuable for fast and accurate uncertainty esti-
mation in cross-modal retrieval systems. ELIP is especially relevant
in fields where safety-critical decisions rely on robust image-text
alignment, underscoring the potential impact of our work on broad
web applications.
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A EXPERIMENTS ON MORE OOD CASES
A.1 OOD Retrieval
Previously, we have provided comparison results of OOD retrieval
on 8 OOD cases (see Table 1 and Table 2). To further test ELIP,
we generate six more OOD cases (Shot, impulse, speckle, defocus,
pixelate, keyboard) based onMS-COCO and provide the comparison
results among four methods. To be specific, we have provided brief
introductions [30] about the new OOD cases below:

(1) Shot is an image perturbation characterized by electronic
noise, arising from its discrete nature.

(2) Impulse is an image perturbation that features a color variant
of salt-and-pepper noise, which may result from bit errors.

(3) Defocus is an image perturbation with blur that occurs when
an image is out of focus.

(4) Speckle is an image perturbation, where the noise introduced
to a pixel is often more pronounced when the original pixel
intensity is higher.

(5) Pixelate is an image perturbation that occurs when upsam-
pling a low-resolution image.

(6) Keyboard: is a text perturbation that substitutes character by
keyboard distance with a probability p.

Table 6 shows that ELIP improves over the other methods in most
of the OOD cases. We also provide qualitative results of cross-
domain OOD retrieval in Fig. 6. After generating OOD images and
texts based on MS-COCO, we perform ranking and return the top
1 results of ELIP, ELIP w/o EV, and CLIP. As can be seen, ELIP
achieves better R@1 results in image and text retrieval tasks.

Table 6: Comparison of performance in terms of Recall@k in
OOD retrieval on MS-COCO. All the methods are fine-tuned
on MS-COCO.

Perturb Method I∗ → T T → I∗

R@1 R@5 R@10 Mean R@1 R@5 R@10 Mean

Shot

CLIP 42.4 69.9 79.9 64.1 34.9 63.3 74.9 57.7
ALBEF 66.2 86.6 92.0 81.6 52.1 77.9 85.5 71.9
BLIP 70.1 88.2 82.8 83.7 55.2 79.2 86.5 73.7
ELIP 71.8 90.1 94.4 85.5 55.7 80.2 87.7 74.6

Impulse

CLIP 35.6 63.0 74.3 57.6 29.8 58.3 70.7 53.0
ALBEF 66.0 86.8 92.1 81.6 52.1 77.9 85.8 71.9
BLIP 68.7 87.6 92.3 82.9 54.5 78.6 86.1 73.1
ELIP 72.3 90.4 94.7 85.8 56.7 81.1 88.5 75.4

Defocus

CLIP 43.7 71.7 81.5 65.6 35.2 63.8 75.2 58.1
ALBEF 62.6 84.1 90.1 79.0 50.6 75.7 83.9 70.1
BLIP 68.0 87.5 92.2 82.6 54.6 78.3 85.4 72.8
ELIP 68.3 89.1 94.2 83.9 56.0 80.4 88.0 74.8

Speckle

CLIP 36.5 65.7 77.1 59.8 36.5 65.7 77.1 59.8
ALBEF 69.9 89.3 94.1 84.4 54.7 80.1 87.6 74.1
BLIP 74.4 91.5 95.0 87.0 58.4 81.6 88.5 76.2
ELIP 73.1 91.0 95.1 86.4 56.6 81.0 88.3 75.3

Pixel

CLIP 32.4 58.3 68.9 53.2 27.3 53.8 65.7 48.9
ALBEF 45.9 65.7 72.7 61.4 36.3 58.9 67.5 54.2
BLIP 56.1 76.3 82.6 71.6 44.9 68.3 76.5 63.3
ELIP 67.1 88.6 93.4 83.0 54.8 79.1 86.9 73.6

I→ T∗ T ∗ → I

Keyboard

CLIP 36.8 62.1 72.8 57.2 21.0 41.2 51.6 37.9
ALBEF 57.9 82.6 89.6 76.7 38.0 63.4 73.0 58.1
BLIP 64.1 86.4 91.9 80.8 42.7 67.5 76.6 62.3
ELIP 58.2 82.5 89.5 76.7 36.8 61.3 71.0 56.4

A.2 Evaluation Metrics
In Table 1, Table 2, and Table 4, we have used the MMI score to
measure the performance drop between ID and OOD retrieval.
Notably, MMI becomes a valuable supportive metric to gauge the
model’s robustness when used with Recall@K. MMI quantifies the
impact of perturbations on a model; in other words, it can also
describe how sensitive the model is when facing OOD cases.

To provide a more comprehensive evaluation, we employ RSUM
(summation of performance) proposed in [40] to evaluate themodel’s
robustness further, where RSUM is computed as

𝑅𝑆𝑈𝑀 = 𝑆𝑈𝑀 (𝑖2𝑡 (𝑅@1, 𝑅@5, 𝑅@10) + 𝑡2𝑖 (𝑅@1, 𝑅@5, 𝑅@10)).
Table 7 shows RSUM and average MMI score of all the OOD

cases, where ELIP attains the highest average OOD retrieval and
the lowest MMI score, demonstrating the robustness of ELIP in
handling noisy scenarios. From our observations, while ELIP has
a relatively lower RSUM on ID retrieval than ALBEF and BLIP,
it presents a higher RSUM in most OOD cases, which indicates
the robustness of ELIP when facing noisy images and texts within
retrieval tasks. Also, it is predictable that BLIP performs better
when dealing with some text OOD cases since they put more effort
into improving language understanding.

A.3 OOD Generation
This work introduces simple and web-scaled OOD cases in image-
text retrieval tasks. We employ public algorithms to generate OOD
samples based on established benchmark datasets (MS-COCO [23]
and Flickr30K [44]). This process creates OOD images and texts
that simulate real-world noisy data. To produce these noisy images
and texts, we apply various perturbation and noising techniques.
For basic OOD images, we use two simple yet commonly adopted
perturbations: rotation and Gaussian noise. However, recognizing
that these simple OOD cases might not accurately represent real-
world conditions, we build upon prior research [30] by generating
different sets of perturbed images. Specifically, we define five sets
of parameters for each perturbation group to adjust the noise level
(ranging from 1 to 5), with higher numbers indicating greater noise.
In Listing 1, we detail several functions that illustrate our method
for generating OOD images and texts.

Listing 1: Pseudo code for generating OOD samples
# Simple OOD
# Level1: (0.1, 0)
def Gaussian(X, mean, variance):

X' = X + gaussian(mean, variance)
return X'

def Rotation(X):
X' = rotate(X, angle=random(0,180))
return X'

# Web OOD
# Level1: (0.1,0.3,3,0.5,10,4,0.8)
# Level2: (0.2,0.3,2,0.5,12,4,0.7)
# Level3: (0.55,0.3,4,0.9,12,8,0.7)
# Level4: (0.55,0.3,4.5,0.85,12,8,0.65)
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Table 7: Comparison of performance in terms of RSUM and MMI score among ID and OOD retrieval. CLIP𝑧𝑠 is the pre-trained
zero-shot performance, all the other methods are fine-tuned on MS-COCO. OOD` is the average RSUM of all OOD retrieval.

Method Clean OOD` Shot Impulse Speckle Defocus Pixelate Zoom Snow JPEG Keyboard SR Formal MMI

CLIP𝑧𝑠 394.5 339.1 361.2 330.2 368.7 358.7 308.2 294.6 294.7 388.0 285.5 347.5 393.0 ↓14.0%
CLIP 420.5 349.8 365.3 331.7 381.5 371.0 306.4 291.0 289.3 402.1 316.1 376.2 417.3 ↓16.8%
ALBEF 504.6 422.0 460.6 460.3 376.4 447.1 347.0 282.2 408.8 480.9 404.5 471.4 503.1 ↓16.4%
BLIP 516.6 450.2 472.1 467.7 489.5 466.1 404.7 291.6 432.8 499.6 429.1 484.3 514.4 ↓12.9%
ELIP 503.5 463.1 480.0 483.7 485.0 476.2 469.8 368.6 448.3 496.9 399.3 484.3 502.4 ↓8.0%

ELIP: a batter i taking a swing in a vintage 
the photo
ELIP w/o EV: young boy ready t o bat in a 
little league uniform
CLIP: image of small child holding a 
baseball bat 

ELIP: a giraffe as is looking at the camera 
with smirk a on it' face a 
ELIP w/o EV: wto giraffe stand in a so 
brush cover aera
CLIP: high giraffe is in a rock enclosure 
with tree behind it 

ELIP: a small pamphlet i sitt on a benches 
arme
ELIP w/o EV: the california travel guide 
book on a park bench 
CLIP: some book atop the arm of a bench 

ELIP ELIP w/o EV CLIP
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beautiful vase full of 
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race on a back of 
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Figure 6: Qualitative results of top 1 cross-domain OOD retrieval (OOD-image: Gaussian noise, random rotate OOD-text: natural
noise) on MS-COCO. Left: OOD text retrieval. Right: OOD image retrieval. CLIP𝑧𝑠 is zero-shot performance and all the other
methods are fine-tuned on MS-COCO.

# Level5: (0.55,0.3,2.5,0.85,12,12,0.55)
def Snow(X, loc, scale, clip, radius, sigma):

X' = X + snow_layer(loc, scale, clip, radius, sigma)
return X'

# Level1: [1, 1.01, 1.02, ..., 1.11]
# Level2: [1, 1.01, 1.02, ..., 1.16]
# Level3: [1, 1.02, 1.04, ..., 1.21]
# Level4: [1, 1.02, 1.04, ..., 1.26]
# Level5: [1, 1.03, 1.06, ..., 1.33]
def Zoom(X, zoom factors):

X' = (X + zoom(zoom factors)) / len(zoom factors)
return X'

# Level1: (3, 0.1)
# Level2: (4, 0.5)
# Level3: (6, 0.5)
# Level4: (8, 0.5)

# Level5: (10, 0.5)
def Defocus(X, radius, alias_blur):

X' = defocus(X, kernel(radius, alias_blur))
return X'

# Natural text noise
# Natural noise is a mixture of different noisy aspects. To

control the noisy level, we sample the error rate of
each aspect from a random distribution with different
mean value. The default range of mean is (0, 30),
where 0 means clean and 30 means all noise. In our
project, we set mean to 3.

def Natural_text(X):
X' = casing(diacritics(punctuation(spelling(

whitespace(word-order(wrong
suffix/prefix(X)))))))

return X'
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