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Collaborative Language Models for Localized Query Prediction
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Localized query prediction (LQP) is the task of estimating web query trends for a specific location. This
problem subsumes many interesting personalized web applications such as personalization for buzz query
detection, for query expansion, and for query recommendation. These personalized applications can greatly
enhance user interaction with web search engines by providing more customized information discovered
from user input (i.e., queries), but the LQP task has rarely been investigated in the literature. Although
exist abundant work on estimating global web search trends does exist, it often encounters the big challenge
of data sparsity when personalization comes into play.

In this article, we tackle the LQP task by proposing a series of collaborative language models (CLMs).
CLMs alleviate the data sparsity issue by collaboratively collecting queries and trend information from the
other locations. The traditional statistical language models assume a fixed background language model,
which loses the taste of personalization. In contrast, CLMs are personalized language models with flexible
background language models customized to various locations. The most sophisticated CLM enables the
collaboration to adapt to specific query topics, which further advances the personalization level. An extensive
set of experiments have been conducted on a large-scale web query log to demonstrate the effectiveness of
the proposed models.
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and Indexing; H.3.3 Information Search and Retrieval
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1. INTRODUCTION

Web users interact with search engines mainly through queries. As people increas-
ingly turn to the search engines for news and information, it is tempting to view search
activity at any moment in time as a snapshot of the collective consciousness. Conse-
quently, large search engines begin to offer the services about what people are currently
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Fig. 1. Trending Now Module on Yahoo! front page on 03/21/2013 at 5 PM PDT.

Fig. 2. The page shown after a user clicked on the trending query topic “ObamaCare kills.”

searching, such as Yahoo!’s Trending Now,1 Google Trends,2 and Bing’s Popular Now.3
These services reflect the instantaneous interests, concerns, and intentions of the global
population. They can be utilized to strengthen user interaction with search engines.
For example, the Trending Now Module on Yahoo!’s front page, shown in Figure 1, is a
trending topic recommendation system deployed on the web. The trending topics dis-
played were extracted from search query log, mainly globally trending and of interest
to a wide user base. Every click on the trending query topics takes the user to a search
result page where the topic is entered automatically as a query, as shown in Figure 2.

1http://www.yahoo.com/.
2http://www.google.com/trends.
3http://www.bing.com/.
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Through the search result page, users can then find detailed information about the
trending topic.

Moreover, search queries provide valuable insights about the users themselves and
thus can be further exploited to enhance user interaction with search engines. In par-
ticular, users can get more customized web experience through web personalization,
and consequently are more inclined to engage and interact with personalized web
services. Web personalization has recently received tremendous attention from both
industry and academia. Among many observable user attributes, user location is par-
ticularly simple for search engines to obtain and allows personalization even for a
first-time web search user. This attribute becomes even more prominent with the rise
of location-enabled mobile devices.

This article addresses the task of estimating web query trends for a specific loca-
tion, which we call localized query prediction (LQP). LQP has many potential usages
and applications. It can be utilized to detect buzz query topics that are locally more
relevant to the users and thus may increase user engagement, because, for example,
people in small towns may be more interested in what is happening to their local high
school quarterbacks than to the national NFL champions. LQP can also be used for
personalized search assist by suggesting to users potentially highly popular queries
in that region. In addition, LQP has great promise to serve as a timely and sensitive
surveillance tool to detect local outbreaks of diseases. In general, an understanding
and prediction of local web search trends can be very useful for advertisers, marketers,
economists, scholars, and anyone else interested in what are currently top-of-mind in
the specific locations.

Although much work on estimating global web query trends exists, the personalized
version has been rarely studied in the literature. In fact, when it comes to personal-
ization (or localization in particular), the existing query estimation techniques often
encounter big challenge due to data sparsity. We may not have sufficient queries from
a particular location to accurately and robustly estimate the models or even some sim-
ple statistics. The problem becomes exacerbated along two dimensions: more granular
time intervals and more segmented locations. In a small geographical region or/and
within a short time span, the observed queries could be very scarce. Yet, these two di-
mensions are toward the directions of deep personalization and real-time information
needs, which are very demanding from web users. Therefore, the LQP task in such
scenarios is a very important but challenging problem.

LQP can be essentially boiled down to estimating the probability of a given query
issued from a particular location. Thus, statistical language models can be a natural
tool to tackle the task. To overcome the data sparsity issue in language models, a back-
ground language model is often used for smoothing and has become an indispensable
part of any language model. Although a lot of progress has been made in the smooth-
ing techniques, most of them assume a fixed background language model. However,
the personalization in LQP and many other web applications requires the background
language models to be able to adapt.

In this article, we tackle the LQP task by proposing a series of collaborative language
models (CLMs). They alleviate the data sparsity issue by collaboratively collecting
queries and trend information from the other locations. Our major contributions can
be summarized as follows:

(1) We study an important but rarely investigated personalization task (i.e., LQP) in
a principled approach.

(2) Unlike the traditional language models with fixed background language models
for smoothing, our proposed CLMs are personalized language models with flexible
background language models that are customized to specific locations.
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9:4 Y. Fang et al.

(3) The most sophisticated CLM integrates a discriminative component into the gener-
ative language models. It enables the collaboration to adapt to specific query topics,
which further advances the personalization level.

(4) Most of the prior work on query trend prediction are temporal based by using pre-
vious queries as predictors. Our work can be viewed as spatial-based prediction by
looking at the current queries in the other locations that might share similar char-
acteristics with the location of interest. The breaking news or emerging trending
queries can be more quickly captured by our approach.

(5) We conduct an extensive set of experiments on a large-scale web query log from
Yahoo!. Various traditional methods are used as baselines for comparison and per-
plexity is used as the evaluation metric. The results show CLMs can improve the
predictive performance over the baselines with a large margin, especially when
more severe data sparsity is present. We also demonstrate an application of LQP
in buzz query detection.

2. RELATED WORK

The study of web search trends has been an active area in both industry and academia.
Numerous studies have been conducted on predicting the upcoming query trends. Liu
et al. [2008] proposed to unify both periodicity and accidental factors with classical au-
toregression time series model for predicting the query frequency. Golbandi et al. [2013]
also used a linear autoregression model to predict query counts for search trend detec-
tion. Adar et al. [2007] investigated the general trends for queries in several datasets
of queries, blog posts, and news articles. Vlachos et al. [2004] focused on burst and
periodic queries, representing them concisely using coefficients in a Fourier transform.
Chien and Immorlica [2005] presented an efficient method for finding related queries by
correlating queries with similar time series distributions. Identifying trends in queries
has real applications. Shokouhi [2011] indicated that the seasonal nature of queries
can be detected using time series analysis. Some recent work has demonstrated that
web search volume can “predict the present” [Shimshoni et al. 2009; Choi and Varian
2009], meaning that it can be used to accurately track outcomes such as unemployment
levels, auto and home sales, and disease prevalence in near real time.

The aforementined work focuses on characterizing the absolute query frequency. A
closely related task, buzz query detection, is to discover the trending queries by looking
at the change in query frequency. The services such as Yahoo!’s Trending Now, Google
Trends, and Bing’s Popular Now mainly fall into this category. Because of users’ increas-
ing need for time-sensitive information, this task has recently attracted much atten-
tion. The problem can be formulated as anomaly detection, which finds irregularities
of the query such as a large divergence from the mean number of occurrences [Vlachos
et al. 2004; Kleinberg 2003; Dong et al. 2010; Parikh and Sundaresan 2008]. Moreover,
Kulkarni et al. [2011] identified several interesting features by which changes to query
popularity can be categorized. Some work utilizes implicit user feedback. For example,
Diaz [2009] determined the newsworthiness of a query by predicting the probability
of a user clicking on the news display of a query. Konig et al. [2009] estimated the
click-through rate for dedicated news search result with a supervised model.

Most of the aforementioned web query prediction works are based on temporal pre-
diction, meaning they use the previous queries as the indicators to predict the future
query trends. However, the web is such as a dynamic environment that every day there
are many new queries issued that are never seen before. These emerging queries are
largely caused by breaking news or trending subjects, which are of great interest to
many web applications. The temporal prediction approach cannot even take into these
emerging queries into account (if they do not appear in the current location), not to
mention accurate estimation. In contrast, our approach can be regarded as spatial
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prediction, which considers the current queries from the other locations. The breaking
news or emerging trending queries can be more quickly captured by this approach.

In recent years, personalization has received tremendous attention from the research
community because its great potential to improve the relevance of web services. Among
many observable user attributes, approximate user location is particularly simple for
search engines to obtain. Welch and Cho [2008] presented a method for automatic
identification of a class of queries they defined as localizable from a web search engine
query log. Yi et al. [2009] attempted to discover users’ implicit geographic intention in
web search. To the best of our knowledge, there is no prior work in the literature on
personalized estimation or prediction of web query trends. A related work is Google’s
Insight for Search.4 However, it can only show the search trends in the time span of
7 days at the finest level, which suffers much less from data sparsity, but could not
satisfy users’ ever increasing needs for the time-sensitive information. Another related
website is Trendsmap,5 but it identifies local trending topics based on tweets rather
than queries. Moreover, the optional locations are all international big cities. Thus,
it also suffers less from data sparsity, but it may be too coarse to have the taste of
personalization. Our prior work [Bawab et al. 2012] investigated the task of finding
trending local topics, and it has shown that many relevant topics may be missed due
to data sparsity.

The LQP task can be essentially boiled down to estimate the statistical language
models of search queries. The root of language modeling dates back to the beginning
of the 20th century [Manning and Schutze 1999]. For many years, language models
have been used primarily for automatic speech recognition. Since it was introduced
to information retrieval in 1998 by Ponte and Croft [1998], it has sparked genuine
interests in the research community. For a general survey, please refer to Zhai [2008].
In many language models, smoothing is a crucial component to address the data spar-
sity problem [Chen and Goodman 1996; Zhai and Lafferty 2001]. Various smoothing
techniques have been proposed. However, most of them assume a fixed background
language model, which is inadequate for many personalized applications such as LQP.

Another closely related body of work is collaborative filtering [Breese et al. 1998],
which is an information filtering process using techniques involving collaboration
among multiple entities. At the abstract level, CLMs are similar to user-based col-
laborative filtering in Recommender Systems, but there are several key differences:
(1) the observed variables in LQP are not static user ratings but rather the statistical
language models of queries (the collaboration in CLMs is between the language models
of the queries) and (2) collaborative filtering techniques often compute the pairwise
similarity just based on the two involved entities. In contrast, CLMs obtain the sim-
ilarities by looking at multiple other locations and see how they can collaboratively
generate the observed queries.

3. LOCALIZED QUERY PREDICTION

3.1. Data Sparsity

The web search trends can be characterized by the query generation probability. The
higher the probability, the more likely that the query is popular. In consequence, to
predict the local search trends, the LQP task can be boiled down to estimating the
probability of producing the web query q from a particular location s at time t. This
probability can be determined by the query language model p(q|s, t). A statistical lan-
guage model assigns a probability distribution over a sequence of linguistic units in a

4http://www.google.com/insights/search/.
5http://trendsmap.com/.
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Fig. 3. Distribution of Yahoo! query volume over 210 designated market areas in the United States June
1–7, 2011. The DMAs are ordered by their query volume.

language [Zhai 2008]. It has been heavily used in a wide range of information retrieval
and natural language processing applications. The language modeling approaches are
appealing in both theory and applications because of their good empirical performance
and great potential of leveraging statistical estimation methods.

In this article, the linguistic unit in the language models is queries, but the models
can be easily generalized to n-gram models [Zhai 2008]. In addition, the location s
represents one of the designated market areas (DMAs). DMAs are geographic areas
defined by Nielsen media research company as a group of counties that make up a
particular television market. There are 210 Nielsen DMAs in the United States. The
reason why we use DMAs is that they are proven (by the TV industry) to be effective
in targeting geographic audience with customized services.

A straightforward way to compute p(q|s, t) is by looking at all the queries issued
from the region s over the time period t − 1 to t. p(q|s, t) is then essentially the relative
query frequency with respect to these queries. p(q|s, t) can be estimated accurately
when there are sufficient queries observed. Unfortunately, this is not the case for many
DMAs. Figure 3 shows the relative query volume/frequency during the period of June 1,
2011 to June 7, 2011, with respect to the 210 DMAs. The DMAs are ordered by their
query volume. This figure shows that the distribution seems to follow the classic “long-
tail” distribution (or Zipf ’s Law [Manning et al. 2008]), which usually implies data
sparsity for the vast majority of ranks. We can see that the top 20 DMAs account for
over half of the total queries, whereas the vast majority of the other DMAs each have
less than 1% of the total query traffic. Furthermore, the bottom DMAs have much
less query volume. This can be more clearly seen in Figure 4, which plots the data on
logarithmic scales. The data satisfying Zipf ’s Law should roughly fit a straight line
in the log-log plot [Manning et al. 2008]. From the figure, we can find that there is a
“drooping tail” starting from around the 100th DMA. This droop tail indicates there
are not enough queries for these bottom DMAs to support Zipf ’s Law, which means
the DMAs suffer from even more severe data sparsity issue than Zipf ’s Law indicates.
For the lowest ranked DMAs, very few queries can be observed in 1 day. This poses
a big challenge of data sparsity to estimate the conditional probability p(q|s, t). The
situation becomes worse when the model needs more frequent updates (i.e., shorter
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Fig. 4. Log-log graph of relative query volume.

time interval from t − 1 to t) for real-time information needs. Even some large DMAs
may encounter the data sparsity issue on an hourly basis.

3.2. Background Language Models for Smoothing

To overcome data sparsity in language models, a background language model is of-
ten used for smoothing. Background language models are usually constructed from
the whole collection and thus suffers less from sparsity. Smoothing techniques try to
balance the probability of observed queries with those unobserved ones. It discounts
the probability mass assigned to the seen queries and distributes the extra probability
to the unseen queries. Smoothing has become an indispensable part for any language
model [Zhai 2008]. There exists different smoothing techniques, and in this article, we
illustrate our approach with Dirichlet smoothing [Zhai 2008] as follows

p(q|si, t) = nt
qi + μp(q|C)

Nt
i + μ

, (1)

where nt
qi is the number of queries q generated in target location si at time t, Nt

i is
the total number of queries in si at t, and μ is the smoothing parameter and can be
determined by cross-validation. p(q|C) is the background or collection language model,
as they are calculated based on the whole collection C (i.e., p(q|C) = Nq

NC
, where Nq

is the number of query q observed in all the DMAs and NC is the total number of
queries in the whole collection). Dirichlet smoothing can adjust the amount of reliance
on the observed queries according to their sizes. When there are not sufficient queries
(i.e., Nt

i is small), the background language model will be critical to estimate the query
language model p(q|si, t).

Like most existing language models, Equation (1) uses a fixed background language
model p(q|C) that does not depend on location si. However, these models are not suitable
for the LQP task because they are invariant with respect to different locations and
lose the taste of personalization. Therefore, we propose the collaborative language
models (CLMs) by using variable background language models denoted by p̂(q|si).
These background language models are able to adapt to various locations based on
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how the target location is correlated with the other locations, and then we can use the
correlation to make personalized prediction. By replacing p(q|C) in Equation (1) with
p̂(q|si), the query language model is

p(q|si, t) = nt
qi + μ p̂(q|si, t)

Nt
i + μ

. (2)

4. COLLABORATIVE LANGUAGE MODELS

4.1. Basic CLM

The motivation of the collaborative language models is very similar to collaborative
filtering. The underlying assumption of the CLM approach is that those locations that
are correlated in the near past tend to correlate again in the near future. Therefore,
once we figure out the correlation, we can utilize it to predict the queries at the target
location by looking at the current queries in the other locations. Formally, to estimate
the background language model p̂(q|si, t) in Equation (2), by probability chain rule and
marginalization, we have:

p̂(q|si) =
∑
j �=i

p(q|sj, si)p(sj |si) =
∑
j �=i

p(q|sj)p(sj |si), (3)

where sj is a different location from the target si and p(q|sj) is the query language
model of sj . p(sj |si) is the transition probability from si to sj , which also measures the
similarity between si and sj . Since we look at the locations at the same time t, we drop
the variable t in the conditions of all the probabilities in Equation (3) to simplify the
notations. Equation (3) assumes q is independent of si given sj . It depicts a generative
process of how a query q in si is generated: we first randomly choose a location sj
based on the probability p(sj |si), and then we pick the query q (within sj) based on
the probability p(q|sj). Each query is conditionally independently generated given the
location.

Equation (3) is the basic CLM (or BCLM). The basic idea is to discover how the
queries in one location (target) can be collaboratively generated by the other locations
(indicators) in the training phase and then use this collaboration (possibly in real-time)
to predict the query trends for the target location that may not be able to figure out
the trends by its own queries because of its small query volume. BCLM is a generative
probabilistic model and the graphical model representation is shown in Figure 5 (top).

The generative process of BCLM is similar to the multinomial mixture model
[Nocedal 1980]. One difference is that we can choose the location sj so that it has
sufficient queries and thus p(q|sj) can be assumed known. Therefore, the only param-
eters that need to estimate are p(sj |si), which can be obtained by maximum likelihood
estimation (MLE) as follows:

max
p(sj |si )

T∏
k=1

M∑
j �=i

p
(
qi

k|sj
)
p(sj |si), (4)

where qi
k denotes the queries observed in si and T is the total number of them. M

is the total number of the indicator locations. This is a convex optimization problem
where the global optional solution can be achieved. Specifically, p(sj |si) can be estimated
by the Expectation and Maximization (EM) algorithm [Dempster et al. 1977] to iterate
over the following two steps:

E-step:

p
(
sj |qi

k, si
) = p(sj |si)p

(
qi

k|sj
)

∑M
j �=i p(sj |si)p

(
qi

k|sj
) (5)
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Fig. 5. Graphical model representation of collaborative language models. Top: Basic CLM. Middle: Dirichlet
prior CLM. Bottom: Topic-dependent CLM. The shaded nodes are observed variables and unshaded are
latent variables.

M-step:

p(sj |si) = 1
T

T∑
k=1

p
(
sj | qi

k, si
)

(6)

Another more straightforward way to estimate p(sj |si) is to directly compute the simi-
larity between the historical queries in sj and si. For example,

p(sj |si) = 1
Z(Qi)

cosine(Qj, Qi), (7)

where Qj = (w1, w2, . . . , wn) is a vector representation of all the queries in sj and
wq is the query weight (e.g., tf-idf weighting) for the query q. cosine is the cosine
similarity [Manning et al. 2008] between Qj and Qi. Z(Qi) = ∑M

j �=i cosine(Qj, Qi) is the
normalization term to ensure

∑M
j �=i p(sj |si) = 1. Any other similarity measures such as

Pearson correlation can also be used to compute the similarity between Qj and Qi. This
method is analogous to the ones in user-based collaborative filtering for Recommender
Systems [Breese et al. 1998]. They calculate the pairwise similarity between two users
and produce a prediction for the user by taking the weighted average of all the ratings.
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In contrast, CLMs obtain the similarities by looking at multiple other locations and
see how they can collaboratively generate the observed queries.

Whereas most query trend prediction approaches are temporal based by using the
previous queries as predictors, the CLM approach is spatial-based prediction by col-
laboratively using the current queries from the other locations. Even without the data
sparsity issue, it is still often desirable for many personalized applications to identify
the collaboration in order to make personalized recommendation.

4.2. Dirichlet Prior CLM for Encoding Proximity Information

Equation (4) provides a probabilistic framework to estimate p(sj |si), which is essentially
a normalized weight to measure the similarity between sj and si. In many cases, we
already have prior knowledge about these weights. For example, if sj is geographically
close to si, the weight should tend to be large. Within the probabilistic framework, we
can encode this prior knowledge by a prior distribution over p(sj |si). Specifically, we
use Dirichlet prior as follows:

Dir(p|α1, . . . , αM) = 1
Z(α)

M∏
j �=i

pα j−1
j , (8)

where Z(α) =
∏M

j �=i �(α j )

�(
∑M

j �=i α j )
is a normalization constant [Bishop 2006]. The reason to use

Dirichlet prior is that it is the conjugate prior to the multinomial distribution p(q|sj),
which leads to computational convenience for parameter estimation [Bishop 2006]. We
refer this model as to Dirichlet prior CLM (or DPCLM).

We use the hyperparameter α in Equation (8) to encode our prior knowledge about
geographical proximity. Specifically, α j is inversely proportional to the distance between
sj and si (i.e., the larger the distance, the smaller the weight):

α j = β

1
dij∑M

j=1
1

dij

, (9)

where dij is the distance between si and sj . β is the parameter to control how confident
we are about the prior knowledge. The graphical model representation of DPCLM is
shown in Figure 5 (middle).

Once the prior is incorporated into Equation (4), the maximum a posteriori (MAP)
estimate for p(sj |si) can be obtained by maximizing the posterior distribution. A similar
EM algorithm can be derived as follows (see Rigouste et al. [2007] for the details).

E-step:

p
(
sj |qi

k, si
) = p(sj |si)p

(
qi

k|sj
)

∑M
j �=i p(sj |si)p

(
qi

k|sj
)

M-step:

p(sj |si) = α j − 1 + ∑T
k=1 p

(
sj |qi

k, si
)

∑M
j �=i(α j − 1) + T

(10)

From Equation (10), we can see that when we do not have sufficient queries (i.e.,
T is small), the prior knowledge α will play a big role in the estimation of p(sj |si).
When T becomes large, the observed queries will dominate the estimation. Therefore,
this model uses the prior geographical information to guide the parameter estimation,
which could be especially useful in the case of data sparsity.
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4.3. Topic-Dependent CLM

Both BCLM and DPCLM models assume the same fixed weights/collaboration for all
kinds of queries. However, in many cases, this is too rigid. For example, in Los Angeles,
the queries about basketball may have great correlation with those from Dallas during
the week of May 2, 2011, because they were the opponents of NBA playoffs. On the
other hand, this may not be the case for entertainment-related queries and instead Los
Angeles may share large similarity with New York on that topic. Another exam-
ple could be San Jose and Seattle share great similarity on issuing information
technology–related queries, but not so much on other topics. Therefore, the best collab-
oration/weighting strategy for a query is not necessarily the best one for other queries.
We could benefit from developing a query-dependent model in which we can choose the
collaboration strategy individually for each query. Because it is not realistic to deter-
mine the proper collaboration strategy for every query, we can classify queries into one
of several topic classes. The queries within the same topic class shares the same strat-
egy, and the queries with different topics could have different collaboration strategies.

In this section, we present the topic-dependent CLM (or TDCLM) by introducing an
intermediate latent class layer to capture the query topic information. Specifically, we
can use a multinomial variable z ∈ K to indicate which query topic class the similarity
weight is drawn from. Under different topics, the similarities are different, which are
thus denoted by p(sj |si, z) (instead of p(sj |si)). The choice of z depends on the query q.
By marginalizing out the hidden variable z, the corresponding probabilistic model can
be written as

p̂(q|si, fq) =
K∑

z=1

M∑
j �=i

p(q|sj, z)p(sj |si, z)p(z| fq), (11)

where K is the total number of the latent topics. z is determined by p(z| fq), which
measures the probability of q belonging to the topic z. It is noticeable that this is a soft
version of “query categorization,” which leads to a probabilistic membership assign-
ment of queries to latent query classes. Specifically, each query q is denoted by a bag of
query features fq = ( f1, . . . fR), where R is the number of query features. P(z| fq) can
be modeled by a soft-max function 1

Zq
exp(

∑R
m=1 λzm fm), where Zq is the normalization

factor that scales the exponential function to be a proper probability distribution (i.e.,
Zq = ∑K

z=1 exp(
∑R

m=1 λzm fm)). p(sj |si, z) measures the similarity between si and sj under
the topic z. p(q|sj, z) measures the probability of q generated by sj under the topic z. We
assume the construction of the language model given sj is conditionally independent of
the topic z. In other words, p(q|sj, z) = p(q|sj), which is assumed already known. The
probabilities that need to estimate are p(sj |si, z) and p(z| fq). By plugging the soft-max
function and p(q|sj) into Equation (11), we can get

p̂(q|si, fq) =
K∑

z=1

M∑
j �=i

p(q|sj)p(sj |si, z)
1
Zq

exp

(
R∑

m=1

λzm fm

)
. (12)

Different from traditional language models, which are typically generative,
Equation (12) incorporates a discriminative component (the soft-max function) into
a generative model. It can be viewed as a hybrid of generative and discriminative
models [Bishop 2006]. One of its big advantages over the fully generative models is
that TDCLM is able to handle the queries that are not seen in the training phase.
Specifically, because λzm is associated with each query feature instead of each training
query, once λzm is estimated from the training data, it can be applied to any unseen
queries, as long as they have the query features fq. This yields a great advantage when
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dealing with breaking news or trendy queries, which may be never seen before in many
cases. At the same time, TDCLM still holds the great advantage of generative models.
Because of the query generative process, TDCLM does not need manual labeling of
training data, which could be quite expensive in many applications of fully discrim-
inative models. In the experiments, we utilize over 200 million observed queries in
training without any labeling effort. The graphical model representation of TDCLM is
shown in Figure 5 (bottom).

The parameters can be determined by maximizing the following data log-likelihood
function:

L =
T∑

k=1

log
(
p
(
qi

k

∣∣ f k
q , si

))

=
T∑

k=1

log

⎛
⎝ M∑

j �=i

K∑
z=1

p
(
qi

k

∣∣sj, z
)
p(sj |si, z)p

(
z
∣∣ f k

q

)⎞⎠

=
T∑

k=1

log

⎛
⎝ M∑

j �=i

K∑
z=1

p
(
qi

k

∣∣sj
)
p(sj |si, z)

1
Zq

exp

(
R∑

m=1

λzm f k
m

)⎞
⎠

We can use the EM algorithm to estimate the parameters. The E-step can be derived as
follows by computing the posterior probability of sj and z given query qi

k and its query
features f k

q ,

p
(
sj, z

∣∣qi
k, f k

q , si
) = p

(
qi

k

∣∣sj, z
)
p
(
sj, z|si, f k

q

)
∑M

j �=i
∑K

z=1 p
(
qi

k

∣∣sj, z
)
p
(
sj, z|si, f k

q

)
= p

(
qi

k

∣∣sj
)
p(sj |si, z)p

(
z
∣∣ f k

q

)
∑M

j �=i
∑K

z=1 p
(
qi

k|sj
)
p(sj |si, z)p

(
z| f k

q

) .

By optimizing the auxiliary function [Dempster et al. 1977], we can derive the following
M-step update rules,

max
λ

J(λ) =
T∑

k=1

M∑
j �=i

K∑
z=1

p
(
sj, z|qi

k, f k
q , si

)
log

(
1
Zq

exp

(
R∑

m=1

λzm f k
m

))
(13)

p(sj |si, z) =
∑T

k=1 p
(
sj, z|qi

k, f k
q , si

)
∑M

j �=i
∑T

k=1 p
(
sj, z|qi

k, f k
q , si

) (14)

Equation (13) can be optimized by any gradient descent method. In particular, we
use the L-BFGS method [Nocedal 1980] due to its efficiency. The method requires us
to compute the derivative of J with respective to λẑm as follows:

∂ J
∂λẑm

=
T∑

k=1

M∑
j �=i

K∑
z=1

p
(
sj, z|qi

k, f k
q , si

)(
δẑz −

(
1
Zq

exp
( R∑

m=1

λẑm f k
m

)))
f k
m, (15)

where δẑz = 1 if ẑ = z, otherwise δẑz = 0. Equation (15) can be conveniently derived
based on the derivatives of the soft-max function [Jordan and Xu 1995]. The number
of latent topics K can be obtained by maximizing the sum of log-likelihood and some
model selection criteria. In the experiments, we choose Bayesian information criterion
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Table I. Testbed Statistics in Order of Magnitude
“M” denotes the order of million. “k” denotes the order of thousand.

# of queries in training set 200M
# of distinct training queries 15M
# of queries in test set 40M
# of distinct test queries 2.5M

Houston, TX
Target DMA Greenville, SC

St. Joseph, MO
# of test queries in Houston 1M
# of distinct test queries in Houston 200k
# of test queries in Greenville 200k
# of distinct test queries in Greenville 70k
# of test queries in St. Joseph 10k
# of distinct test queries in St. Joseph 3.5k

Table II. The Nine Category Features for TDCLM

1) Sports 2) Travel 3) Entertainment
4) Politics 5) Technology 6) Places
7) Religion 8) Education 9) Finance

(BIC) [Schwarz 1978] as the selection criterion, which is a measure of the goodness
of fit of an estimated statistical model, defined as max 2L − r log(T ), where r is the
number of parameters in the statistical model.

5. EXPERIMENTAL SETUP

5.1. Data

We use a large industrial-scale real-world query log for this study, by collecting the
data from the Yahoo! web search log over the period of June 1, 2011 to June 8, 2011. We
use the queries from June 1 to June 7 as the training data to build the models and then
use the queries from June 8 as the test data to evaluate their predictive performance.
A 1-week training period is arguably a reasonable time span to discover the current
correlations among DMAs. A longer time span may not be able to capture the quick
shift of web user interests especially in breaking news. A shorter one may tend to
overfit the limited observations. We filter out the queries that are generally considered
not of interest according to a predefined blacklist. The queries are then preprocessed
by some standard normalization techniques such as converting the upper case to lower
case and removing repetitive spaces [Manning et al. 2008]. Three DMAs are chosen as
the targets for evaluation based on their representativeness of size. The ranks of their
query volumes on the training data are 10th (Houston, TX), 40th (Greenville, SC), and
200th (St. Joseph, MO), respectively. They represent large, medium, and small DMAs,
respectively. The data statistics in order of magnitude6 is shown in Table I.

For the topic-dependent CLM, we select a total of 10 query features. One feature is
the length of the query. The other nine features are the probabilities that the query
belongs to a predefined set of categories. We use an ensemble method of Conditional
Random Fields [Lafferty et al. 2001] and Maximum Entropy [Ratnaparkhi et al. 1996]
to obtain the features. All these query features can be automatically extracted from
the given query through natural language processing techniques. Table II includes
the nine category features in the experiments, which cover a diverse range of topics.

6Due to the company policy, we could not disclose the specific statistics.
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Table III. The Methods and Their Acronyms in the Experiments

FB Fixed background model (p(q|C), baseline)
IGD Inverse geographical distance (Equation (9))
EW Equal weights (i.e., p(sj |si) is uniform)
CS Cosine similarity (Equation (7))
BCLM Basic CLM (Section 4.1)
DPCLM Dirichlet prior CLM (Section 4.2)
TDCLM Topic-dependent CLM (Section 4.3)
TP-FB Temporal-based prediction with

FB as background model (Equation (1))
TP-BCLM Temporal-based prediction with

BCLM as background model
TP-TDCLM Temporal-based prediction with

TDCLM as background model

Each latent query class in TDCLM can be viewed as a linear combination of the query
features.

5.2. Baselines

Table III summarizes the methods the we compare in the experiments. FB denotes
the traditional background (collection) language model (i.e., p(q|C) in Section 3) by
using all the queries equally without weighting them for different DMAs. This method
serves as the baseline for comparison. IGD denotes the method that directly uses
Equation (9) as the weights without looking at the queries. “CS” is the cosine similarity
method shown in Section 4.1. Similar to “tf-idf” weighting [Manning et al. 2008],
we use “query frequency - inverse DMA frequency” as the query weighting scheme
(by treating queries as words and DMAs as documents). For BCLM, DPCLM, and
TDCLM, smoothing is also needed to build the language models p(q|sj) for the indicator
DMAs sj . We choose Dirichlet smoothing with the parameter μ = 5,000, which shows
good empirical performance in other applications [Zhai and Lafferty 2001]. All the
query processing and language model building are done on the Yahoo! Hadoop cloud
computing infrastructure.

All the CLMs focus on the estimation of background language model p̂(q|si, t) in
Equation (2). They utilize the queries from the other locations sj at the current time.
In the experiments, we do not directly evaluate the query language model p(q|si, t)
in Equation (2) because we have to hold the queries (qt

i ) from the current location
at the current time (as the ground truth) for evaluation. On the other hand, we can
evaluate the model that replaces nt

qi and Nt
i in Equation (2) by nt−1

qi and Nt−1
i . This

model is essentially temporal-based prediction smoothed by p̂(q|si, t), that is, p(q|si, t) =
nt−1

qi +μ p̂(q|si ,t)

Nt−1
i +μ

. It utilizes the queries in both temporal and spatial dimensions: (1) nt−1
qi and

Nt−1
i comes from the queries at the current location si but from the previous time t − 1;

and (2) p̂(q|si, t) comes from the queries at the other locations sj but at the current
time t. Thus, we use TP-FB to denote this kind of method with FB as the background
language model. Similarly, TP-BCLM uses BCLM, and TP-TDCLM uses TDCLM, as
the background model, respectively.

5.3. Research Questions

An extensive set of experiments are designed to address the following questions:

—Can CLMs improve predictive performance over the traditional fixed background
language models? (Section 6.1)
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Table IV. The Perplexity Results of Different Methods
“FB” is used as the baseline to compute the “Reduction” in perplexity.

Houston Reduction Greenville Reduction St. Joseph Reduction
FB 90,836 — 93,659 — 95,884 —
IGD 98,139 –8.04% 96,762 –3.31% 93,427 2.56%
EW 103,023 –13.42% 101,818 –8.71% 107,326 –11.93%
CS 90,102 0.81% 89,542 4.4% 87,892 8.34%
BCLM 86,073 5.24% 83,075 11.30% 80,874 15.65%
DPCLM 86,032 5.29% 82,464 11.95% 79,145 17.46%
TDCLM 82,823 8.82% 80,019 14.56% 77,535 19.41%

—Does the increasing sophistication of the series of CLMs lead to increasing predictive
performance? (Section 6.1)

—Does the size of the target DMA affect the performance of CLMs? (Section 6.1)
—Do the spatial-based CLMs have advantages over temporal-based prediction?

(Section 6.3)
—How do CLMs perform for the specific applications of LQP such as buzz query detec-

tion? (Section 6.4)

In the experiments, we use perplexity [Manning and Schutze 1999] as the criterion for
model evaluation. Perplexity is a quantitative measure for comparing language models
and is often used to compare the predictive performance of language models. The
value of perplexity reflects the ability of a model to generalize to unseen data. A lower
perplexity score indicates better generalization performance. In our case, perplexity
reflects the ability of a model to predict queries for a specific location. The perplexity is
algebraically equivalent to the inverse of the geometric mean of per-query likelihood.
Formally, the perplexity for a set of test query Q(si, t) in si at time t is calculated as
follows:

perplexity(Q(si, t)) = exp −
∑|Q(si ,t)|

k=1 log
(
p̆
(
qk|si, t

))
|Q(si, t)| , (16)

where |Q(si, t)| is the total number of test queries in si at t and p̆(qk|si, t) is estimated
from training data by different methods in Table III.

6. EXPERIMENTS

6.1. CLMs versus Baselines

Table IV shows the perplexity results of different methods. We can see that CLMs
achieve better results than the other methods for all the three DMAs. The gaps are
more prominent for the smaller DMAs. Furthermore, more sophisticated CLMs gain
more reduction in perplexity. TDCLM achieves the largest improvement on St. Joseph
with 19.41% perplexity reduction over FB. The difference between BCLM and DPCLM
is more noticeable in smaller DMAs. EW generates the worst results, which shows
the importance of appropriate weighting of locations. For all the three DMAs, TDCLM
achieves the best performance. This validates the assumption of TDCLM that the
correlations between DMAs are not immutable for different queries and they should
depend on the query topics.

In general, we can find that the small DMAs exhibit quite different patterns from
the large DMA in the results. This may be explained by the fact that large DMAs may
be more representative for the whole United Sates, and thus their language models
are likely closer to the collection language model FB. The large DMAs may tend to be
more correlated with national trends, and the geographical proximity may not matter
much. To further investigate this hypothesis, for each target DMA, we rank the other
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Fig. 6. The top five similar DMAs for three target DMAs, respectively, computed by DPCLM. The triangle
in each plot denotes the target DMA and the circles denote its five most similar DMAs.

DMAs in the descending order of p(sj |si) calculated by DPCLM. Figure 6 plots the top
five (most similar) DMAs for each target. We can see that the similar DMAs tend to be
centered around the smaller DMA (e.g., St. Joseph), and they are more scattered for
the large DMA (e.g., Houston). Moreover, Houston is highly correlated with other large
DMAs such as San Diego and Chicago, while St. Joseph is more correlated with the
small DMAs in its neighborhood.

By comparing TDCLM with DPCLM, we can see that TDCLM achieves more perplex-
ity reduction for larger DMAs. This may come from the fact that large DMAs usually
have more topically diverse queries than small DMAs have. Therefore, by adding the
topic layer on top of the basic CLMs, the collaboration scheme is more flexible to adapt
to the heterogeneous queries. By looking at the parameters that are learned from the
topic-dependent CLM, we can find some interesting observations. For Houston, one set
of learned feature weights (λzm) associated with a topic z have two relatively large
values on the category features “religion” and “politics” and have small values on the
other category features. Therefore, this latent topic z is mainly a combination of reli-
gious and political subjects. Under this topic, the most similar DMA (by p(sj |si, z)) is
San Francisco, CA, which is not on the top five similar DMA lists from either BCLM
or DPCLM. The high correlation on this topic may come from the breaking news in
that week that Texas Governor Rick Perry chose the association AFA, which advocates
against gay rights, to host a big Christian event in Houston.7 Many San Franciscans
may be also interested in this news, as San Francisco is generally considered as the
center of the gay right movement in the United States. From this case study, we can
see TDCLM’s capability of identifying topic-dependent similar DMAs, which could be
very useful in many personalized web applications.

6.2. Effect of Parameters

In this experiment, we investigate the effect of β on DPCLM for the three DMAs. β
controls the confidence level of the prior knowledge. Figure 7(a) shows the results. We
can see that DPCLM is generally not very sensitive to β, especially for large DMAs. For
small DMAs, large β can gain perplexity reduction (e.g., β = 100 vs. β = 5,000 for St.
Joseph). In all the other experiments, we choose β = 5,000 for DPCLM. On the other
hand, a sensible β can help the EM algorithm converge faster. Figure 7(b) shows the
likelihood results of the three different CLMs over different EM iterations for DMA
Greenville, SC. We can see that it only takes about 20 iterations for DPCLM to converge
to the maximum likelihood, while takes about 35 iterations for BCLM to converge.
This computational reduction is important for some real-time applications requiring
updating the models very frequently. In addition, TDCLM takes more iterations to

7http://www.chron.com/life/houston-belief/article/Perry-s-Houston-prayer-summit-blurs-lines-between-
1683179.php.
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Fig. 7. (a) The perplexity results of DPCLM on varying β for the three DMAs. (b) The data log-likelihood of
BCLM, DPCLM and TDCLM over different EM iterations for Greenville, SC.

Table V. The Perplexity Results of Temporal-Based Prediction Smoothed by Different
Background Language Models

Weekly Daily
Houston Greenville St. Joseph Houston Greenville St. Joseph

FB 90,836 93,659 95,884 90,836 93,659 95,884
TP-FB 75,372 79,451 83,546 73,139 81,551 88,640
BCLM 86,073 83,075 80,874 86,073 83,075 80,874
TP-BCLM 73,042 77,355 75,941 72,136 79,649 77,431
TDCLM 82,823 80,019 77,535 82,823 80,019 77,535
TP-TDCLM 71,857 76,279 74,982 70,766 78,327 76,331

converge and it also takes much more time for each iteration than BCLM and DPCLM
(see Section 4.3).

6.3. Temporal-Based Prediction

As pointed out in Section 5.2, TP-FB, TP-BCLM, and TP-TDCLM exploit both historical
queries at the current location and the current queries from the other locations to build
the language models. In this experiment, we investigate the predictive performance
of these three models. Table V shows the experimental results for two scenarios. In
the “Weekly” scenario, we use the queries from the current location over a 1-week
of period (i.e., June 1 to June 7) to compute nt−1

qi and Nt−1
i in Equation (2). In the

“Daily” scenario, we only use the queries from June 7 for the temporal component. The
background models in Equation (2) are computed by FB and TDCLM, respectively, on
the day of June 8, 2011.

By comparing TP-FB versus FB, TP-BCLM versus BCLM, and TP-TDCLM versus
TDCLM, we can see that the predictive performance is boosted by incorporating the
historical queries. The improvement is more noticeable for Houston. Moreover, TP-
TDCLM and TP-BCLM perform better than TP-FB, especially with larger gaps for
St. Joseph. By adding the time component, TP-TDCLM performs the best among all
the cases. When the scenario moves from “Weekly” to “Daily,” we can see that the
performance of the temporal-based models gets worse for Greenville and St. Joseph
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Table VI. The Top 10 Buzz Queries on June 8th of 2011 for the Three Target DMAs, Computed Based on
Eqn. (17) with FB and TDCLM as the Background Language Model, Respectively

The queries are ordered by their buzziness scores (Eqn. (17)). The different queries between FB and
TDCLM for each DMA are highlighted in yellow.

because they may suffer from data sparsity by the move. In contrast, the temporal-
based predictions for Houston perform better in “Daily” than in “Weekly.” These ex-
perimental results along with those in Section 6.1 indicate that CLMs have great
advantage over the existing methods for small DMAs and short time spans. This
advantage is very useful in many real-world web applications because personal-
ization and real-time information needs are two very desirable features for web
users.

6.4. Application to Local Buzz Query Detection

In this section, we apply CLMs to detect the buzz queries that are potentially of interest
to specific locations. This task is motivated by the Yahoo! Trending Now module, which
displays 10 buzz queries that are currently trending globally. Our goal is to person-
alize this module based on user location. The problem can be formulated as anomaly
detection [Dong et al. 2010]. Specifically, once we have a query language model p(q|s, t)
conditional on s and t, we can compute the buzziness score by looking at the difference
between p(q|s, t) and p(q|s, t − 1) as follows:

buzz(q|s, t) = log(p(q|s, t)) − log(p(q|s, t − 1)) (17)

Other more sophisticated anomaly detection algorithms can be applied, but they all
rely on accurate estimation of p(q|s, t). In the experiment, p(q|s, t − 1) are obtained by
computing Equation (1) over the queries from June 1 to June 7. p(q|s, t) are computed
over the June 8 queries, based on Equation (1) (with FB as background model) and
Equation (2) (with TDCLM as background model), respectively. Table VI shows the top
10 buzz queries (ordered by buzziness score) for the three target DMAs. The results
can be viewed as the “local buzz of the day” of June 8, 2011.

Similar to the perplexity results, the identified buzz queries are more different (be-
tween FB and TDCLM) in smaller DMAs. For Houston, there is only one different query:
“six flags over texas” versus “kid rock” “ix flags over texas” seems more relevant, as it is
a major amusement park in Texas. In addition, “stl cardinals” is at the top in TDCLM
while it is ranked at the third in FB. This query is likely relevant because there were
MLB games between St. Louis Cardinals and Houston Astros on June 8 and June 9,
2011. For Greenville, TDCLM’s “sc lottery” and “ncesc” (The Employment Security
Commission of North Carolina) also seem at least more geographically relevant than
FB’s “solar flare” and “identity theft.” For St. Joseph, there are four different queries
and the ranking is also quite different. TDCLM’s “kc royals,” “federal flood insurance,”
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and “iowa workforce” seem more relevant, considering St. Joseph is around the bor-
der of Missouri, Kansas, and Iowa. In general, the aforementioned qualitative judg-
ments demonstrate that TDCLM produces more relevant buzz queries for the local web
users.

7. CONCLUSIONS AND FUTURE WORK

In this article, we study the LQP task in a principled approach. This problem subsumes
many interesting personalized web applications that can greatly enhance user inter-
action with web search engines by providing more customized information discovered
from user queries. A series of collaborative language models are proposed to tackle the
data sparsity issue and at the same time to promote personalization. The most sophis-
ticated CLM (i.e., TDCLM) enables the personalization to adapt to latent query topics.
It can be viewed as a novel hybrid probabilistic model of generative and discriminative
models, which gains benefits from both of them. We conduct an extensive set of exper-
iments on a large-scale web query log. The results show that CLMs can substantially
improve predictive performance over the existing methods, especially when more se-
vere data sparsity is present. In addition, we show that TP-TDCLM achieves the best
results by combining both temporal and spatial predictions. We also demonstrate an
application of LQP to local buzz query detection.

Although in this article CLMs are only illustrated by the localization application
with the segments of DMAs, they can be readily applied to much smaller segments,
or to age, gender groups, or the combination of them. In fact, CLMs are well suited
for deep personalization tasks in which the target segment could be extremely small.
As long as the segment has any previous observations even over a long period of time,
CLMs are able to learn the correlation/collaboration and utilize it to estimate or pre-
dict the local query trends. In this sense, CLMs bear great similarity with collaborative
filtering (CF), but the collaborative entities in CLMs are statistical language models
of queries rather than static ratings in CF. In the future work, it is very interesting to
apply CLMs to deeply personalized web applications, such as those targeting at the zip
code level or even at the user/IP level. Moreover, although this article is focused on the
task of localized query prediction, the proposed models are a general approach that is
well suitable to many personalization applications when data sparsity is a severe issue.
It is worth exploring more applications of the proposed models, for instance, in per-
sonalized recommendations, targeted advertising, location-based social networks, and
so on.

ACKNOWLEDGMENTS

We thank George Mills and Anlei Dong of Yahoo! Labs, Zhiheng Huang and Fernando Diaz of Microsoft,
(while they were all with Yahoo! Labs) for the helpful discussions of the work.

REFERENCES

E. Adar, D. S. Weld, B. N. Bershad, and S. S. Gribble. 2007. Why we search: Visualizing and predicting user
behavior. In Proceedings of the 16th International Conference on World Wide Web. ACM, 161–170.

Z. A. Bawab, G. H. Mills, and J.-F. Crespo. 2012. Finding trending local topics in search queries for personal-
ization of a recommendation system. In Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 397–405.

C. M. Bishop. 2006. Pattern recognition and machine learning. Springer.
J. S. Breese, D. Heckerman, C. Kadie, and others. 1998. Empirical analysis of predictive algorithms for

collaborative filtering. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence.
Morgan Kaufmann, 43–52.

S. F. Chen and J. Goodman. 1996. An empirical study of smoothing techniques for language modeling.
In Proceedings of the 34th Annual Meeting on Association for Computational Linguistics. ACL, 310–
318.

ACM Transactions on Interactive Intelligent Systems, Vol. 4, No. 2, Article 9, Publication date: June 2014.



9:20 Y. Fang et al.

S. Chien and N. Immorlica. 2005. Semantic similarity between search engine queries using temporal corre-
lation. In Proceedings of the 14th International Conference on World Wide Web. ACM, 2–11.

H. Choi and H. Varian. 2009. Predicting the present with Google trends. Google Technical Report (2009),
1–23.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B (1977), 1–38.

F. Diaz. 2009. Integration of news content into web results. In Proceedings of the 2nd ACM International
Conference on Web Search and Data Mining. ACM, 182–191.

A. Dong, Y. Chang, Z. Zheng, G. Mishne, J. Bai, R. Zhang, K. Buchner, C. Liao, and F. Diaz. 2010. Towards
recency ranking in web search. In Proceedings of the 3rd ACM International Conference on Web Search
and Data Mining. ACM, 11–20.

Nadav Golbandi Golbandi, Liran Katzir Katzir, Yehuda Koren Koren, and Ronny Lempel Lempel. 2013.
Expediting search trend detection via prediction of query counts. In Proceedings of the 6th ACM Inter-
national Conference on Web Search and Data Mining. ACM, 295–304.

M. I. Jordan and L. Xu. 1995. Convergence results for the EM approach to mixtures of experts architectures.
Neural networks 8, 9 (1995), 1409–1431.

J. Kleinberg. 2003. Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery 7,
4 (2003), 373–397.

A. C. Konig, M. Gamon, and Q. Wu. 2009. Click-through prediction for news queries. In Proceedings of
the 32nd Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 347–354.

Anagha Kulkarni, Jaime Teevan, Krysta M. Svore, and Susan T. Dumais. 2011. Understanding temporal
query dynamics. In Proceedings of the 4th ACM International Conference on Web Search and Data
Mining. ACM, 167–176.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of the International Conference on Machine Learning. 282–
289.

N. Liu, J. Yan, S. Yan, W. Fan, and Z. Chen. 2008. Web query prediction by unifying model. In Proceedings of
the IEEE International Conference on Data Mining Workshops.

C. D. Manning, P. Raghavan, and H. Schutze. 2008. Introduction to information retrieval. Cambridge Uni-
versity Press.

C. D. Manning and H. Schutze. 1999. Foundations of statistical natural language processing. Vol. 59. MIT
Press.

J. Nocedal. 1980. Updating quasi-Newton matrices with limited storage. Math. Comp. 35, 151 (1980), 773–
782.

N. Parikh and N. Sundaresan. 2008. Scalable and near real-time burst detection from eCommerce queries.
In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 972–980.

J. M. Ponte and W. B. Croft. 1998. A language modeling approach to information retrieval. In Proceedings
of the 21st Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 275–281.

A. Ratnaparkhi and others. 1996. A maximum entropy model for part-of-speech tagging. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing. 133–142.

L. Rigouste, O. Cappé, and F. Yvon. 2007. Inference and evaluation of the multinomial mixture model for
text clustering. Information Processing & Management 43, 5 (2007), 1260–1280.

G. Schwarz. 1978. Estimating the dimension of a model. The Annals of Statistics (1978), 461–464.
Y. Shimshoni, N. Efron, and Y. Matias. 2009. On the predictability of search trends. Google Inc 2 (2009).
Milad Shokouhi. 2011. Detecting seasonal queries by time-series analysis. In Proceedings of the 34th Inter-

national ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 1171–
1172.

M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. 2004. Identifying similarities, periodicities and bursts
for online search queries. In Proceedings of the 2004 ACM SIGMOD International Conference on Man-
agement of Data. ACM, 131–142.

M. J. Welch and J. Cho. 2008. Automatically identifying localizable queries. In Proceedings of the 31st
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.
ACM, 507–514.

X. Yi, H. Raghavan, and C. Leggetter. 2009. Discovering users’ specific geo intention in web search. In
Proceedings of the 18th International Conference on World Wide Web. ACM, 481–490.

ACM Transactions on Interactive Intelligent Systems, Vol. 4, No. 2, Article 9, Publication date: June 2014.



Collaborative Language Models for Localized Query Prediction 9:21

C. X. Zhai. 2008. Statistical language models for information retrieval a critical review. Foundations and
Trends in Information Retrieval 2, 3 (2008), 137–213.

C. Zhai and J. Lafferty. 2001. A study of smoothing methods for language models applied to ad hoc information
retrieval. In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 334–342.

Received March 2013; revised August 2013; accepted September 2013

ACM Transactions on Interactive Intelligent Systems, Vol. 4, No. 2, Article 9, Publication date: June 2014.


