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ABSTRACT
People often implicitly or explicitly express their needs in
social media in the form of “user status text”. Such text can
be very useful for service providers and product manufactur-
ers to proactively provide relevant services or products that
satisfy people’s immediate needs. In this paper, we study
how to infer a user’s intent based on the user’s “status text”
and retrieve relevant mobile apps that may satisfy the user’s
needs. We address this problem by framing it as a new entity
retrieval task where the query is a user’s status text and the
entities to be retrieved are mobile apps. We first propose
a novel approach that generates a new representation for
each query. Our key idea is to leverage social media to build
parallel corpora that contain implicit intention text and the
corresponding explicit intention text. Specifically, we model
various user intentions in social media text using topic mod-
els, and we predict user intention in a query that contains
implicit intention. Then, we retrieve relevant mobile apps
with the predicted user intention. We evaluate the mobile
app retrieval task using a new data set we create. Exper-
iment results indicate that the proposed model is effective
and outperforms the state-of-the-art retrieval models.

1. INTRODUCTION
With rapid development of Internet, people leave massive

amount of their status messages on social media. Everyday,
500 million tweets are left on Twitter1, 55 million status up-
dates are made on Facebook2, and 80 million photos (with
text descriptions) are shared on Instagram3. A myriad of
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such user-generated text data provided researchers oppor-
tunities to analyze them. For example, real-time events de-
tection [35], sentiment analysis in tweets [1], interestingness
prediction for tweets [29], and stock market prediction based
on tweets [43] have been studied.

More recently, researchers studied commercial intention
of tweets (e.g., [17, 13]). In social media, people discuss
various topics such as their current status including what
they do, how they feel, and where they are at the moment.
Often, social media users express their intention to purchase
a product in an implicit or explicit way. For example, a
sentence “I will buy an iPhone” contains the user’s explicit
intention to buy the product. In another sentence “I lost my
cellphone,” the user does not explicitly express the intention
to buy a cellphone, but we can infer that the user may want
to purchase a cellphone (implicit intention). Most existing
work focused on detection of such commercial intention, and
only few work studied on product recommendation based on
commercial intention in social media.

In this work, we study the task of mobile app recommen-
dation for social media text that contains implicit intention.
People often use mobile phones to update their status. Rec-
ommending mobile apps thus can be an immediate solution
to users who implicitly express their needs using mobile de-
vices. We formulate the problem as information retrieval
problem where we retrieve mobile apps that satisfy a query,
which is user status text with implicit intention. In order to
match implicit intention text with mobile apps, (i) we first
infer possible user intentions in the query and then (ii)
rank apps based on their relevance to the inferred inten-
tions. For example, given a user query “I am hungry”, we
infer possible intentions such as “find nearby restaurants”
and “browse recipe books”, and then we recommend apps
that can find nearby restaurants or show recipes. Note that
a query with implicit intention is different from traditional
ad-hoc search queries, where users explicitly express their in-
tentions. To learn possible explicit intentions for texts that
contain implicit intention, we leverage social media. We
collect tweets that contain information about what people
truly desire when they implicitly express their needs. We
then build parallel corpora of implicit and explicit intention
texts, which we exploit to infer user needs.

Although we can recommend apps based on other kinds of
data, including frequently used apps and smartphone sensor
data, we do not employ them because they are not directly
expressed by users. On the other hand, user status text
provides more direct information such as a user’s current
thoughts and needs, which are difficult to obtain indirectly.



Moreover, the other types of data may not always be avail-
able. For example, users are often unwilling to share their
smartphone’s sensor data with recommendation systems due
to privacy concerns. Therefore, we focus on inferring inten-
tion in user status text in this paper.

Inference of intention in user status text is an impor-
tant problem. By analyzing intention in user status, prod-
uct manufacturers or service providers can provide relevant
items or targeted ads to the users even when the intention is
implicitly expressed. Such recommendation can also benefit
users since they can find products or services they need with-
out searching for them. While users often update user sta-
tus with explicit intention, they more frequently reveal their
needs implicitly. For example, researchers have found that
there are about twice as many tweets with implicit commer-
cial intention than those with explicit commercial intention
[17, 13]. Therefore, we focus on analyzing implicit intention
and recommendation based on it although analyzing implicit
intention is more challenging than analyzing explicit inten-
tion [13].

This work makes the following contributions:

1. We introduce and study a novel problem of recom-
mending mobile apps for user status text containing
implicit intention. To the best of our knowledge, there
has been no research work that studied the same prob-
lem as ours.

2. We propose a novel approach to retrieve mobile apps
that satisfy implicit intention of users. We first in-
fer user intention using parallel corpora we build from
social media. Then, we measure relevance of mobile
apps to the inferred intention in order to rank them.
To the best of our knowledge, no research work has
leveraged parallel corpora for user intention analysis.
Our model is general, so it can be applied to other
product or service domains.

3. Since the task has never been performed in the lit-
erature, we create a new test data set for evaluating
different models, and we make the data set public. We
employ crowdsourcing to label data with query rele-
vance. The test collection is available at http://timan.
cs.uiuc.edu/downloads.html.

2. RELATED WORK
Understanding search intents behind queries has been a

great challenge in information retrieval systems. Tradition-
ally, Web search engines take user queries from a single text
input box, which makes the systems analyze search intents
from a short (about two terms per query [18]) list of key-
words. In order to better understand queries, researchers
classified queries into different types [8, 20, 26]. For example,
Broder [8] classified queries into three classes: navigational,
informational, and transactional. The author showed how
search engines could evolve by supporting different search
intents. Contextual search [27, 10], which uses a user’s con-
textual information to better capture the user’s search in-
tent, is related to our work in that we exploit a user’s status
text in social media, which contains the user’s implicit in-
tention. However, we regard each user status text as a single
query that contains a user’s (implicit) intention, while con-
textual search requires contextual information in addition
to the query. Our work is also related to content-based rec-
ommendation systems [33], but our work differs in that we
recommend items based on a user’s immediate needs in a
query while they typically recommend items based on the
user’s general interests revealed in a user profile.

Query recommendation (or suggestion) has been widely
studied to recommend alternative related queries given a
query, in order to help users who would repeatedly rephrase
their queries [4, 22]. Instead of suggesting alternative queries

to users, query expansion tries to reformulate queries to re-
solve vocabulary gap problem [15], and it is surveyed well
in [11]. Our work extends query expansion in the sense that
we automatically adjust a given implicit query to an explicit
query. However, our work differs from query expansion in
that the target query is not supposed to be an“expansion”of
the original query but “conversion” of the original query to
predict hidden intention in it. Thus, the original query and
the expanded query may carry completely different mean-
ing in our work. Query translation [30] and cross-lingual
information retrieval [6] are also related to our work in that
our work can be seen as translating an implicit query to an
explicit query. However, our work differs from them in that
the same language is used for the original query and the
translated query.

Besides general query intent, researchers studied commer-
cial intention of users in online text, where commercial in-
tention is defined in [12] as “a user has intention to purchase
or participate in commercial services.” Dai et al. [12] defined
online commercial intention as commercial intention behind
a user’s online activities. They developed models to detect
whether a query or Web pages a user visits lead to commer-
cial activity or not. Ashkan et al. [3] and Guo and Agichtein
[16] classified whether a query contains a commercial intent
or not. Our work is related to commercial intent analysis in
that we try to connect queries to products (mobile apps).
However, unlike those existing studies, we do not classify
queries into commercial or noncommercial. Instead, we as-
sume a user needs something, and we recommend products
that can satisfy the user’s hidden intent.

Recently, commercial intention analysis on social media
has attracted researchers’ attention. Hollerit et al. [17]
performed the first commercial intention detection on social
media in order to link product buyers and sellers. They dis-
tinguished between explicit and implicit commercial inten-
tion and stated that implicit intention also has an economic
value. Other researchers [40, 38] also studied intention clas-
sification in social media. Ding et al. [13] also exploited
social media to identify whether a user text has a commer-
cial intention or not. They found that 625 out of 1,000
commercial intention tweets contain implicit commercial in-
tention, and they claimed that detecting implicit commercial
intention is more challenging. Likewise, most of the stud-
ies about social media commercial intention analysis focused
on intention detection. Our work is related to social media
commercial intention analysis since we too analyze intention
in social media. However, our goal is to further retrieve mo-
bile apps that meet user intention, which we infer from the
user text.

Previously, few researchers studied product retrieval prob-
lem based on commercial intention tweets. Duan et al. [14]
mined intention-related products in online Q&A community
data. They used a pattern-based method to extract candi-
date products from the answers. Then, they measured rel-
evance between intention and products to mine intention-
related products. Their work can be regarded as the most
similar one to ours since they connected intention with the
products. However, our work is different from their work.
We focus on how implicit queries can be converted to ex-
plicit ones while they do not study such relationship. Also,
they mine products in the Q&A data, so they cannot rec-
ommend products that are not present in the data. We do
not require products to be present in the social media data,
so the scope of recommended products is not limited.

3. PROBLEM DEFINITION
We study how to infer a user’s intention in a user’s status

text segment, in order to recommend mobile apps that would
satisfy the user’s intention. This is a new entity retrieval
task where a query q is a user’s status text segment that
implicitly expresses the user’s needs, and the entities are
mobile apps A = {a1, ..., aM}. Each mobile app a has its
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Figure 1: Overview of our approach.

text representation. We are also given social media text data
D, which we can leverage to infer the user intent. Thus, our
goal is to retrieve a list of mobile apps for each q based
on their text representations, where the apps are ordered
according to their relevance to the user intent in q.

We distinguish between explicit queries and implicit queries.
While explicit queries contain their intention clearly, implicit
queries do not. For example, user status texts such as “I’m
hungry”, “I’m so tired”, and “I have no one to talk to” do
not reveal its intention explicitly while they certainly imply
the needs for something, so we classify them into implicit
queries. The corresponding explicit queries may be “I want
food”, “relaxing music”, and “dating app”, respectively, and
these types of explicit queries have been input to traditional
search engines. In this paper, we focus on entity retrieval
based on implicit queries since such queries occur more often
in social media text [17, 13].

To the best of our knowledge, retrieval of mobile apps
given user status text with implicit intent has not been ad-
dressed in previous work. Park et al. [32] studied mobile
app retrieval problem given explicit queries, but we focus on
implicit queries. Baeza-Yates et al. [5] studied next mobile
app prediction problem based on a user’s spatio-temporal
contexts. Their work is different from our work since they
do not analyze the user’s direct input such as a user status
text.

Retrieving mobile apps given a user status text with im-
plicit intention is challenging. First of all, social media text
is notoriously noisy [21] and short. Twitter limits user status
text to 140 characters at each time, so it is harder to auto-
matically understand tweets than Web documents, which
are usually much longer. Second, a user status text q may
not have enough similar text in our parallel corpora, which
we build to infer user intent. Third, even though there exist
enough similar user status texts in the corpora, the hidden
intent may be different depending on the users. For example,
when a query is “i am hungry”, some people might mean “i
want a recipe book” while others might mean “i want to find
nearby restaurants.” Lastly, descriptions of apps are often
written in the app developer’s language while social media
text is often written in more general and informal language,
resulting in vocabulary gap.

4. METHODS
In order to retrieve mobile apps relevant to a user’s inten-

tion, we build parallel corpora leveraging social media. The
overview of our approach is depicted in Figure 1. When a
user implicitly expresses user needs in a user status text q,
we search for implicit intention text similar to q in the par-
allel corpora. Then, we infer user intention from the explicit

intention text that corresponds to the implicit intention text.
Finally, we retrieve mobile apps that are relevant to the in-
ferred intention.

We follow language modeling approach to perform the mo-
bile app retrieval task. In this paper, we focus on how to
expand the original query language model to capture user
intention in the user status text. Thus, our goal is to es-
timate the query language model p(w|q), which is defined
as

p(w|q) = (1− γ)pml(w|q) + γp(w|Iq)

pml(w|q) =
count(w, q)∑
w′ count(w′, q)

(1)

where w is a word, pml(w|q) is a maximum likelihood (ML)
estimation of the word w being in the query, p(w|Iq) is
the intention language model for q whose weight is γ, and
count(w, q) is the number of w’s occurrences in q. Thus, the
query language model can be regarded as a mixture model of
the ML-estimated query language model and the intention
language model. We define γ as the confidence on our inten-
tion language model. That is, if we are not confident on the
estimated intention language model, we assign more weight
on pml(w|q). Although we build parallel corpora to “trans-
late” implicit intention text into explicit intention text, the
inferred intention may not be correct for various reasons,
which are discussed in Section 3. In such situations, γ can
help us adjust our confidence level on the intention language
model.

Once we estimate the query language model p(w|q), we
retrieve mobile apps relevant to the language model with
KL-divergence retrieval model with Dirichlet prior smooth-
ing as presented in [42]. The model is believed as one of the
state-of-the-art ad-hoc retrieval models and it can naturally
adopt query language model, so we choose it to retrieve mo-
bile apps. The score function to score an app a with respect
to q is thus defined as

score(a, q) =

[∑
w∈a

p(w|q) log
ps(w|a)

δap(w|A)

]
+ log δa (2)

where a word w’s smoothed probability ps(w|a), a back-
ground language model p(w|A), and the coefficient δa are
defined as

ps(w|a) =
|a|
|a|+ τ

· count(w, a)

|a| +
τ

|a|+ τ
· p(w|A)

p(w|A) =
count(w,A)∑
w′ count(w′,A)

δa =
τ∑

w count(w, a) + τ

(3)

where |a| is the length of a’s text representation, and τ is
the Dirichlet prior smoothing parameter. By retaining only
the highest probability words in the query language model
and re-normalizing it, it can process a query very efficiently
[41] with inverted index since only apps containing a query
language model word are considered in the formula (2). We
keep the top 50 words with highest probabilities in the query
language model and re-normalize the probability distribu-
tion as in the literature [36]. In the rest of this section,
we describe the steps of estimating the intention language
model p(w|Iq).

4.1 Building Parallel Corpora From Social Me-
dia

Measuring relevance directly between a query and mobile
apps may not be ideal when the query does not explicitly re-
veal the user intent. We need to understand what users truly
want by writing their status text. Therefore, we attempt to
“translate” the user’s implicit intent text into explicit intent



text. Our key idea is to leverage parallel corpora that con-
tain texts with implicit intent and their corresponding texts
with explicit intent, in order to infer user intention hidden
in the status text. Thus, a user query with implicit intent
is matched with similar text in the parallel corpora, which
provide us their corresponding explicit intent texts.

To build such parallel corpora, we employ text data in
social media. There exist other useful resources to build
parallel corpora such as chat logs, movie scripts, and ques-
tion and answering data. However, chat logs are generally
not accessible from public, movie scripts are limited in their
amounts, and question and answering data focus more on
general knowledge instead of people’s intention. On the
other hand, a myriad of user status texts are updated at
social media. Not all of them contain people’s needs, but
even a small portion of all user status texts are plentiful. In
addition, due to the nature of social media such as Twitter,
the user status texts are accessible from public. Moreover,
because people often leave their “current status” through
social media, their contents can be applied to the task well
since we want to infer a user’s immediate needs. Therefore,
we choose to employ social media text data to build parallel
corpora although they are often very noisy.

We employ a template-based approach to build our par-
allel corpora for two main reasons. First, there are much
more social media texts that do not contain both implicit
intention and explicit intention than those containing them,
so we need to filter them out with templates. Second, if we
do not split social media texts into implicit intention text
and explicit intention text, the social media texts found for a
query q will have their language model dominated by all the
words in q. However, we want the language model to explain
the hidden intent, which may have quite different vocabu-
lary than q. The experiment results in Section 6.2 support
that we need higher weight on the intention language model,
which is derived from the explicit intention texts, than on
the original query language model.

Thus, we aim at finding social media texts that contain
both implicit and explicit intention texts with templates.
Since finding texts with implicit intention is more difficult
than finding those with explicit intention, we plan to find
texts with explicit intention and then find texts containing
both of them among the texts found. We observe that peo-
ple often use words such as “want” and “need” to explicitly
express their needs in social media, so we employ such words
to find texts with explicit intention. In order to find texts
containing both implicit and explicit intention texts, we pay
attention to multi-clause sentences that can accommodate
two different predicates. Among the subordinating conjunc-
tions, which connect clauses in a sentence, we notice that
those for cause and effect relationship can be quite useful
for our task. A user’s status and the user’s explicit need
caused by the status are closely related to our task because
this kind of relationship is what we want to capture in order
to translate a user’s status text into the user’s needs.

Therefore, we make templates such as“i want <EXP> be-
cause <IMP>” where <EXP> is explicit intention text and
<IMP> is implicit intention text. For example, a user sta-
tus text “i want to eat pizza because i am hungry” matches
our template with the implicit intention text being “i am
hungry” and the corresponding explicit intention text be-
ing “to eat pizza”. We also use other words than “want” in
the template, such as “need”, “should”, and “wanna”. To
ensure high precision, we force restrictions to the match-
ing sentences. For example, we don’t let punctuation comes
between <EXP> and <IMP>, and we always require sen-
tences starts with “i”. Finally, the texts in <EXP> and
<IMP> of each user status text become documents in Dexp

and Dimp, respectively, while their association is preserved.
In the experiments, we use the above relatively simple

words and templates to build high-precision parallel corpora,
since the focus of the paper is not on the template generation
but on the whole pipeline of mobile app retrieval based on

the user’s status text. The experimental results in Section
6 demonstrate the effectiveness of the proposed approach
despite the simplicity of templates. In future work, we will
investigate the bootstrapping approach [2] to automatically
generate more diverse patterns from basic templates. Since
we simply match templates with social media text, building
parallel corpora can be efficiently done and linearly scalable
with respect to the size of social media text. In addition, it
is a one-time effort and can be done offline.

4.2 Finding Similar Implicit Intention Text
We follow information retrieval approach to match user

status text with its similar implicit intention texts in parallel
corpora. We employ Query Likelihood retrieval model [34]
with Dirichlet prior smoothing [42], which scores an implicit
intent document dimp with respect to q with formulas:

score(q, dimp) =
∑

w∈dimp

count(w, q) log p(w|dimp)

∝
∑

w∈q∩dimp

count(w, q) log
ps(w|dimp)

δdimpp(w|Dimp)
+ log δdimp

ps(w|dimp) =
|dimp|
|dimp|+ ω

pml(w|dimp) +
ω

|dimp|+ ω
p(w|Dimp)

p(w|Dimp) =
count(w,Dimp)∑
w′ count(w′,Dimp)

(4)
We employ this model since it is one of the standard models,
and it is relatively easy to tune the parameter. In addition,
this model can process a query very efficiently (as efficient as
vector space models) with the inverted index. From the re-
trieved documents, we keep only top F documents for both
efficiency and effectiveness, yielding Dimp

q . Then, the corre-
sponding explicit intent documents Dexp

q = {dexp1 , ..., dexpF }
are used to infer user intent in the next step. Please note
that this process is similar to pseudo relevance feedback ap-
proaches in the literature, but it differs in that it eventually
uses the corresponding explicit intent documents instead of
the retrieved documents.

4.3 Inference with Intention Topic Modeling
In order to infer the intention language model p(w|Iq)

from Dexp
q , we propose to employ intention topic model-

ing. That is, we first model various user intentions in Dexp

as a pre-processing step, and then, we infer the intentions in
q using the intention topic models. Employing such inten-
tion topic modeling gives us several benefits. First, we can
understand various intentions in a given query. The same
query may have different intentions depending on user con-
text, and the intention topics can help us understand such
different intentions by inferring multiple intentions. Second,
we can remove noisy topics, which impair our intention lan-
guage model because social media text data are inevitably
very noisy. We can exclude intention topics that do not oc-
cur enough in Dexp

q , which are likely noisy topics. Third,
the inferred user intentions can be understood by humans
in a more straightforward way. If the resulting intention
language model contains multiple intentions or much noise,
humans may not understand well what the language model
describes. However, by inferring intention topics and re-
moving noise in Dexp

q , intention topic modeling can provide
a list of intentions in q, which humans can understand more
easily.

We first pre-process Dexp to model general user inten-
tions by topic modeling approach, Latent Dirichlet Alloca-
tion (LDA) [7], with parameters α, β, and K. The learned

word probability distribution for each intention topic, φ̂k, is
then given to our Intention LDA in order to infer intentions
in Dexp

q .
The generative story of Dexp

q in Intention LDA is as fol-



lows. For each word of explicit intention text d, a user first
chooses an intention td,i according to the query-level inten-
tion distribution θq, which is drawn from a Dirichlet distri-
bution with a symmetric vector α′. Then, the user chooses

a word wd,i according to a word distribution φ̂td,i
, which is

pre-estimated from Dexp by LDA. This process is repeated
for all words in Dexp

q for I iterations.
The conditional posterior distribution for td,i is thus de-

fined by Bayes rule as

p(td,i|Φ̂,T \d,i,α′) ∝ p(wd,i|td,i, Φ̂) · p(td,i|T \d,i,α′) (5)

where T is a set of all intention assignments in Dexp
q , and

“\d, i” means excluding d’s ith data. With the pre-processed

intention topics, p(wd,i|td,i, Φ̂) = p(wd,i|Φ̂td,i). The prior
distribution for td,i is defined for collapsed gibbs sampling
as

p(td,i|T \d,i,α′) =
N
\d,i
td,i|D

exp
q

+ α′

ND
exp
q
− 1 +Kα′

(6)

where N
\d,i
td,i|D

exp
q

is the number of words in Dexp
q assigned

with the intention td,i excluding the ith word in d, ND
exp
q

is the number of all words in Dexp
q , and K is the number of

intention topics.
This model is different from a regular topic modeling ap-

proach in that it takes a small subset of all intention topics
when it builds the intention language model, and we also
take a unique smoothing technique, which is discussed in
the next paragraph. In addition, unlike regular topic mod-
els, we estimate the intention distribution θq at query-level
instead of document-level. This is because our data set is
expected to be very sparse. Both implicit and explicit texts
consist of a few words, so our documents are much shorter
than typical documents. This results in much less word co-
occurrences, so we cannot reliably estimate the topics. Since
we can assume that the retrieved texts in Dexp

q for q have
the similar topic distributions, we employ the query-level
estimation for θq, which means that θq generates topics of
words in all texts retrieved for q.

Building Intention Language Model.
Now, we can build the intention language model p(w|Iq)

with the estimations from the intention topic model.

p(w|Iq) =
∑

t∈Intentions(q)
p(w|t,Dexp

q ) · p(t|Dexp
q )

(7)

where Intentions(q) is a set of candidate intentions for q.
In order to remove noisy topics as discussed earlier in this
section, we do not utilize all possible intention topics. We
instead keep only top X intentions according to p(t|Dexp

q ),
which is the likelihood of the intention being in the retrieved
explicit intention text. Intuitively, a few top intentions for q
can satisfy general users’ needs, so we exclude the other in-
tentions that are likely to be noisy. Also, by considering only
a small subset of all intentions, we can build the language
model more efficiently since we do not need to iterate over
all intentions. The probabilities p(w|t,Dexp

q ) and p(t|Dexp
q )

are defined as

p(w|t,Dexp
q ) =

N̂t|Dexp
q

N̂t|Dexp
q

+ µ
· pml(w|t,Dexp

q )

+
µ

N̂t|Dexp
q

+ µ
· p(w|Φ̂t)

p(t|Dexp
q ) =

N̂t|Dexp
q

+ α′

N̂D
exp
q

+Kα′

(8)

where N̂ and Φ̂t are estimations from the intention topic
model and the regular LDA, respectively, µ is the smoothing
parameter. p(t|Dexp

q ) is normalized to have its sum equal
to one if Tq doesn’t contain all possible intentions. Here,
we smooth p(w|Iq) in a topic-level. That is, for each topic,
p(w|t,Dexp

q ) is smoothed with its posterior estimation from
LDA by Dirichlet prior smoothing. Thus, its ML estima-

tion, pml(w|t,Dexp
q ) =

N̂
w,t|Dexp

q

N̂
t|Dexp

q

, gets higher weight if more

words are assigned to t. With such topic-level smoothing, we
can expect two benefits. Firstly, we can dynamically smooth
the intention topics depending on the number of assigned
words. Intuitively, if more words are assigned with a topic
t, we can more trust its ML estimation since we have more
evidence about t in the text Dexp

q . Secondly, we can “cus-
tomize” each intention topic model for q. When a user sta-
tus text q contains intentions that are not captured well by
existing intention topics, the per-topic smoothing can help
transform existing intention topics into new intention topics
with the evidence present in the retrieved text. Please note
that, in order to obtain reliable probability distributions, we
run multiple Markov chains, and take the average values of
the topic assignments.

Computational Complexity.
The complexity of the pre-processing steps, which is mod-

eling user intentions with collapsed Gibbs sampling from
Dexp, is O(I ·W · K) where I is the number of iterations,
W is the number of all words in Dexp, and K is the number
of intention topics. Therefore, it is linearly scalable with re-
spect to the size of the social media text data (Dexp). This
pre-processing can be done offline, thus a one-time effort.

On the other hand, user intention inference is done online.
For collapsed Gibbs sampling, the computation complexity
is O(I ′ · Wq · K) where I ′ is the number of iterations for
inference, and Wq is the number of all words in Dexp

q . The
complexity of building intention language model with the
inferred intentions is O(K logK + V · T ) including choosing
top T intentions (O(K logK)) and computing word distri-
bution for T intentions (O(V · T )), where V is the vocab-
ulary size. In general, a small constant for I ′ (e.g., 100) is
good enough. Also, Wq is very small (e.g., 875 words on
average, which is a size of a couple of general Web docu-
ments) since Dexp

q contains a small subset of explicit inten-
tion texts. Also, T ≤ K, so inferring user intention and
building intention language model has an average complex-
ity of O(K) + O(K logK + V · T ) = O(K(logK + V )). In
general, the vocabulary size V sublinearly increases as the
size of text data increases, so this inference process is sub-
linearly scalable with respect to the size of text data. As
discussed in multiple places of this section, other compo-
nents of the system are also scalable and perform efficiently,
so the whole process is scalable and performed efficiently.

5. EXPERIMENTAL SETUP

5.1 Data Set
In order to perform experiments for the task, we need

data sets such as mobile apps, social media data for parallel
corpora, and test queries and their relevance data. We use
mobile app data in [32], which crawled most popular apps
for each category from Google Play App Store4. We omit-
ted apps in game categories, which takes about 38% of the
whole data, since our goal is to recommend more practical
solutions while games are for entertainment in general. The
resulting data set contains 26,832 apps in total. Although
we take a subset of all available apps in Google Play App
Store, the data set should cover most of the downloads by

4https://play.google.com/store/apps



users.5 Since user status text is often written in an informal
way by people in general, we also use apps’ user review texts,
which are also often written in an informal way. On average,
there are 31.4 reviews for each app. The experiment results
in this work will be based on concatenated text of app de-
scriptions and user reviews unless otherwise specified. We
tokenized text into word tokens and lemmatized them using
Stanford CoreNLP [28] version 1.3.5. We lowered all word
tokens and removed punctuation, stopwords, and word to-
kens that appear in less than five app descriptions (and five
user reviews if reviews are also used). More statistics of the
resulting data are shown in Table 1. Note that about 30%
of vocabulary is omitted when we add user reviews; this is
because many words in app descriptions are indeed not used
by users, and vocabulary used by app developers is different
from that used by general users [32].

Table 1: Statistics of text data in apps without re-
views and with reviews.

without reviews (¬R) with reviews (R)
Avg. # of tokens 116.5 395.6
Total # of tokens 3,124,611 10,615,767
Vocabulary size 20,293 14,196

Since we study a new task that has not been studied be-
fore, there is no existing test collection or parallel corpora
available to use. In the rest of this section, we describe how
we collect such data in detail.

5.1.1 Collecting Tweets to Build Parallel Corpora
We already described how to build parallel corpora with

social media text data in Section 4.1. Here, we describe how
to collect tweets and the details of the data set. Among var-
ious social media, we decided to crawl the data from Twitter
mainly because plenty of tweets are available to public. We
searched for tweets containing our keywords using Twitter’s
search function. The query we used is, for example, “i want”
because until:YYYY-MM-DD, which is supposed to search
for tweets containing the word because and the exact phrase
i want until the specified date. We crawled tweets dated
between June 6, 2006 and November 4, 2015. Then, we re-
moved tweets that do not satisfy the templates in Section
4.1, and cleaned the texts in the same way as the app text
data are cleaned. We allowed only one (implicit text, ex-
plicit text) pair if there exist exactly the same pairs, to avoid
noise. Finally, we obtained 1,609,894 (implicit text, explicit
text) pairs from 1,115,948 unique Twitter users where im-
plicit text contains 2.7 word tokens and explicit text contains
2.5 word tokens on average, and its vocabulary consists of
35,695 unique words.

5.1.2 Collecting Representative Queries
We need to obtain queries so as to evaluate whether the

proposed model is indeed useful. It is, however, challenging
to obtain “representative” user status text segments. We
cannot simply rank tweet texts based on the number of
tweets that contain exactly the same content or similar con-
tent in the whole tweet data set. People use different vocab-
ulary to describe similar statuses. In addition, the resulting
ranking may still contain many redundant themes. Thus, we
employ topic model to first find main themes in tweets and
choose a representative tweet from each theme. We crawled
tweets containing a keyword “i” so that the retrieved tweets
are likely to be about the user’s own status. The crawled
tweets are dated between June 20, 2015 and August 18, 2015,
and after cleaning them, we obtained 960,874 tweets. With
LDA, we modeled 50 topics and ranked tweets with KL-
divergence scoring function in formula (2) where the query

5The top 1% and 10% of most downloaded apps accounts
for over 78% and 96% of the total downloads, respectively
[37].

becomes each topic’s language model. After removing nine
topics that are spams, we asked a domain expert to extract
the first user status segment that implicitly expresses user
need, starting from the most relevant tweets, for each of
the non-spam topics. We observed that implicitly expressed
user needs are closely related to the user’s mood, so we also
added 12 mood words from [39]. To choose 12 mood words
from them, we omitted the words that do not overlap with
the existing queries and that occur less than 400 times in
the tweets we crawled. Then, we made a query for those
words with the template “i am <word>” or “i feel <word>”,
whichever occurs more frequently according to Google’s ex-
act phrase search. After removing nine queries that are dis-
cussed in the next section, we compiled 44 queries, each of
which contains around 5.5 words on average.

The number of queries we collected is relatively small com-
pared to hundreds of queries in large test collections such as
TREC data sets. It is very expensive to create a large-scale
data set for this new task. In this paper, we aim at con-
ducting a pilot study to demonstrate the feasibility of app
retrieval based on social status text. Despite a relatively
small number of queries, they cover a wide variety of top-
ics that are representative of the real-world user implicit
intentions. In the future work, we will further validate the
proposed approach by collecting and labeling more data over
an extended period of time.

5.1.3 Collecting Query Relevance Data
Since labeling all the retrieved mobile apps from vari-

ous models for each query is too expensive, we created a
pool. In specific, for each query, we pooled together the
top 20 retrieved apps from each of various retrieval mod-
els, including standard information retrieval models and our
proposed model, with various parameter settings, in order
to acquire enough apps that are most likely relevant. We
then employed a crowd-sourcing service, CrowdFlower6, to
label the (query, app) pairs at affordable price. Each worker
was asked to read a query and a corresponding app’s name
and description, and follow the link to the app store page if
needed. Then, the worker was paid three cents to judge if
the app satisfies the user need on three relevance levels (no
satisfaction at all (0), makes sense with some context (1),
and perfect satisfaction (2)).

To ensure the quality of judgments, we let each (query,
app) pair be judged by three annotators, and we used “quiz”
function7 in CrowdFlower to remove users who do not score
high enough on the quizzes we made. The three resulting
judgments for each (query, app) pair were averaged to be
used as a relevance score. We removed nine queries that
retrieved less than five perfectly relevant apps (by majority
vote) since they cannot reliably distinguish different meth-
ods. In total, 156 workers were employed through the crowd-
sourcing service, and each of them made 177.0 ± 117.5 judg-
ments where the number after± is standard deviation. After
all, we obtained relevance data for 7,920 (query, app) pairs,
where there are 180 ± 59.5 relevance data on average for
each query. We measured the inter-annotator agreement by
Fleiss’ kappa, which was 0.31, where the value between 0.21
and 0.4 can be interpreted as fair agreement according to
[23].

5.2 Evaluation Metrics
The aggregated relevance judgment ranges between 0 and

2. Thus, we employ Normalized Discounted Cumulative
Gain (NDCG) [19] as the evaluation metric since it can han-
dle multiple-level relevance data while metrics such as Mean

6http://www.crowdflower.com/
7A worker’s judgments are stored only if the worker inputs 6
correct answers from the initial quiz with eight questions and
maintains the accuracy above 75% afterwards with random
quizzes.



Average Precision cannot. We measure NDCG at top 3,
5, 10, and 20 retrieved apps to reflect information needs of
various users. Note that NDCG@3 is more important for
this task than for traditional Web search since only a few
mobile apps can fit a mobile phone screen well, and many
social media users use their mobile phones to connect to so-
cial media. We ignore some possible unjudged apps as in
[32]. We employ student’s two-tailed paired t-test (p<0.05)
to obtain statistical significance.

5.3 Baseline Methods
We have two types of baseline methods: models that do

not leverage parallel corpora and models that do. The mod-
els not leveraging parallel corpora include Query Likelihood
Language Model (QL) and Relevance model [25], which
are standard language model-based information retrieval meth-
ods. We use Query Likelihood Language Model with Dirich-
let prior smoothing as described in Section 4.2 where we
score an app a instead of dimp. Since our Intention model
expands the original query with online processing, we em-
ploy Relevance model (Model 1) as a baseline to be fair,
which is one of the state-of-the-art query expansion meth-
ods with online processing. Relevance model first retrieves
apps with original query using QL. Then, it expands the
original query with the descriptions of the top Fa retrieved
apps.

The models that leverage parallel corpora are closely re-
lated to cross-lingual information retrieval models [6] be-
cause parallel corpora are usually exploited to translate be-
tween two different languages. We employ Translation (or
Trans.) model and Cross-Lingual Relevance Model (CL-
Relevance or CL-Rel.) [24]. Translation model employs
IBM Model 1 [9] to estimate word translation probabilities
from Dimp to Dexp. Then, it builds the query language
model by

p(w|q) =
∑

w′∈V (Dimp)

tr(w|w′)p(w′|q)
(9)

where V (Dimp) is a vocabulary set in Dimp, and tr(w|w′) is
the translation probability from w′ to w. Thus, the resulting
query language model would consist of words in Dexp that
are semantically associated with the original query. CL-
Relevance is an extension of the Relevance model and is
one of the state-of-the-art cross-lingual information retrieval
models. Similar to our Intention model, CL-Relevance
leverages the parallel corpora to retrieve relevant intention
texts from Dexp given a query as in Section 4.2, and then,
it estimates the query language model from the top F in-
tention texts.

Translation and CL-Relevance models are designed for
cross-lingual information retrieval. However, our task in-
volves only one language although we built the parallel cor-
pora with Dimp and Dexp, which means that we can incor-
porate the original query into the estimated query language
model since they are made of the same language. We inter-
polate the original query language model with the estimated
query language model with a fixed coefficient γ as in for-
mula (1), where the estimated query language model from
Translation or CL-Relevance becomes the intention language
model. We call the resulting models for Translation and CL-
Relevance models as Translation+ORIG (or Trans.+O)
and CL-Relevance+ORIG (or CL-Rel.+O), respectively.

5.4 Parameter Setting
We tune the parameters as much as possible with a data

set containing both app descriptions and user reviews, and
we use the data set unless otherwise specified. The param-
eter values are shown in Table 2, and we use those values
in this work unless otherwise specified. To model topics in
Dexp

q with LDA for Intention model, we run 1,000 Gibbs

Table 2: Parameter setting for QL (Q), Relevance (R),
Trans. (T), Trans.+ORIG (TO), CL-Rel. (C), CL-
Rel.+O (CO), and Intention (I) models.

Value Models
γ 0.9(TO), 0.8(CO, I) TO, CO, I
τ 1,000 Q, R, T, TO, C, CO, I
ω 100 C, CO, I
F 350 C, CO, I
Fa 50 R
λ 0.8(R), 0.5(C, CO) R, C, CO
α 0.01 I
β 0.01 I
K 300 I
α′ 0.1 I
X 5 I
µ 5 I

sampling iterations. We use three Markov chains with 100
Gibbs sampling iterations each for Intention LDA. We use
GIZA++ package [31] for Translation model, where we use
IBM Model 1 with default parameter values.

6. RESULT ANALYSIS
6.1 Qualitative Analysis

Table 3: Top five intention topics by LDA. Each
column contains top words for a topic.

room show eat play win
clean watch make football super
fridge tv chicken team seahawks
tidy stop cheese player bowl

house netflix soup soccer raven
living reality egg basketball bronco
mini series fries game ravens
closet ellen potato baseball 49ers
lock movie bacon sport lose

bigger program mac fantasy simply

Table 3 shows top intention topics obtained from social
media user’s explicit intention text Dexp. It seems that
the intentions are closely related to people’s everyday life
such as cleaning room, watching TV shows, eating or mak-
ing food, playing sports, and supporting sports teams. For
each query, we infer the most related intentions, and the
top intentions for several queries are shown in Table 4. One
of the advantages of our Intention model is that it is eas-
ier to understand different user intentions for a user status
text than other baseline models. Interestingly, for a query “i
feel sleepy”, Intention model infers diverse intentions such as
“sleep” (first), “drink coffee” (second), “take a nap” (third),
and “sleep earlier” (fourth). These intentions indeed make
sense for the user status, and services related to the inferred
intentions can be recommended appropriately. On the other
hand, there also exist some queries that do not have vari-
ous inferred intentions. For example, Intention model infers
intentions that are very similar to each other for a query
“i am hungry”; the intentions are mostly about eating food.
Nonetheless, the inferred intentions make sense, and such in-
tentions can be definitely applied to recommender systems
to understand a user’s hidden intention in a user status text.
One important thing to note is that even though user inten-
tions are inferred well, there may not exist mobile apps that
satisfy the inferred intentions. For example, an intention
“stop buying things” (second) is inferred for a query “i spend
way too much money”. However, we could not find relevant
mobile apps using either the intention language model or
the query words since mobile apps are barely able to di-
rectly stop people buying things. Perhaps, we may need
another layer of translation from an intention language to



Table 4: Top five intentions inferred from our Intention model for each query. Each intention is represented
by its top five words.

query i’m getting sad i feel sleepy i feel lonely
happy, make, feel, smile, sad sleep, back, wake, day, home friend, make, internet, talk, guy
hug, give, kiss, big, nus coffee, drink, energy, cup, caffeine buddy, cuddle, friend, texting, text

top intentions listen, stop, song, radio, station nap, stop, home, school, work watch, movie, stop, film, cry
listen, music, stop, play, ipod sleep, bed, start, earlier, early follow, fan, account, friend, 5so
life, people, thing, positive, stop late, stay, stop, night, sleep hug, give, kiss, big, nus

query i got a bad feeling about today i spend way too much money i am hungry
start, people, listen, advice, hang shopping, store, grocery, shop, work eat, start, breakfast, dinner, lunch
god, pray, jesus, lord, prayer stop, online, buy, thing, stuff food, eat, stop, make, bring

top intentions cry, tear, joy, happiness, happy money, job, give, make, lot eat, stop, food, hungry, bore
medicine, sleep, doctor, med, pain card, credit, gift, buy, give eat, make, chicken, cheese, soup
cry, ball, curl, bed, die job, find, asap, pay, good pizza, eat, order, work, food

an app function language so that the intention “stop buy-
ing things” is translated into an appropriate text such as
“budget manager”.

Table 5: Top query language model words and their
probabilities estimated from each model for a query “i’m
pretty tired after work today”. MLE indicates maximum
likelihood estimation of the query.

MLE Trans.+O CL-Rel.+O Intention
pretty 0.25 work 0.11 sleep 0.26 sleep 0.34
tire 0.25 pretty 0.08 bed 0.09 bed 0.13
work 0.25 day 0.07 work 0.08 nap 0.06
today 0.25 today 0.07 today 0.07 work 0.06
- - tire 0.06 pretty 0.07 today 0.06
- - tomorrow 0.05 tire 0.07 tire 0.05
- - sleep 0.04 stop 0.06 pretty 0.05
- - feel 0.04 play 0.05 plan 0.03
- - hour 0.02 friend 0.02 start 0.02
- - week 0.02 hour 0.01 back 0.02

Table 5 shows the query language models estimated by
different methods for a query “i’m pretty tired after work
today.” While MLE gives the same probability to each key-
word of the query, the other models expand the query lan-
guage model with our parallel corpora. The language model
estimated by Trans.+O model does not seem to highlight
words that are important particularly for the query. As
discussed in the next section, the intention language model
estimated by Trans.+O model is in more general context.
For example, words such as “pretty”, “tomorrow”, “hour”,
and “week” do not have to be emphasized much, and words
such as “sleep” and “bed” need to be emphasized more for
the query. CL-Rel.+O model assigns more weights to such
words, and Intention model assigns even more weights to
them, so they retrieve more relevant apps. Table 6 shows
the top retrieved apps for the same query. QL, which assigns
the same weight to each query word as MLE does, retrieves
many irrelevant mobile apps such as “Wheel Tire Calcula-
tor”, “Tires Plus”, “Pregnancy Workout Today”, and so on.
Trans.+O model retrieves apps such as “Horoscope for Face-
book”, “Squats”, “Fetch: Your Buying Assistant”, and so on,
which do not seem to satisfy the user intention in the query,
and this can be expected from its poorly estimated query
language model. Most apps retrieved by CL-Rel.+O and
Intention models are satisfying since they could build the
query language models well as shown in Table 5.

6.2 Quantitative Analysis
Table 7 compares Intention model with models that do

not leverage our parallel corpora, and it also shows mea-
sures when reviews (R) are used and not used. Relevance
model indeed outperforms QL with its query expansion from
the app data set. Intention model significantly outperforms
QL and Relevance models because it can infer user inten-
tion with our parallel corpora. Intention model outperforms
the other models especially for NDCG at 3 and 5, which is
desirable for mobile environment. For the task, exploiting

Table 7: NDCG measures for baseline models and In-
tention model. QL and Relevance models do not lever-
age parallel corpora while Intention model does. (%
imp.) indicates Intention model’s percentage improve-
ment over Relevance model. The symbols ∗ and ◦ indi-
cate statistical significance over QL and Relevance, re-
spectively.

Data Model N@3 N@5 N@10 N@20
QL 0.404 0.420 0.415 0.418

¬R Relevance 0.437 0.430 0.441 0.461
Intention 0.531∗◦ 0.534∗◦ 0.527∗◦ 0.515∗

(% imp.) +21.5% +24.2% +19.5% +11.7%
QL 0.445 0.438 0.440 0.438

R Relevance 0.463 0.460 0.444 0.455
Intention 0.596∗◦ 0.585∗◦ 0.564∗◦ 0.560∗◦

(% imp.) +28.7% +27.2% +27.0% +23.1%

user reviews is shown to be beneficial, which is similar to
the findings in [32] for general app search task. Also, when
reviews are used, Intention model’s percentage improvement
over Relevance model increases from 19.2% to 26.5% on av-
erage. Intuitively, while app descriptions are written by app
developers, user reviews and user status texts are written
by ordinary people with similar vocabulary, so the effect of
exploiting parallel corpora can be amplified by using user
reviews.

Table 8: NDCG measures for models leveraging our
parallel corpora. (% imp.) indicates Intention model’s
percentage improvement over CL-Rel.+O. The symbols
∗ and ◦ indicates statistical significance over Trans.+O
and CL-Rel.+O, respectively.

Data Model N@3 N@5 N@10 N@20
Trans. 0.480 0.486 0.480 0.498
CL-Rel. 0.376 0.374 0.363 0.386

¬R Trans.+O 0.468 0.472 0.472 0.474
CL-Rel.+O 0.477 0.470 0.473 0.484
Intention 0.531◦ 0.534∗◦ 0.527∗◦ 0.515
(% imp.) +11.3% +13.6% +11.4% +6.4%
Trans. 0.483 0.481 0.478 0.482
CL-Rel. 0.425 0.409 0.395 0.406

R Trans.+O 0.519 0.519 0.503 0.510
CL-Rel.+O 0.526 0.513 0.510 0.507
Intention 0.596◦ 0.585◦ 0.564∗◦ 0.560◦

(% imp.) +13.3% +14.0% +10.6% +10.5%

Table 8 compares models leveraging our parallel corpora.
Again, it seems that all the models except Translation model
improve when reviews are used. CL-Rel. does not perform
well, and this is because each text pair in our parallel cor-
pora is relatively short and noisy so that the top retrieved
text from the corpora may be corrupted with noise. We mix
the original query language model and the query language
model estimated from CL-Rel. by linear interpolation as
discussed in Section 5.3. When it is mixed with the origi-



Table 6: Top retrieved apps from each model for query “i’m pretty tired after work today”.
QL Translation+ORIG CL-Relevance+ORIG Intention

Wheel Tire Calculator Sleep Cycle Sleep Cycle alarm clock Sleep Better with Runtastic
Tires Plus Sleep Cycle alarm clock Sleep Diary Pro Sleep Diary Pro
Pregnancy Workout Today Sleep Hypnosis: Cure Insomnia Sounds for Baby Sleep Music Sleep Cycle
Tire Calculator PRO Nature sounds to sleep Sleep Analyzer Sleep Cycle alarm clock
Pretty Calculator Horoscopes for Facebook Sleep Better with Runtastic Sleep as Android Unlock
ForzaTune 5 Sleep Better with Runtastic Sleep Cycle Sounds for Baby Sleep Music
Verizon Roadside Assistance Squats Sleep Talk Recorder Relax Melodies: Sleep & Yoga
Boxing Interval Timer Fetch: Your Buying Assistant Sleep as Android Deep Sleep and Relax Hypnosis
7-Eleven, Inc. SleepyTime: Bedtime Calculator SleepBots - Sleep Cycle Alarm Sleep Analyzer
Shut Up Button Dog Licker Live Wallpaper FREE Sleep as Android Unlock Relax Music & Sleep Cycle
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Figure 2: NDCG measures for different X (left) and
µ (right) values of Intention model.

nal query language model as CL-Rel.+O, it improves quite
much, which means that the original query language model
and the estimated query language model should be incor-
porated for better performance. Translation model outper-
forms CL-Rel. as itself, which means that query expan-
sion with the whole parallel corpora may be better than
that with only the top retrieved texts from the parallel cor-
pora, when the parallel corpora is relatively noisy. However,
when Translation model is mixed with the original query
language model as Trans.+O, it performs comparably with
CL-Rel.+O. Our Intention model significantly outperforms
all the other models in general. Although Intention model
infers user intention from only top retrieved texts from the
parallel corpora, it effectively removes the noisy intentions,
yielding good results.

In order to filter out noisy intentions, Intention model uses
only top X intention topics and estimates intention topics
with per-topic smoothing. Figure 2 depicts Intention model
with different number of top intention topics (X) values and
different amount of smoothing (µ). The idea of removing un-
popular intention topics, which are regarded as noisy topics,
seems to yield better results indeed, especially for NDCG at
3 and 5. When we keep only one or two top intentions, Inten-
tion model does not perform well. However, its performance
peaks when X is between 3 and 5, and then the performance
degrades as it adds more intentions. Meanwhile, we can as-
sign more weights to the intention topics pre-estimated from
LDA by increasing µ value. The figure shows that adding
a small amount (µ between 1 and 5) of the pre-estimated
topics helps a little, but adding too much of them worsens
the performance. From the results, it seems that removing
noisy intentions plays a more important role than exploiting
pre-estimated topics in estimating a good intention language
model.

Trans.+O, CL-Rel.+O, and Intention models, which lever-
age parallel corpora, combine the original query language
model and the intention language model, estimated from
our parallel corpora, with a linear interpolation parameter
γ as in equation (1). When γ = 0, the query language
model becomes the original query language model pml(w|q),
and when γ = 1, the query language model is purely the
intention language model from the parallel corpora. That

is, when γ = 1, Trans.+O and CL-Rel.+O models become
Translation and CL-Rel. models, respectively. Figure 3 de-
picts the models with different γ values. We can see that
relying more on the intention language model results in bet-
ter performance in general, which means that leveraging our
parallel corpora is indeed important for the task. Intention
model seems to outperform the other models with almost all
γ values, even when the query language model comes entirely
from the parallel corpora (γ = 1). Interestingly, all the mod-
els perform better when the original query language model
is incorporated than when it is not. This means that the
original query language model and the intention language
model have their own strong points, so their combination
makes even better results.

7. CONCLUSIONS AND FUTURE WORK
In this work, we studied the problem of mobile app re-

trieval for social media text that contains a user’s implicit
intention. Recommending mobile apps for such text can be
very useful for both users and app developers, but no pre-
vious work has addressed this novel problem. We proposed
how to build parallel corpora that can convert implicit in-
tent text into explicit intent text. Then, we proposed the
Intention model that leverages the parallel corpora to infer
user intent to recommend satisfying mobile apps. Evalu-
ation results show that (i) leveraging our parallel corpora
built from social media is indeed beneficial, (ii) exploiting
user reviews help us reduce vocabulary gap between users
and app developers, (iii) removing noisy intentions plays
an important role in Intention model, (iv) the original query
language model and the estimated intention language model
complement each other well, and (v) intentions inferred from
Intention model help us understand various intentions in a
straightforward way.

There are limitations in this work. When we collect the
parallel corpora, we exploited templates to match texts with
certain patterns. Those templates and words were manually
compiled in order to ensure high precision. The templates
do not ensure high recall since there may be many more
templates we can exploit. When we evaluate the retrieved
mobile apps from the suggested methods, we tested them
with a relatively small number of queries since it is expensive
to obtain query relevance data. More queries along with
their relevance data would help us evaluate the task more
reliably.

Our work can be further extended in several ways. First,
while we recommended mobile apps, one can recommend
entities in other domains, leveraging our parallel corpora.
Second, while we studied recommending mobile apps for hid-
den intent of users, one can study preventing tragic events
such as suicide and mass shooting by analyzing user text,
because such users often implicitly reveal their intention.
Lastly, since our parallel corpora made from social media
are domain independent, one can leverage the corpora to
other applications such as chat bots or virtual assistants to
understand implicit intention.
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Figure 3: NDCG measures for different γ values of models that leverage the parallel corpora.
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