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ABSTRACT
Most recommender systems focus on the areas of leisure ac-
tivities. As the Web evolves into omnipresent utility, recom-
mender systems penetrate more serious applications such as
those in online scientific communities. In this paper, we
investigate the task of recommendation in online scientific
communities which exhibit two characteristics: 1) there ex-
ists very rich information about users and items; 2) The
users in the scientific communities tend not to give explicit
ratings to the resources, even though they have clear pref-
erence in their minds. To address the above two character-
istics, we propose matrix factorization techniques to incor-
porate rich user and item information into recommendation
with implicit feedback. Specifically, the user information
matrix is decomposed into a shared subspace with the im-
plicit feedback matrix, and so does the item information ma-
trix. In other words, the subspaces between multiple related
matrices are jointly learned by sharing information between
the matrices. The experiments on the testbed from an online
scientific community (i.e., Nanohub) show that the proposed
method can effectively improve the recommendation perfor-
mance.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering

General Terms
Algorithms, Performance, Experimentation

Keywords
Matrix co-factorization, Implicit feedback, Rich side infor-
mation

1. INTRODUCTION
Recommender systems attempt to analyze user prefer-

ences over items, and model the relationship between users
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and items in order to generate meaningful recommendations
to the users. Such systems have been ubiquitously adopted
in many applications such as e-commerce, social bookmark-
ing, and subscription based services. They provide person-
alized recommendations which are especially important in
markets where the variety of choices is large and the taste of
the customer is important. Most recommender systems fo-
cus on the areas of leisure activities such as art (e.g., movies
and books), fashion (e.g., music and gaming), and food (e.g.,
restaurants). As the Web evolves into omnipresent utility,
recommender systems penetrate more serious applications
such as those in online scientific communities.

In this paper, we investigate the task of recommendation
in online scientific communities. In particular, our study is
based on the Nanohub1 website hosted by Purdue Univer-
sity. Nanohub is an online scientific community for research,
education and collaboration in nanotechnology. It comprises
numerous resources with an active user base. These re-
sources include lectures, seminars, tutorials, publications,
events and so on. The task is to recommend relevant re-
sources to the users. The scientific communities such as
Nanohub exhibit two characteristics: 1) there exists very
rich information about resources and users. Most resources
contain detailed information such as titles, abstracts and
tags. Many registered users also provide detailed profiles
about themselves such as research interest, education and
affiliation. This information is very indicative for recom-
mendation and thus needs to be taken into consideration.
2) The users in the scientific communities tend not to give
explicit ratings to the resources, even though they have clear
preference in their minds. There only exists implicit user
feedback such as the user clicks on resources. These two
characteristics may also be noticeable in many other real-
world applications, while they are more prominent in online
scientific communities such as Nanohub.

This paper proposes matrix co-factorization techniques to
incorporate rich user and resource information into recom-
mendation with implicit feedback. Specifically, the user in-
formation matrix is decomposed into a shared subspace with
the implicit feedback matrix, and so does the item informa-
tion matrix. In other words, the subspaces between multiple
related matrices are jointly learned by sharing information
between the matrices. To reflect the confidence level on the
implicit feedback, the binary elements in the implicit feed-
back matrix are weighted according to the frequency of the
feedback (for 1) or the user-resource content similarity (for
0). In sum, our main contribution is to factorize implicit

1http://www.nanohub.org



feedback, user, and item content matrices into shared sub-
spaces so that the rich side information can be exploited for
recommendation with implicit feedback. The experiments
on Nanohub show that the proposed method can effectively
improve the recommendation performance.

2. RELATED WORK
In this section, we briefly review the main works in the

context. The list of references is not exhaustive due to the
page limit. One main class of approaches is Collaborative
Filtering (CF) [2] which has been successfully applied to
several real world problems, such as Netflix’s movie recom-
mendation [5]. CF methods are popular because they do not
require domain knowledge, but it suffers from the Cold Start
problem, in which few ratings can be obtained when a new
item enters to the system. Content-based filtering (CBF)
systems make recommendations by analyzing the content of
textual information [1], but they do not incorporate the in-
formation in preference similarity across individuals. Both
content-based recommender systems and CF systems have
limitations. Hybrid methods such as [9], combine CF and
CBF, hoping to avoid the limitations of either approach and
thereby improve recommendation performance. Pilászy and
Tikk [8] link CF and CBF by finding a linear transforma-
tion that transforms user or item descriptions. Singh et al.
[11] exploit relational information for recommendation by
solving multiple matrix factorization tasks simultaneously.
Gunawardana and Meek [3] describe unified Boltzmann ma-
chines, which are probabilistic models that encode content
information into collaborative filtering. The vast majority
of the literature is focused on explicit user ratings. However,
in many real world systems, these explicit ratings are hard
to collect and user feedback can be implicitly expressed by
user behaviors such as clicks, bookmark, purchase history
and even mouse movement.

To address the implicit feedback, Hu et al. [4] proposed to
treat the data as indication of positive and negative prefer-
ence associated with vastly varying confidence levels. Re-
cently, several other methods formulated the problem as
One-Class Collaborative Filtering (OCCF) [7, 10]. Li et
al [6] attempted to further improve OCCF by assigning the
weights to the negative examples based on user information.
To the best of our knowledge, there is no prior work on in-
corporating both user and item information in a principled
manner.

3. NOTATION
Throughout this paper we use the following notations:

n: number of users;
m: number of resources (or items);
k: number of latent factors;
l: size of word vocabulary;
R: implicit feedback matrix whereR = (Rij)n×m ∈ {0, 1}n×m;
W : Weight matrix;
U : User information matrix where U = (Uiw)n×l;
T : resource information matrix where T = (Ujw)m×l;
P,Q,X, Y : low-rank matrices; P = {P1, P2, ..., Pn}T where
the ith row Pi is a k-dimension vector representing a user’s
preference over latent factors. Similar notations hold for Qj ,
Xi and Yj ;
I: denotes the identity matrix of the appropriate size;
λ1, λ2: regularization parameters;

||.||F : Frobenius norm of a matrix;

4. THE APPROACH

4.1 One Class Collaborative Filtering
With explicit feedback users tell us both what they like

and what they dislike, but with implicit user feedback, there
is no negative examples. This setting is referred to as one-
class collaborative filtering in [7]. In these problems, the
training data usually consist simply of binary data reflecting
a user’s action or inaction. A naive approach is to treat all
missing values as negative examples (i.e., AMAN) and then
directly apply matrix factorization techniques. A better
method proposed in [7] is to treat all missing values as nega-
tive, but with weights controlling their relative contribution
to the loss function (i.e., wAMAN). Specifically, weighted
low-rank matrix approximation [12] can be adapted as fol-
lows:

J(P,Q) =

n∑
i=1

m∑
j=1

Wi,j(Rij − PiQj)
2

In wAMAN, the weights for positive examples are set to 1,
i.e., Wij = 1 if Rij = 1. The weights are lowered on missing
examples, because we have less confidence on these unob-
served examples. We discuss different weighting schemes in
Section 4.3. Different from wAMAN and most other OCCF
methods, we vary weights for both positive and negative ex-
amples. In the experiments, we use AMAN and wAMAN as
two baselines.

4.2 Matrix Co-factorization for Embedding User
and Item Information

The above OCCF models do not consider the rich side in-
formation that are available in many real-world systems. It
is natural to represent the user information as a vector space
model. For user i and word w, Uiw is the TFIDF weight cal-
culated from user profiles. Similarly, the matrix Tjw encodes
the item information. Our method is motivated by the as-
sumption that the latent features that determine whether a
user likes a given item, and the latent features that deter-
mine the content of that item, can be mapped into a shared
space in which they are likely to be similar. Thus, we con-
strain our factorizations to use a common matrix to model
the features of each item. In other words, the feedback ma-
trix R ≈ PQ, and the item content matrix T ≈ Y Q, with
the latent feature matrix Q contributing to both matrices.
Similarly, the user content matrix can also be approximated
by U ≈ PX with the coupled factor P . Mathematically, the
weighted matrix co-factorization is as follows:

J(P,Q,X, Y ) =||W ⊗ (R− PQ)||2F + λ1(||U − PX||2F
+ ||T − Y Q||2F )

where ⊗ denotes element-wise product and W is used for
weighting implicit feedback. To prevent overfitting, a regu-
larization term can be appended to the objective function J .
We then aim to find a solution by minimizing the following
loss function:

J(P,Q,X, Y ) = ||W ⊗ (R− PQ)||2F + λ1(||U − PX||2F
+ ||T − Y Q||2F ) + λ2(||P ||2F + ||Q||2F + ||X||2F + ||Y ||2F )

(1)



4.3 Weighting Scheme for Implicit Feedback
As discussed above, the weight matrix W is crucial to han-

dle the implicit feedback. In wAMAN, three global weight-
ing schemes are used, i.e., uniform, user oriented, and item
oriented [7]. To encode the side information, a more spe-
cific way to assign the weight for each negative example is
to look at the similarity between the user and the item [6].
The more similar they are, the less weight we should assign
to that negative example. This similarity is measured by the
content features of user i and item j, i.e., Wij = 1−sim(i, j)
where sim(i, j) is the cosine similarity between Ui and Tj .

For positive examples, there also exists various confidence
levels. For example, the large number of clicks of a user on
an item indicates the strong interest of the user on the item.
We denote the observation of implicit feedback by fij for
user i and item j (e.g., fij is the observed number of clicks).
In general, as fij grows, we have a stronger indication that
the user indeed likes the item. In consequence, a plausible
choice for Wij in the case of positive instances is

Wij = 1 + βfij

where β controls the increase rate of confidence. In the
experiment, we set it to be 0.1.

4.4 Parameter Estimation
The low-rank matrices P , Q, X and Y can be solved by

weighted Alternative Least Square. In order to solve P , we
first fix the other matrices, and take derivatives of J in Eqn.
(1) with respect P .

∂J

2∂P
=
(
W ⊗ (PQ−R)

)
QT + λ1(PX − U)XT + λ2||P ||F

Let the partial derivative ∂J
∂Pi

= 0, we get

Pi = (RiW̆iQ
T + λ1UiX

T )
(
QWiQ

T + λ1XX
T (2)

+λ2(
∑
j

Wij)I
)−1

where W̆i is a diagonal matrix with entries of ith row in W
on the diagonal.

Similarly, let ∂J
∂Qj

= 0, ∂J
∂Xj

= 0 and ∂J
∂Yi

= 0, we get

Qj = (RT
j W̃jP + λ1T

T
j Y )

(
PTWjP + λ1Y

TY (3)

+ λ2(
∑
i

Wij)I
)−1

Xj = UT
j P (PTP + λ2/λ1I)−1 (4)

Yi = TiQ
T (QQT + λ2/λ1I)−1 (5)

where W̃j is a diagonal matrix with entries of jth column in
W on the diagonal. The update is then repeated until con-
vergence. The computational complexity of the algorithm is
O(Nk2mn) where N is the number of iterations. We refer
the algorithm as Matrix Co-factorization for Rich side infor-
mation and Implicit feedback (MCRI) and summarize it in
Table 1.

5. EXPERIMENTS

5.1 Experimental Setup
We test our proposed method on the Nanohub dataset.

We split the data into three parts: the data from year 2001

Table 1: The Matrix Co-factorization for Rich side
information and Implicit feedback algorithm

Algorithm MCRI
Input: R, U , T , W , k
Output: P , Q, X, Y
1: Initialize P , Q, X, Y
2: Initialize Wij

3: if Rij = 0 then
4: Wij = 1− sim(i, j)
5: else
6: Wij = 1 + βfij
7: end if
8: repeat
9: Eqn. (2), Eqn. (3), Eqn. (4) and Eqn. (5)
10: until P , Q, X, Y converge
11: return P , Q, X, Y

to 2008 is used for training, the data in 2009 is a validation
set, and the 2010 data is for testing. We remove the users
who have no click history in either of the datasets. The
training and validation set includes 10,013 users and 4,430
resources, and the test set contains 6,029 users and 3,673
resources.

The baseline models include AMAN and wAMAN de-
scribed in Section 4.1. These two are collaborative filtering
based approaches. One content based (CB) method is also
compared: to compute the ranked list of resources based on
the cosine similarity between the resource description and
the user profile. In addition, a hybrid model (wAMAN+CB)
is also adopted as a baseline, which as a linear combination
of wAMAN and CB.

We use Mean Percentage Ranking (MPR) [4, 6] to eval-
uate the prediction accuracy, which is a typical evaluation
metric for recommendation with implicit feedback. MPR is
recall-oriented because precision based metrics are not very
appropriate as they require knowing which resources are un-
desired to a user. Lower values of MPR are more desirable.
The expected value of MPR for random predictions is 50%,
and thus MPR > 50% indicates an algorithm no better than
random.

5.2 Effect of Number of Latent Factors
We investigate our model with different number of latent

factors k, ranging from 10 to 100. Figure 1 shows the re-
sults. In general, both wAMAN and MCRI improve in MPR
as k increases. When k is small (e.g., k = 10), wAMAN per-
forms better than MCRI. When k becomes larger, MCRI
gets bigger improvement than wAMAN. These results sug-
gest for MCRI to work with the highest number of factors
feasible within computational limitations. Both of them be-
come flattened in MPR when k reaches 100. Thus, we choose
k = 100 in the other experiments.

5.3 Effect of Side Information
In this subsection, we investigate the effect of user and

resource information. Table 2 shows the results of MCRI
with incorporating various side information. We can see
that MPR gains 2.6% by including user information and
gains 5.8% by adding resource information. When incor-
porating both information, the performance gains 8.1% in
MPR. These results show the effectiveness of side informa-
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Figure 1: Impact of varying the number of latent
factors in wAMAN and MCRI

tion for improving the recommendation performance.

Table 2: Comparison of MCRI with different config-
urations. MCRI0 incorporates no side information.
MCRIU incorporates only user information. MCRIT
incorporates only resource information. MCRIUT

incorporates both user and resource information.
MCRI0 is the baseline in Gain.

MCRI0 MCRIU MCRIT MCRIUT

MPR 0.245 0.219 0.187 0.164
Gain% - 2.6 5.8 8.1

5.4 Effect of Weighting Schemes
In this subsection, we study the effect of different weight-

ing schemes in the MCRI model. Table 3 shows the results.
We can see that user-oriented (UO) weighting performs the
best among the three weighting schemes for the negative
examples. By combining UO with PO for the positive in-
stances, the performance is further improved. These results
show the effectiveness of weighting on both positive and neg-
ative examples.

Table 3: Comparison of different weighting schemes
in MCRI. UNI denotes uniform weighting, UO
denotes user-oriented weighting, and IO is item-
oriented [7]. UNI, UO and IO only weight on neg-
ative instances. PO denotes only weighting on pos-
itive instances. “Both” denotes the weighting that
combines UO and PO. UNI is the baseline in Gain.

UNI UO IO PO Both
MPR 0.201 0.187 0.194 0.213 0.164

Gain% - 1.4 0.7 -1.2 3.7

5.5 Comparison with Other Methods
In this subsection, we compare MCRIUT with other meth-

ods. From Table 4, we can see that MCRIUT perform sub-
stantially better than the baseline. In addition, we can find

that AMAN does not perform well and wAMAN can im-
prove it by weighting the implicit feedback. The pure con-
tent based method (CB) performs similarly with wAMAN.
By combining these two, the results can get further improve-
ment.

Table 4: Comparison of MCRIUT with other meth-
ods. AMAN is the baseline in Gain.

AMAN wAMAN wAMAN+CB
MPR 0.320 0.267 0.227

Gain% - 5.3 9.3
CB MCRIUT

MPR 0.268 0.164
Gain% 5.2 15.6

6. CONCLUSION AND FUTURE WORK
This paper presents a principled approach to exploiting

rich user and item information with implicit feedback. The
experiments are conducted on an online scientific community
dataset, which has been rarely investigated in the prior work.
The experimental results have shown the proposed model
can effectively incorporate the side information and improve
the recommendation performance. In the future work, we
will conduct more comprehensive experiments on large-scale
recommender systems.
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