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Abstract The current advances in sensors and sensor infrastructures offer new op-
portunities for monitoring the operations and conditions of man-made and natural
environments. The ability to generate insights or new knowledge from sensor data
is critical for many high-priority scientific applications especially weather, climate,
and associated natural hazards. One example is sensor-based early warning sys-
tems for geophysical extremes such as tsunamis or extreme rainfall, which can help
preempt disaster damage. Indeed, the loss of life during the 2004 Indian Ocean
tsunami may have been significantly reduced, if not totally prevented, had sensor-
based early warning systems been in place. One other example is high-resolution
risk-mapping of insights obtained through a combination of historical and real-
time sensor data, with physics-based computer simulations. Weather, climate and
associated natural hazards have established history of using sensor data, such as
data from DOPPLER radars. Recent advances in sensor technology and computa-
tional strengths have created a need for new approaches to analyzing data associ-
ated with weather, climate, and associated natural hazards. Knowledge discovery
offers tools for extracting new, useful and hidden insights from data repositories.
However, knowledge discovery techniques need to be geared towards scalable and
efficient implementations of predictive insights, online or fast real-time analysis of
incremental information, and solution processes for strategic and tactical decisions.
Predictive insights regarding weather, climate and associated natural hazards may
require models of rare, anomalous and extreme events, nonlinear phenomena, and
change analysis, in particular from massive volumes of dynamic data streams. On
the other hand, historical data may also be noisy and incomplete, thus robust tools
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need to be developed for these situations. This chapter describes some of the re-
search challenges of knowledge discovery from sensor data for weather, climate
and associated natural hazard applications and summarizes our approach towards
addressing these challenges.

Key words: Sensors, Knowledge discovery, Scientific applications, Weather
extremes, Natural hazards

13.1 Introduction

Predictive insights generated from sensor data, in conjunction with data obtained
from other sources like computer-based simulations, can facilitate short-term deci-
sions and longer-term policies. Remote sensors [35], such as Earth-observing satel-
lites, weather radars, large-scale sensor infrastructures [38] and environmental wire-
less sensor networks [5], yield massive volumes of dynamic and geographically dis-
tributed sensor data at multiple space-time resolutions. We define sensors broadly to
include wireless sensor networks, in-situ sensor infrastructures and remote sensors.
The raw data need to be converted to summary information and subsequently used
to generate new knowledge or insights, ultimately leading to faster and more accu-
rate tactical and strategic decisions. Therefore, we define knowledge discovery as
the overall process where raw data from sensors or simulations are ultimately con-
verted to actionable predictive insights for decision and policy makers. In addition
to observations, scientific applications demand that information about the known
physics, or data-dictated process dynamics, be taken into account. The scientific do-
mains are diverse and requirements for sensor-based data processing and analysis
can be fairly broad on one hand and domain specific on the other. This chapter fo-
cuses on applications of knowledge discovery from sensor data for weather, climate
and geophysical hazards; these applications may be useful for hazards mitigation
[17]. However, we present a broader view of knowledge discovery as compared to
the traditional definitions by the data mining community, but we include the data
mining and other data sciences as key aspects of the overall process.

Hazards can be natural [50], such as weather extremes including rainfall, hur-
ricanes and heat waves; they can be technological, such as leakage and spread of
toxic plumes from industrial facilities [23]; or they can be adversarial, as in security
[1] and war. This chapter focuses primarily on hazards due to weather or climate
extremes [33]. The idea of using intelligent data sciences and sensor data for haz-
ards mitigation has been demonstrated in a proof-of-concept way. For example, in
October 2006, a small satellite, Earth Observing 1 (EO-1) [41], collected data on its
own after noticing a plume of smoke on the island of Sumatra, Indonesia [43]. Such
automatic sensor-based data collection efforts could provide insights into what hap-
pened hours before a natural hazard; in this case, before the eruption of a volcano.
The overall goal is to develop objective-based rather than subjective-based models,
high-resolution rather than low-resolution models, and large-scale rather than low-
scale models that can form bases for extracting useful and insightful knowledge for
immediate and future hazard-mitigation purposes.
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This chapter is organized as follows. Section 13.2 proposes a broader knowledge
discovery framework. Section 13.3 presents a brief introduction to natural hazards
and sensors used for natural hazards. Section 13.4 discusses the significance and
challenges of knowledge discovery from sensor data for natural hazards.
Section 13.5 focuses on some applications of knowledge discovery approaches in
natural hazards. Section 13.6 presents some preliminary discussions of the applica-
tions of knowledge discovery insights for hazard mitigation. Section 13.7 summa-
rizes the chapter.

13.2 A Broader Knowledge Discovery Framework

Knowledge discovery offers tools for extracting new, useful and hidden insights from
massive sensor and historic data. However, knowledge discovery techniques need to
be geared towards scalable and efficient implementations of offline predictive in-
sights, fast real-time analysis of incremental information, and solution processes for
tactical and strategic decisions. Therefore, we propose a somewhat broader knowl-
edge discovery framework (see Fig. 13.1), which describes an end-to-end process
for knowledge discovery for natural disasters.

Fig. 13.1 A holistic approach to knowledge discovery

The components of the proposed framework, in the context of natural hazards,
are stated in this section; a description of the two broad areas of the framework are
discussed briefly in the following subsections. The proposed framework consists of
two sub-frameworks:

1. Offline Predictive Analysis

• Data Integration
– Remote sensors, wired and wireless in-situ sensor networks
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– Numerical physics-based computer model outputs
– Ancillary information and encoded domain knowledge

• Pattern Detection
– Offline data mining from sensor observations and models
– Computational efficiency and scalability to massive data
– Anomalies, extremes, nonlinear processes, in space and time
– Probabilities, intensities, duration, frequency, risks of observations

• Process Detection
– Numerical models with sensor data assimilation schemes
– Extraction of dynamics from massive sensor observations
– Extraction of dynamics from incomplete, noisy information

2. Online Decision Making

• Decision Support
– Online (real-time) analysis from models and observations
– Algorithmic efficiency for dynamic, distributed processing of sensor ob-

servations
– Resiliency, vulnerability, and impacts of observations
– Visualization and decision or policy aids models

13.2.1 Requirements for Offline Predictive Analysis

We propose the broad requirements of the offline predictive analysis, other than the
need for both capacity and capability computing, as including the following:

1. Multidisciplinary: Multiple aspects of problems solved using a set of individual
tools, each motivated from one or more disciplinary area.

2. Interdisciplinary: Comprehensive solutions developed based on blend of method-
ologies spanning traditional disciplinary areas.

3. Process-based: Larger overall problem partitioned into component processes and
solved using physics and a suite of data science tools.

4. Holistic: Approaches for an application from raw sensor and model data to deci-
sion and policy aids.

The distinguishing features compared to conventional knowledge discovery areas
are the following (sub-bullets list the primary differences from the conventional):

• Data Mining

– Enhanced focus on scientific rather than business data
– Algorithms for anomalies, extremes, rare and unusual events rather than pre-

dicting regular events
– Geographic, time series, spatial, space-time relational specific data
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• Statistics and Econometrics

– Focus on computational efficiency and scalability for distributed sensors
– Methods for nonlinear processes and representations
– Statistics of rare events and extremes/anomalies

• Nonlinear Dynamics and Information Theory

– Robust to limited or incomplete and noisy information
– Scalability to massive data for centralized sensors
– Spatial, space-time and geographic specific data

• Signal Processing

– Nonlinear dynamical, even chaotic, system behavior
– Colored, even 1/f, noise
– Noisy and incomplete information

13.2.2 Requirements for Online Decision Making

The decision support component is composed of online (real-time) knowledge dis-
covery and the decision sciences. The online knowledge discovery processes need
to be efficient in terms of memory usage and analysis times (especially for distrib-
uted sensors); must be able to handle incremental information in real-time; and must
generate time-phased or event-based decision metrics, at multiple geographically
based locations and possibly times, such that metrics can be used for automated
alert mechanisms or to facilitate the task of the human in the loop in the space-time
context.

One new example of this application is the concept of ubiquitous sensing. Ubiq-
uitous sensing describes a situation where one has either an array of many sensors
that generate high flows of data, much of which may be null (background, uninter-
esting or contradictory), or where one has a few mobile sensing platforms that need
to be deployed in a cost-effective way. Examples of the first category include arrays
that detect contraband crossing borders or unauthorized persons entering restricted
areas. Examples of the latter category include satellite or air-breathing remote-
sensing assets. Some offline modeling and decision-support tools have been semi-
coupled in real-time to direct the next sequence of data acquisition. In one example
of these decision-support tools, Bayesian approaches formulate hypotheses (such as
a missile launch being detected) and marshal the data from other elements of the
array (in the first example) or to move the mobile platform to the next location (in
the second example) in order to gain the next most valuable data point that would re-
duce uncertainty once an event is detected. Some of the applications and challenges
of ubiquitous sensing has been discussed in the literature [53].

Efficient real-time algorithms are required to react to the real-time, dynamic and
distributed nature of knowledge discovery as well as direct this data acquisition
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within the time cycle of an event. Overall, the online approaches need to be algorith-
mically efficient, that is, the mathematical algorithms must be amenable to robust
online implementations, which implies that they be fast, storage-efficient, memory
efficient, adaptive and possess real-time or near-real-time analytic capacity.

However, there is a trade-off between computational efficiency, algorithm perfor-
mance and domain requirements. A good example of such a trade-off is the SPIRIT
algorithm [48], which is essentially an incremental version of the Principal Compo-
nent Analysis (PCA) technique, but the weight estimates are slightly different from
the principal directions in conventional (offline) PCA. The difference in computa-
tional requirements does not affect the algorithm performance. Therefore, a good
understanding of application domains is the key to achieving such compromise. The
decision-science component encompasses the development of decision metrics in
space and time for visualization and visual analytics, utilization of predictive in-
sights from offline analysis and real-time distributed discovery processes. Addition-
ally, the decision-science component processes dynamic and event-based streams of
data in conjunction with offline discovery and real-time analysis, provides feedback
loops from prior decisions or policies, and provides a framework for decision met-
rics, uncertainty and impacts of risks, including the determination of resiliency and
consequences in the context of natural disasters.

13.3 Weather, Climate, and Associated Natural Hazards

The exposure of human life and economy to natural hazards—from hurricanes, vol-
cano, tornadoes, tsunamis and earthquakes to heat waves, cold spells, droughts and
floods or flash floods—appears to have increased even as world economies have de-
veloped and prospered [50,65]. However, one natural hazard impacts the other,
which generates multidimensional scenarios. In this section, we discuss impacts of
some natural hazards and highlight some sensors that can collect relevant data, giv-
ing us a better understanding of the causes of, and interactions among, natural haz-
ards.

13.3.1 Natural Hazards Impacts and Weather Extremes

Even though the occurrence of natural hazards cannot be prevented, understanding
the interactions between natural hazards is significant for extracting new insights. In
this section, we discuss climate impacts on weather extremes and the human impacts
of weather extremes.

1. Climate Impacts on Weather Extremes: The tremendous uncertainty surrounding
some of the issues regarding climate-weather linkage—for example, the links
of global warming to the increase in the number and intensity of hurricanes—
suggests that a closer inspection is necessary. Specifically, historical weather-
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sensor observations and climate data gathered from various sources need to be
analyzed, in an offline mode, in significant detail and with much greater care.
When climate models and indicators are used to understand and quantify the
impacts of climate on weather extremes, there is a need to delineate the impacts
of natural climate variability before or during the quantification of the impacts of
climate change. These issues are described in detail below:

• Natural Climate Variability and Weather Extremes: In the longer-term, nat-
ural climate variability—for example, the inter-annual El Niño phenomena—
can have significant impact on weather and hydrologic extremes [19,27,57];
In fact, the 2006 hurricane season turned out to be much quieter than antici-
pated and the most plausible hypothesis is the occurrence of the El Niño [8],
although the influence of African dust storms has also been suggested as an
added factor [40]. Incidentally, as of this writing, a very active 2007 hurricane
season is being predicted by forecasters [60].
The need to understand and quantify the impacts of natural climate variability
on weather extremes is underscored through the previous examples. The abil-
ity to quantify climate variability, including climate anomalies like El Niño,
requires processing massive amounts of geographic data obtained from remote
sensors like satellites and aircraft. Sensors for ocean temperature or salinity
and sensor networks like ocean monitoring instrumentation also play a role.
The ability to relate such large-scale geophysical phenomena to weather or
hydrologic extremes and regional change, both for offline discovery and on-
line analysis, requires holistic knowledge discovery approaches and massive
computational capabilities.
The need to quantify the impact of natural climate variability also stems from
the requirement to delineate and isolate the effects of global or regional cli-
mate change [24], and in particular possible anthropogenic effects [20], on
weather extremes and natural hazards.
The impacts and current wisdom in the insurance sector (e.g., see [70] and
[59], for two interesting viewpoints) may provide some indications to how the
financial world may be adapting—or may be anticipating the need to adapt—
to climate change. The importance of human factors rather than climate change
has been emphasized as the primary driving cause for recent natural disas-
ters [10]. Although consensus is lacking on the relative impacts of change in
climate versus human factors (e.g., [59,70]), the problem points to two dif-
ferent lines of research. First, there is a need to understand the relative and
complementary roles of climate- and human-induced changes and their com-
bined impact on natural disaster losses. Second, there is a need to understand
how future changes in climate may influence the variability of the weather ex-
tremes as well as related disaster losses. Finally, there is a need to combine the
risks, consequences, vulnerabilities and anticipatory damage assessments on
impacts within one policy tool which can provide metrics and visual guidance
to policy makers.
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• Climate Change and Weather Extremes: Future projections—especially at
sufficiently long terms when projections based on past trends or current ob-
servations may no longer be valid—need to rely directly or indirectly on cli-
mate model simulations. State-of the-art climate models like the Community
Climate System Model, Version 3, (CCSM3) can generate precise climate re-
constructions and predictions. For example, CCSM3 can give estimates of cli-
mate variables at three dimensions and one-degree spatial grids, from the year
1870 to 2100 [6]. These estimates can be given at daily or even six-hour in-
tervals However, precision does not necessarily imply accuracy, and precise
predictions may be only as good as the temporal and spatial scales of the cou-
pled atmospheric and earth system processes that such systems can model.
The first step is to compare the model outputs with observations for time pe-
riods when both are available. This comparison is needed to understand the
problems in the model outputs and to quantify the inherent uncertainties in
space and time. Since any simulation model is an imperfect realization of re-
ality and tends to smooth out the outliers and extremes, this can be a hard test
for climate models. However, simplified tests may help prove a point. Thus,
while the parameters of extreme value theory obtained from observations and
model simulations of temperature may or may not be statistically similar, the
number, frequency and duration of heat waves based on user-defined criteria
and thresholds may align well and this alignment may provide sufficient in-
formation in some cases. There have been attempts to compare modeled and
observed extremes [31], even based on detailed statistical analysis of extreme
values [32].
The next step is to investigate trends and patterns within climate model pro-
jection and quantify the uncertainties based on the results of model-observ-
ation comparisons. The Science paper by Meehl and Tebaldi [40] demonstrated
how insights about future weather extremes—in their case heat waves—can
be obtained in this fashion. However, this is a good starting point in terms of
actionable predictive insights from a combination of observations and models.
If temporally, spatially and geographically aware knowledge discovery tools
[28,30,32], specifically tailored for earth science applications, are let loose on
the massive volumes of sensor-observed and model-simulated data, we can
hope to validate, and perhaps discover, insights about weather extremes. This
is an urgent and high-priority research area whose time has clearly come.

2. Human Impacts and Weather Extremes:

• Globalization and Change in Human Factors: While our discussions have fo-
cused on weather extremes alone, there have been claims that the current in-
crease in disaster losses is more due to human factors, such as the impact of
human actions on the global environment. However, there is also an under-
standing that anticipated climate change may begin to change the relative im-
pacts. In any case, a link needs to be firmly established (or rejected) between
the anticipated change in weather extremes, whether caused by inherent cli-
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mate variability or human-induced change, to the corresponding impacts on
human population [14,3] and adaptability.

• Resiliency, Vulnerability and Policy Tools: Weather disaster impacts relate to
the design and safety of infrastructures and the resiliency of vulnerable so-
cieties [50,64,67]. An integrated policy tool is needed for various levels of
strategic decisions. Thus, insights from hurricane or rainfall extremes based
on archive sensor data may be used to design more resilient hydraulic struc-
tures in the short-term near the coasts, or stronger foundations for offshore
structures. In addition, these policy aids can be used to assess the extreme
variability, risks or consequences, resiliency and overall damage caused by
anticipated extremes (for a proof-of-concept example, see [14,47,61]).

• Policy Impacts: A quantitative assessment of climate-weather links has direct
influence on the design of highway and infrastructure sensing or monitoring
systems, building redundancies for contingency planning, enhancing readiness
of societies through early warning systems and public education, and plan-
ning human habitations such that vulnerabilities may be reduced. Longer-term
planning based on climate projections influences human habitation and demo-
graphics through policy regulations; for example, planned movement of pop-
ulations from vulnerable regions. This may be a feedback loop as the quanti-
tative assessment may help guide climate policy.

13.3.2 Utilization of Sensors for Weather and Climate

The occurrence of natural hazards cannot be prevented; but their occurrences and
interactions can be studied for useful insights into what drives them. Sensors have
long been used to collect data about weather (e.g., DOPPLER), climate, and natural
hazards. Recent advances in computational techniques and the current advances in
satellite, telecommunication and sensor technologies are providing access to, and
analysis of, massive data that can provide better knowledge of what drives these
hazards. The types of natural hazards are many but the most common (in alphabet-
ical order) include asteroid, avalanche, drought, earthquake, flood, heat wave, hur-
ricane, landslide, salinity, tornado, tsunami, volcanism, and wildfire. Each of these
natural hazards has been an integral part of the human experience. However, their
occurrences, as well as their effects on lives, properties and infrastructures, are be-
coming more dramatic. For example, drought may not be the most dramatic occur-
rence, but it is one of the most damaging disasters. Since 1967, drought alone has
been responsible for millions of deaths and has cost hundreds of billions of dol-
lars in damage worldwide [41]. Some of the sensors that can be used to track these
hazards and collect related data are:

1. DOPPLER Radars: These are weather-related sensors that send out radio waves
and are one of the oldest weather-related sensors.

2. Earth Observing Sensors: These are satellite-based sensors used by NASA to
monitor the Earth. An example of these sensors is Earth Observing 1 (EO-1).
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These sensors are useful for weather/climate-related hazards such as heat waves,
volcano, and hurricanes [41].

3. The National Ecological Observatory Network (NEON) sensors: This array of
sensors are used to understand how land-use change and climate variation affect
ecological systems [22].

4. Remote Sensors: Remote sensors are used to measure global ice cover changes
and carbon deposits, which can help track hurricanes, forest fires, and many other
climate-related hazards. Two types of remote sensing are used by NASA: passive
remote sensing, such as radiometers, and active remote sensing, such as RADAR
and Lidar [42].

5. River Sensor Network: This network of sensors developed at the University of
Lancaster monitors water depth and flow, which can be used to predict impending
floods. Some of the sensors in the network measure pressure from below the
water line in order to determine depth; others monitor the speed of river flow to
track objects and ripples moving along the surface from the riverbank [44].

6. Satellite Imagery: Satellite imagery is a multi-sensor system useful for capturing
forces of nature such as hurricanes [11].

Other examples are in-situ sensors, such as the Prompt Assessment of Global Earth-
quakes for Response (PAGER) system, developed by the US Geological Survey,
which automatically estimates human impact following significant earthquakes [66].
This system also provides important information to help emergency relief organi-
zations, government agencies and the media plan their response to earthquake dis-
asters. There are also efforts to distribute data from environmental and ecological
sensors to interested communities for further analysis. For example, the sea-viewing
Wide Field-of-view Sensor (SeaWiFS) project provides quantitative data on global
ocean bio-optical properties to the earth science community [62]. These data are
useful for extracting insightful knowledge that can help us understand the causes
driving these hazards. These sensors and others provide data that can be used for
insightful predictions of when an hazard will happen and the potentially affected
areas.

13.4 Challenges of Knowledge Discovery from Sensor Data for
Natural Hazards

The earth science community has developed and used traditional statistics [71], non-
traditional statistical models like extreme value theory [25,26], spatial and space-
time statistics [7,45], and nonlinear dynamics and signal processing [46,54,71], for
conventional data-analysis applications. However, the availability of advanced sen-
sor technology with high-performance computational facilities provides opportuni-
ties for developing solutions beyond statistical analysis of isolated data sets. Some
applications of knowledge discovery for the earth sciences have been reported in
the last few years [21,52,63]. However, in view of the amount of sensor data avail-
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able, contributions from data mining have been limited. For example, the process of
using remotely sensed and normalized difference vegetation index (NDVI) data for
land cover change detection is well known. Potere et al. [51] demonstrated a novel
knowledge discovery approach where time series data for NDVI (derived from the
MODIS sensor [37] between 2000 and 2005) was used to detect
changing landscape and land use from construction of WalMart stores. However,
such an approach, originating from traditional earth science perspective, was rather
visually driven and not easily transferable from a knowledge discovery approach to
a knowledge discovery process through online implementation of statistical reason-
ing. As a result, an online knowledge discovery approach was developed by Fang
et al. [12] as a first step towards automating landscape and land-use change detec-
tion process. The online approach was motivated by statistical process control meth-
ods for change detection. The automated approach, which is an adaptation of simu-
lated annealing for change-point detection, was validated with WalMart store open-
ings data (Fig. 13.2) and has encouraging results.

Fig. 13.2 Online change detection and alarms [12]

The online approach is a real-time approach in the sense that incremental data
can be analyzed efficiently as soon as they become available. An extension of this
approach can be used in the context of real-time natural disaster management by
identifying regions in space and time with significant and rapid change in land cover.
The analysis methods can be used to investigate geographic and remote sensing data
and then zero in on areas where change is occurring or has occurred in the recent
past. In addition, the methods can be used to identify changes due to deforestation.
The efficiency of the approach and its incremental approach differentiates it from
many traditional approaches used in earth science and remote sensing change detec-
tion applications. The interdisciplinary online approach [12] is efficient and lends
itself to full automation unlike visualization-based manual validation [51] tradition-
ally used in remote sensing. In addition, the ability to make immediate decisions
based on incremental information is a distinguishing feature. The approach can be
further developed to automatically detect land cover changes from large-scale and
high-resolution geospatial-temporal data, as well as to automatically zoom in on the
specific locations where such change may have occurred. This capability is impor-
tant to assess natural disaster damage by investigating remotely sensed images be-
fore and after an event.
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Newer developments in data mining include the ability to deal with dependence
of learning samples or “relational” data [9,39,55], mining rare events from dynamic
sequences [68,69], as well as anomaly detection (primarily in the context of cyber-
security, e.g., [34]) and change-point detection [18].

Computationally efficient methods for anomalies, extreme values, rare events,
change and nonlinear processes need to be developed for massive geographically
based sensor data. An interdisciplinary focus within the data sciences is necessary,
so that new tools can be motivated from a combination of traditional and non-trad-
itional statistics, nonlinear dynamics, information theory, signal processing, econo-
metrics and decision theory, and lead toward application solutions that span these
areas. One key challenge of natural hazards is the multi-scale nature of the prob-
lem, which may mean that the physical processes, parameterization and parameter
values, as well as the fitted data-generation models or distributions, do not remain
invariant across space-time scales. In a section describing the interdisciplinary na-
ture of knowledge discovery in databases (KDD), Fayyad et al. [13] mentioned that
KDD evolves from the intersection of research fields like machine learning, pattern
recognition, databases, statistics, AI, knowledge acquisition for expert systems, data
visualization, and high performance computing.

The time may have come to further broaden the interdisciplinary roots. Scientific
applications are built on domain knowledge and are typically embedded with nu-
merical models. The sensor technology and knowledge discovery communities also
have to work together with modelers to develop efficient strategies for real-time data
assimilation within physically based computer models. In addition, analysis from
observations needs to be effectively synthesized with model simulations. While the
challenges are tremendous, the scientific opportunities [4] and benefits can be im-
mense.

Some of the reasons there have been limited research efforts in weather and cli-
mate extremes using knowledge discovery approaches are:

1. Limited multidisciplinary span: There is a need to extend knowledge discovery
approaches to include tools from other disciplinary areas such as spatial statistics,
extreme value theory and nonlinear dynamics, information theory and decision
sciences.

2. Limited Interdisciplinary span: Solutions should be based on a blend of method-
ologies including traditional areas of statistics and machine learning.

3. Lack of holistic-based solutions: The knowledge discovery approaches should be
formulated with solutions in mind rather isolated predictive analyses.

4. Approaches for strategic and tactical decisions: The knowledge discovery ap-
proaches must be focused on both short-term decisions and long-term planning
rather than immediate implications.

As a result, we propose a broader and holistic knowledge discovery framework
in Sect. 13.2.
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13.5 Knowledge Discovery Approaches for Weather, Climate and
Associated Natural Hazards

This section provides an overview of the knowledge discovery approaches devel-
oped or being developed by the authors and their collaborators in the area of weather
and climate extremes and related natural hazards. While the sample approaches are
neither exhaustive nor intended to be directional, they illustrate the areas where
knowledge discovery, broadly construed, can help in the context of natural hazards.

The examples presented in this section attempt to emphasize the potential of
knowledge discovery approaches. In addition, these are intended to provide exam-
ples of both a closed-loop knowledge discovery process depicted in Fig. 13.1 as well
as for knowledge discovery approaches that may be useful for decision and policy
making in natural hazards mitigation.

13.5.1 Knowledge Discovery Approaches for Weather, Climate and
Associated Natural Hazards

This section provides an overview of the knowledge discovery approaches devel-
oped or being developed by the authors and their collaborators in the area of weather
and climate extremes and related natural hazards. While the sample approaches are
neither exhaustive nor intended to be directional, they can help illustrate the possi-
bilities that knowledge discovery, broadly construed, can help in the area of natural
hazards.

The examples presented in this section attempt to emphasize the potential of knowl-
edge discovery approaches. In addition, these are intended to provide examples of
both a closed-loop knowledge discovery process depicted in Figure 1.1 as well as
for knowledge discovery approaches that may be useful for decision and policy making
in natural hazards mitigation.

Some of the building blocks which can ultimately lead to a closed-loop process
for tactical and strategic decision-making in the context of weather or climate related
hazards are:

1. Short-term prediction from remotely sensed observations [16].
2. Trends in weather extremes from dynamic data streams [30].
3. Prediction from short and noisy sensor data [29].
4. Natural variability and impacts on local geophysical phenomena [27].
5. Comparison of model simulations and historical observations [32].
6. Real-time change detection from remotely sensed data [12].
7. Quantification and visualization of human impacts [14].

Here, we highlight a few of these building blocks through the following results:

1. Short-term prediction from remotely sensed observations: Figure 13.3 depicts the
short-term rainfall prediction methodology developed by Ganguly and Bras [16].
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Fig. 13.3 Short-term rainfall prediction [16]

Numerical weather prediction model outputs and remote sensor observations
from weather radar were blended for high-resolution forecasts at radar resolu-
tions and for one- to six-hour lead times.
The approach relied on a process-based strategy, where the overall problem was
partitioned into component processes based on domain knowledge and explora-
tory data analysis and then the results were re-combined. The forecasting strat-
egy used a combination of weather physics like advection, as well as a suite of
traditional and new adaptations of data-dictated tools like exponential smooth-
ing, space-time disaggregation and Bayesian neural networks. Case studies with
real data indicated [15,16] that the methodology was able to outperform the state-
of-the-art approach at that time. The ability to generate short-term (0–6 hour) and
high-resolution (order of a km or less in space and hourly or less in time) quan-
titative precipitation forecasts, especially for convective storms, is important for
heavy rainfall events and hurricane activity, primarily to quantify the potential
risks and damage from flash flood and flood-related hazards. Advance informa-
tion can be used to control hydraulic flows, take preparatory measures and issue
flood advisories.

2. Trends in weather extremes from dynamic data streams: Figure 13.4 exhibits a
preliminary result from the approach developed by [30] for computing the spatio-
temporal trends in the volatility of precipitation extremes. The methods were used
for large-scale, geographically dimensioned data at high spatial resolutions. The
geospatial-temporal indices were computed at each grid point in South America
for which rainfall time series was available. The change in the indices can be
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Fig. 13.4 Space-time trends in extremes volatility [30]

quantified and visualized with multiple time windows of data. The color scheme
in Fig. 13.4 and the GIS-based visualization was done as part of the [14] study
described later.
The red-amber-green color combination is used to denote high (red) to low
(green) volatility for the extremes. The extremes volatility index was a new mea-
sure based on the ratios of return levels, computed at each grid. The index pre-
sented here was normalized to scale between zero and unity by [14]. The ability
to quantify and visualize weather and hydrologic extreme values and their prop-
erties (e.g., 100-year levels) in space and time is an important first step to study-
ing the impacts on these extremes on infrastructures and human societies. One
implication of this study for natural hazards is that it can help evaluate the threat
posed by failure by critical infrastructures, such as dams. The extreme volatil-
ity index is a measure of the anticipated degree of surprise, or “threat”, due to
natural extremes. The measure relates, in an aggregate sense, to the expected im-
pacts of extremes. Thus, if critical infrastructures such as dams or levees have
been designed to withstand rare 100-year rainfall events (or a rainfall intensity
of 0.01 probability of exceedance) then a rarer and more intense event (e.g., a
500-year rainfall) may cause significant damage only if the 500-year intensity
is significantly different from the 100-year intensity. This second-order informa-
tion about relative intensity of extremes is important both for natural variability
of the climate system and in situations where global change may cause the ex-
tremes to grow more intense. The information can be used for risk-benefit analy-
sis during the design of hydraulic structures and response systems.

3. Prediction from short and noisy sensor data: The ability to deal with massive
volumes of geographic data from remote and in-situ sensors needs to be comple-
mented by the ability to derive predictive insights from short and noisy geophys-
ical and weather- or climate-related observations. Some of the most relevant his-
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Fig. 13.5 Predictability in short and
noisy data [29]

torical geophysical data and indices may be limited or incomplete, however the
presence of nonlinear dynamics and chaos on the one hand, and colored or even
1/f noise with seasonal fluctuations on the other, cannot be ruled out a priori. In
fact, the ability to detect the underlying nonlinear dynamical signals from such
data may be of significant value for studies in short- and long-term predictability.
Khan et al. [29] developed a methodology to extract the seasonal, random and
dynamical components from short and noisy time series, and applied the meth-
ods to simulated data and real river flows. Figure 13.5 shows the application to
the Arkansas River. The methodology was based on a combination of tools from
signal processing, traditional statistics, nonlinear prediction and chaos detection.
This methodology can be used to determine how much information is actually
contained in the data; such quantification can help determine the appropriate pre-
processing approaches and which knowledge discovery techniques to use. The
ability to quantify how much predictive insights can be generated from data has
direct implications for anticipatory risk-mitigation strategies. Thus, when the
available data are completely random, a risk-benefit analysis based on standard
deviations may be appropriate, while for completely deterministic signals, an in-
vestment in the development of better predictive models followed by recommen-
dations of specific mitigation strategies may be the better strategy. However, for
nonlinear dynamics and chaos, the trade-offs between short-term predictability
and longer-term error growth need to be carefully balanced, depending on how
much information can be extracted from data, especially when the data are noisy
and/or limited. Thus, information on the type, quality and quantity of predictive
insights that can be generated from data may lead to a determination of preven-
tive actions that can be taken in anticipation of climate, weather and hydrologic
extremes.
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Fig. 13.6 Nonlinear impact
of El Niño on rivers [27]

4. Natural variability and impacts on local geophysical phenomena: The ability to
quantify nonlinear dependence from historical data, even in situations where such
data are short and noisy, are critical first steps in studies on predictability, predic-
tive modeling, and physical understanding of weather, climate and geophysical
systems.
Khan et al. [27] developed an approach based on nonlinear dynamics and in-
formation theory, along with traditional statistics, to develop and validate new
adaptations of emerging techniques. The approach was tested on simulated data,
and then applied to an index of the El Niño climate phenomena and the variabil-
ity in the flow of tropical rivers. The approach revealed more dependence be-
tween the variables than previously thought. The ability to quantify the impacts
of natural climate variability on weather and hydrologic variables, as shown in
Fig. 13.6, can help refine our understanding of the impacts of climate change.
The methodology, which can have significant broader impact beyond the case
study considered here, was refined and expanded in a another work [28]. Climate
systems’ response to global changes often leads to natural hazards. We note that
the individual and combined impacts of El Niño and global warming have of-
ten been advanced as causes for relatively hot or cold summers, as well as the
activity of the hurricanes season, in the continental United States. An extraction
of causality may be an open research area; however, previous researchers have
suggested that natural variability in climate systems, as well as global environ-
mental change, may cause hydrologic or weather extremes at local or regional
scales. The ability to quantify the dependency among natural or changing cli-
mate phenomena and natural extremes or hazards can help point to appropriate
information sources that may guide predictive analyses. This is especially true
when larger-scale climate effects can be predicted in advance from data or from
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Fig. 13.7 Geospatial-temporal ex-
treme dependence [32]

simulations, which in turn can be used to provide predictive insights on natural
hazards.

5. Comparison of model simulations and historical observations: Kuhn et al. [32]
developed a new approach to quantify the geospatial-temporal dependence
among extreme values from massive geographic data. The methodology was mo-
tivated by recent developments in multivariate extremes, and hence can be ap-
plied to quantify the dependence among extremes of multiple variables—for ex-
ample, heat waves and precipitation extremes—in space and time. In addition,
this copula-based measure can be useful in analyzing simultaneous occurrence
of extremes, which may be indicators of possible change.
Thus, if two 100-year events which have zero extremes dependence were to oc-
cur simultaneously, this would be a 10,000-year event (see [32], for details),
whereas if the extremes have complete dependence, then the simultaneous oc-
currence still represents a 100-year event. The new measure was utilized on geo-
spatial-temporal rainfall observations and climate model simulations for inter-
comparisons and model evaluation as shown in Fig. 13.7. In addition, the ex-
tremes dependence in space and time was compared with the corresponding spa-
tial correlation values, obtained here through a rank-based correlation measure.
Co-occurrence of extremes like heat waves and prolonged droughts can have a
combined impact on human lives and economies that is greater than the sum of
the individual impacts. The co-occurrence of extremes over space and time may
imply a larger regional impact, for example, co-occurrence of extreme rainfall
over larger areas may increase the chances of widespread flooding. The relation
among extremes in time can be useful for predictive insights regarding the ex-
tremes of one variable based on observations of extremes in related variables.
The simultaneous and/or frequent occurrence of multiple extremes in space and
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time may suggest local, regional or global change in the underlying dynamics of
the weather or climate system.

13.6 The Significance of Utilizing Knowledge Discovery Insights
for Hazards Mitigation

While debates may persist on the exact causes of natural hazards that led to increased
losses of human life and property in recent years, the fact that enhanced predictive
insights can help mitigate the impacts of such hazards through improved decisions
and policies is becoming relatively well accepted. Pearce [49] described the need for
a shift [in] focus from response and recovery to sustainable hazard mitigation and
laments that in current practices hazard awareness is absent from local decision-
making processes. However, such sustainable hazard mitigation depends on useful
predictive insights from historical data. An interesting early article by Sarewitz and
Pielke, Jr. [58] discusses the art of making scientific predictions relevant to policy
makers, and uses weather extremes and natural hazards as examples of possible ap-
plications. The idea is to move beyond post-disaster consequence management and
humanitarian aid disbursal toward preemptive policies based on predictive insights.
Decision makers need to realize that while natural disasters may or may not be acts
of God, their consequences affect humans and can be mitigated by policies; this was
highlighted by two recent Science magazine articles [3,36].

Hazards mitigation, using predictive insights in some rudimentary form, has been
attempted since time immemorial with varying success. However, what has changed
dramatically in recent years is the availability of massive volumes of historical and
real-time data from sensors. These data, combined with advanced techniques and
high-performance computational tools that can be used to extract actionable pre-
dictive insights, enhance our understanding of physical processes. This leads to im-
proved short- and longer-term computer simulation models, which in turn are ini-
tialized and updated in real time with sensor observations for improved accuracy.
The result is a yield of massive volumes of simulation outputs. In this sense, both
the new opportunities and the key challenges in generating predictive insights for
natural hazard mitigation rely on extracting knowledge from massive volumes of
dynamic and distributed sensory data as well as large volumes of computer-based
simulations.

An initial investigation in this area was performed by Fuller et al. [14]. Their
work investigated how a combination of variables—specifically, the precipitation
extremes volatility as defined by Khan et al. [30], the high-resolution population
maps described by Bhaduri et al. [2] and used by Sabesan et al. [56], as well as
measures representing development or financial indices like the GDP—could be
used in conjunction with each other to quantify and visualize the human impacts on
natural disasters, specifically those caused by rainfall extremes in South America.
Figure 13.8 is a map showing the impacts of weather-related disaster on the human
population based on their investigation.
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Fig. 13.8 Human impacts of
weather related disasters [14]

The computed geospatial indices included the probabilities of truly unusual rain-
fall extremes, the risks to human population associated with such extremes and the
resiliency, or the ability of a region to respond to the disaster. Anticipatory informa-
tion on disaster damage based on refinements of this study can aid policy makers.
Risk metrics can be designed and quantified in space and time based on threat or de-
gree of surprise caused by natural disasters, as well as consequences to human pop-
ulation, economies and critical infrastructures. Resiliency metrics for infrastructures
and societies can be used in conjunction with risks to develop geospatial and tempo-
ral metrics for anticipated impacts. The metrics can provide an overall and objective
assessment of potential disaster damage to emergency planners and policy makers
at high-resolutions in space and time over large space-time scales. In addition, the
various metrics can help planners perform root-cause analysis to determine the crit-
ical responsible factors. The overall assessment can help policy makers optimize
the level of resource allocations in space and time while the root-cause analysis can
help design appropriate mitigation strategies based on the allocated resource at any
specific location in any given time.
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13.7 Closing Remarks

Predictive insights generated from sensor data, in conjunction with data obtained
from other sources like computer-based simulations, can facilitate short-term deci-
sions and longer-term policies. The overall process where raw data from sensors or
simulations are ultimately converted to actionable predictive insights for decision
and policy makers is defined as knowledge discovery in this chapter. This chapter
presents a broader view of knowledge discovery compared to the traditional defin-
itions by the data mining community, but with the data mining and other data sci-
ences as key aspects of the overall process. In addition, we have defined sensors
broadly to include wireless sensor networks, in-situ sensor infrastructures and re-
mote sensors. The challenges and opportunities for knowledge discovery based on
data from sensors and simulations were described. In particular, we have presented a
vision of knowledge discovery in the context of scientific applications. This chapter
describes how knowledge discovery from historical and real-time sensor data and
computer model simulations can lead to improved predictive insights about weather,
climate and associated natural hazards, which can in turn be combined with metrics
for disaster risks, consequence, and vulnerability. Scientific applications and scien-
tific knowledge discovery may make sense primarily in the context of a specific do-
main. Our focus is weather, climate and geophysical hazards. While prediction of
natural hazards and mitigating their consequences have been attempted since the
dawn of human civilization with varying degrees of success, the possibility of en-
hanced knowledge discovery from ever-increasing and improving sensor and simu-
lation data make us optimistic that significant breakthroughs may be possible in the
near future.
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