Linear Algebra (Review)

COEN140

Santa Clara University

Vector

- A length- N vector in real domain can be denoted as $\mathbf{v} \in \mathbb{R}^{N}$
- Example

$$
\mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{N}
\end{array}\right]=\left[v_{1}, v_{2}, \cdots, v_{N}\right]^{T}
$$

- Vector addition: add element by element

$$
\mathbf{a}=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{N}
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{N}
\end{array}\right], \mathbf{a}+\mathbf{b}=\left[\begin{array}{c}
a_{1}+b_{1} \\
\vdots \\
a_{N}+b_{N}
\end{array}\right]
$$

Vector

- Scalar: a real or complex number
- Multiplying a vector by a scalar

$$
\mathbf{a}=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{N}
\end{array}\right], \quad \alpha \mathbf{a}=\left[\begin{array}{c}
\alpha a_{1} \\
\vdots \\
\alpha a_{N}
\end{array}\right]
$$

Vector

- All-zero vector
- Column vector: $\mathbf{0}=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right]=[0,0, \ldots, 0]^{T}$
- Row vector: $\mathbf{0}^{T}=[0,0, \ldots, 0]$
- All-one vector
- Column vector: $\mathbf{1}=\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right]=[1,1, \ldots, 1]^{T}$
- Row vector: $\mathbf{1}^{T}=[1,1, \ldots, 1]$

Length of a Vector

- For any vector $\mathbf{v}=\left[v_{1}, v_{2}, \cdots, v_{N}\right]^{T} \in \mathbb{R}^{N}$, its length is defined as

$$
\|\mathbf{v}\|_{2}=\sqrt{\sum_{i=1}^{N} v_{i}^{2}}
$$

- $\|\mathbf{v}\|_{2}$ is also called the L_{2}-norm of vector \mathbf{v}

- If $\|\mathbf{v}\|_{2}=1$, we say the vector \mathbf{v} is normalized, or the vector \mathbf{v} has unit-norm.

Length of a Vector

- What is the L_{2}-norm of $\frac{\mathbf{v}}{\|\mathbf{v}\|_{2}}$?
- Answer: 1

Distance Between Vectors

- The Euclidean distance between two vectors in a vector space is defined as

$$
d\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\left\|\mathbf{v}_{1}-\mathbf{v}_{2}\right\|_{2}
$$

\square Note that $d\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=0$ iff $\mathbf{v}_{1}=\mathbf{v}_{2}$.

Inner Product Between Vectors

- Define the inner product between two vectors in \mathbb{R}^{N} by

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\sum_{i=1}^{N} u_{i} \times v_{i}=\mathbf{v}^{T} \mathbf{u}=\mathbf{u}^{T} \mathbf{v}
$$

- Two vectors \mathbf{u} and \mathbf{v} are orthogonal when $\mathbf{v}^{T} \mathbf{u}=0$

Inner Product Between Vectors

- Calculate the vector L_{2}-norm of $\mathbf{v} \in \mathbb{R}^{N}$

$$
\|\mathbf{v}\|_{2}=\sqrt{\mathbf{v}^{T} \mathbf{v}}
$$

- The square of the L_{2}-norm

$$
\|\mathbf{v}\|_{2}^{2}=\mathbf{v}^{T} \mathbf{v}=v_{1}^{2}+v_{2}^{2}+\cdots+v_{N}^{2}
$$

Matrix

- Matrix: is an array of numbers organized in rows and columns
- Here is a 3×4 matrix:

$$
\mathbf{A}=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]
$$

- View a matrix as built from its columns
- $\mathbf{A}=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4}\end{array}\right]$
- The k-th column $\mathbf{a}_{k}=\left[\begin{array}{lll}a_{1 k} & a_{2 k} & a_{3 k}\end{array}\right]^{T}$

Linearly Dependent

- A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{M}\right\}$ are linearly dependent, if there exist scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{M}$, not all zero, such that

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{M} \mathbf{v}_{M}=\mathbf{0}
$$

Linearly Independent

- A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{M}\right\}$ are linearly independent, if the equation

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{M} \mathbf{v}_{M}=\mathbf{0}
$$

can only be satisfied by

$$
\alpha_{1}=\alpha_{2}=\cdots=\alpha_{M}=0
$$

The Rank of a Matrix

- The rank of a matrix is the largest number of linearly independent rows (or columns) in the matrix
- For an $m \times n$ matrix, its rank is $r \leq \min \{m, n\}$

Matrix-Vector Multiplication

- Let $\mathbf{a}=\left[a_{1}, a_{2}, \ldots, a_{N}\right]^{T}$
- Let $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{N}\right]^{T}$
- $\mathbf{x}^{T} \mathbf{a}=\mathbf{a}^{T} \mathbf{x}$: a scalar
- Let B be an $N \times N$ matrix
- Bx: a column vector
- $\mathbf{x}^{T} \mathbf{B}$: a row vector

Matrix-Vector Multiplication

- Let $\mathbf{a}=\left[a_{1}, a_{2}, \ldots, a_{N}\right]^{T}$
- Let $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{N}\right]^{T}$
- Let B be an $N \times N$ matrix
- $\mathbf{x}^{T} \mathbf{B x}$ is a scalar

Partial Derivative

- $\mathbf{x}^{T} \mathbf{a}=\mathbf{a}^{T} \mathbf{x}=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{N} x_{N}$

$$
\frac{\partial \mathbf{x}^{T} \mathbf{a}}{\partial x_{i}}=a_{i}
$$

- For example

$$
\frac{\partial \mathbf{x}^{T} \mathbf{a}}{\partial x_{2}}=a_{2}
$$

Vector Derivative

- $\mathbf{x}^{T} \mathbf{a}=\mathbf{a}^{T} \mathbf{x}=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{N} x_{N}$

$$
\frac{d \mathbf{a}^{T} \mathbf{x}}{d \mathbf{x}}=\frac{d \mathbf{x}^{T} \mathbf{a}}{d \mathbf{x}}=\left[\begin{array}{c}
\frac{\partial \mathbf{x}^{T} \mathbf{a}}{\partial x_{1}} \\
\frac{\partial \mathbf{x}^{T} \mathbf{a}}{\partial x_{2}} \\
\vdots \\
\frac{\partial \mathbf{x}^{T} \mathbf{a}}{\partial x_{N}}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right]=\mathbf{a}
$$

Identity Matrix

- $\mathbf{I}_{D \times D}$: a $D \times D$ identity matrix, a square matrix
- $\mathbf{I}_{D \times D}=\left[\begin{array}{cccccc}1 & 0 & 0 & & & 0 \\ 0 & 1 & 0 & & & 0 \\ 0 & 0 & 1 & \ddots & & 0 \\ \vdots & \vdots & \vdots & & & \vdots \\ 0 & 0 & 0 & & & 1\end{array}\right]$
- $\mathrm{IA}=\mathrm{A}$
- $\mathbf{A I}=\mathbf{A}$
- $\mathrm{AIB}=\mathrm{AB}$

Transpose

- $\mathbf{x}_{D \times 1}$: a vector
$\cdot \mathbf{\mathbf { x } ^ { T }}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{D}\end{array}\right] \times\left[\begin{array}{lll}x_{1} & x_{2} \ldots & x_{D}\end{array}\right]$
- $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$
- $\left(\mathbf{X X}^{T}\right)^{T}=\mathbf{X} \mathbf{x}^{T}$: symmetric
- $\mathbf{x}^{T} \mathbf{x}=\mathbf{x}^{T} \mathbf{I} \mathbf{x}$, where \mathbf{I} is a $D \times D$ identity matrix

Transpose

- $\mathbf{X}_{m \times n}$: a matrix
- $\mathbf{X X}^{T}: m \times m$

$$
\left(\mathbf{X X}^{T}\right)^{T}=\mathbf{X} \mathbf{X}^{T}
$$

- $\mathbf{X}^{T} \mathbf{X}: n \times n$

$$
\left(\mathbf{X}^{T} \mathbf{X}\right)^{T}=\mathbf{X}^{T} \mathbf{X}
$$

- Both are symmetric

Vector Derivative

- Let B: an $N \times N$ square matrix
- $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{N}\right]^{T}$
- $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{B} \mathbf{x}=f\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ is a function

$$
\frac{d \mathbf{x}^{T} \mathbf{B x}}{d \mathbf{x}}=\left[\begin{array}{c}
\frac{d \mathbf{x}^{T} \mathbf{B x}}{d x_{1}} \\
\frac{d \mathbf{x}^{T} \mathbf{B}}{d x_{2}} \\
\vdots \\
\frac{d \mathbf{x}^{T} \mathbf{B x}}{d x_{N}}
\end{array}\right]=\mathbf{B x}+\mathbf{B}^{T} \mathbf{x}
$$

$$
\text { If } \mathbf{B}=\mathbf{B}^{T} \text {, then } \frac{d \mathbf{x}^{T} \mathbf{B x}}{d \mathbf{x}}=2 \mathbf{B} \mathbf{x}
$$

Vector Derivative

- If $\mathbf{B}=\mathbf{B}^{T}$, then $\frac{d \mathbf{x}^{T} \mathbf{B x}}{d \mathbf{x}}=2 \mathbf{B} \mathbf{x}$
- Calculate $\frac{d \mathbf{x}^{T} \mathbf{x}}{d \mathbf{x}}$?
- $\frac{d \mathbf{x}^{T} \mathbf{x}}{d \mathbf{x}}=\frac{d \mathbf{x}^{T} \mathbf{I x}}{d \mathbf{x}}=2 \mathbf{I} \mathbf{x}=2 \mathbf{x}$

Matrix Inversion

- If $\mathbf{A}_{D \times D}$ is a full-rank square matrix, then
- \mathbf{A}^{-1} exists
- $\mathbf{A} \mathbf{A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$

Matrix Inversion

- If $\mathbf{A}_{D \times D}$ is a full-rank square matrix, then
- \mathbf{A}^{-1} exists
- If $\mathbf{y}=\mathbf{A x}$, then

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{y}
$$

- If $\mathbf{y}^{T}=\mathbf{x}^{T} \mathbf{A}$, then

$$
\mathbf{x}^{T}=\mathbf{y}^{T} \mathbf{A}^{-1}
$$

- $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$
- $\mathbf{I}^{-1}=\mathbf{I}$, where \mathbf{I} is an identity matrix

