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Vector

• A length-𝑁 vector in real domain can be denoted as
𝐯 ∈ ℝ𝑁

• Example 

• Vector addition: add element by element
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Vector

• Scalar: a real or complex number

• Multiplying a vector by a scalar

𝐚 =

𝑎1
⋮
𝑎𝑁

,                 𝛼𝐚 =

𝛼𝑎1
⋮

𝛼𝑎𝑁
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Vector

• All-zero vector

⎻ Column vector: 𝟎 =

0
0
⋮
0

= [0,0,… , 0]𝑇

⎻ Row vector: 𝟎𝑇 = [0,0,… , 0]

• All-one vector

⎻ Column vector: 𝟏 =

1
1
⋮
1

= [1,1,… , 1]𝑇

⎻ Row vector: 𝟏𝑇 = [1,1,… , 1]
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Length of a Vector

• For any vector 𝐯 = [𝑣1 , 𝑣2 , ⋯ , 𝑣𝑁 ]
𝑇∈ ℝ𝑁, its length is 

defined as

• 𝐯 2 is also called the L2-norm

of vector 𝐯

• If 𝐯 2 = 1, we say the vector 𝐯 is normalized, or the 
vector 𝐯 has unit-norm.
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𝐯 2 = σ𝑖=1
𝑁 𝑣𝑖

2

𝐯 2

𝐯



Length of a Vector

• What is the L2-norm of 
𝐯

𝐯 2
?

• Answer: 1
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Distance Between Vectors
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𝐯1

𝐯2

𝐯1 − 𝐯2



Inner Product Between Vectors

• Define the inner product between two vectors in ℝ𝑁 by

< 𝐮, 𝐯 >=

𝑖=1

𝑁

𝑢𝑖 × 𝑣𝑖 = 𝐯𝑇𝐮 = 𝐮𝑇𝐯

• Two vectors 𝐮 𝑎𝑛𝑑 𝐯 are orthogonal when 𝐯𝑇𝐮 = 0
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𝐯

𝐮



Inner Product Between Vectors

• Calculate the vector L2-norm of 𝐯 ∈ ℝ𝑁

𝐯 2 = 𝐯𝑇v

• The square of the L2-norm

𝐯 2
2 = 𝐯𝑇v=𝑣1

2 + 𝑣2
2 +⋯+ 𝑣𝑁

2
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Matrix

• Matrix: is an array of numbers organized in rows and 
columns

• Here is a 3×4 matrix:

𝐀 =

𝑎11
𝑎21
𝑎31

𝑎12
𝑎22
𝑎32

𝑎13
𝑎23
𝑎33

𝑎14
𝑎24
𝑎34

• View a matrix as built from its columns

• 𝐀 = 𝐚1 𝐚2 𝐚3 𝐚4

• The 𝑘-th column 𝐚𝑘 = [𝑎1𝑘 𝑎2𝑘 𝑎3𝑘]
𝑇
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Linearly Dependent

• A set of vectors {𝐯1, 𝐯2,…, 𝐯𝑀} are linearly dependent, if 
there exist scalars 𝛼1, 𝛼2, … , 𝛼𝑀, not all zero, such that 
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𝛼1𝐯1 + 𝛼2𝐯2 +⋯+ 𝛼𝑀𝐯𝑀 = 𝟎



Linearly Independent

• A set of vectors {𝐯1, 𝐯2,…, 𝐯𝑀} are linearly independent, 
if the equation

can only be satisfied by  

𝛼1 = 𝛼2 = ⋯ = 𝛼𝑀 = 0
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𝛼1𝐯1 + 𝛼2𝐯2 +⋯+ 𝛼𝑀𝐯𝑀 = 𝟎



The Rank of a Matrix

• The rank of a matrix is the largest number of linearly 
independent rows (or columns) in the matrix

• For an 𝑚 × 𝑛 matrix, its rank is 𝑟 ≤ min{𝑚, 𝑛}
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Matrix-Vector Multiplication
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• Let 𝐚 = [𝑎1 , 𝑎2 , … , 𝑎𝑁 ]
𝑇

• Let 𝐱 = [𝑥1 , 𝑥2 , … , 𝑥𝑁 ]
𝑇

• 𝐱𝑇𝐚 = 𝐚𝑇𝐱: a scalar

• Let 𝐁 be an 𝑁 × 𝑁 matrix

• 𝐁𝐱: a column vector

• 𝐱𝑇𝐁: a row vector



Matrix-Vector Multiplication

Instructor: Ying Liu COEN 140, Machine Learning 15

• Let 𝐚 = [𝑎1 , 𝑎2 , … , 𝑎𝑁 ]
𝑇

• Let 𝐱 = [𝑥1 , 𝑥2 , … , 𝑥𝑁 ]
𝑇

• Let 𝐁 be an 𝑁 × 𝑁 matrix

• 𝐱𝑇𝐁𝐱 is a scalar



Partial Derivative
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• 𝐱𝑇𝐚 = 𝐚𝑇𝐱 = 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑁𝑥𝑁

𝜕𝐱𝑇𝐚

𝜕𝑥𝑖
= 𝑎𝑖

• For example
𝜕𝐱𝑇𝐚

𝜕𝑥2
= 𝑎2



Vector Derivative
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• 𝐱𝑇𝐚 = 𝐚𝑇𝐱 = 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑁𝑥𝑁

𝑑𝐚𝑇𝐱

𝑑𝐱
=
𝑑𝐱𝑇𝐚

𝑑𝐱
=

𝜕𝐱𝑇𝐚

𝜕𝑥1
𝜕𝐱𝑇𝐚

𝜕𝑥2
⋮

𝜕𝐱𝑇𝐚

𝜕𝑥𝑁

=

𝑎1
𝑎2
⋮
𝑎𝑁

= 𝐚



Identity Matrix
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• 𝐈𝐷×𝐷: a 𝐷 × 𝐷 identity matrix, a square matrix

• 𝐈𝐷×𝐷 =

1
0
0
⋮
0

0
1
0
⋮
0

0
0
1
⋮
0

⋱

0
0
0
⋮
1

• 𝐈𝐀 = 𝐀

• 𝐀𝐈 = 𝐀

• 𝐀𝐈𝐁 = 𝐀𝐁



Transpose
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• 𝐱𝐷×1: a vector

• 𝐱𝐱𝑇 =

𝑥1
𝑥2
⋮
𝑥𝐷

× 𝑥1 𝑥2… 𝑥𝐷

• (𝐀𝐁)𝑇= 𝐁𝑇𝐀𝑇

• (𝐱𝐱𝑇)𝑇= 𝐱𝐱𝑇: symmetric

• 𝐱𝑇𝐱 = 𝐱𝑇𝐈 𝐱, where 𝐈 is a 𝐷 × 𝐷 identity matrix



Transpose
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• 𝐗𝑚×𝑛: a matrix

• 𝐗𝐗𝑇: 𝑚 × 𝑚

(𝐗𝐗𝑇)𝑇= 𝐗𝐗𝑇

• 𝐗𝑇𝐗: 𝑛 × 𝑛

(𝐗𝑇𝐗)𝑇= 𝐗𝑇𝐗

• Both are symmetric



Vector Derivative
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• Let 𝐁: an 𝑁 × 𝑁 square matrix

• 𝐱 = [𝑥1 , 𝑥2 , … , 𝑥𝑁 ]
𝑇

• 𝑓 𝐱 = 𝐱𝑇𝐁𝐱 = 𝑓 𝑥1 , 𝑥2 , … , 𝑥𝑁 is a function

𝑑𝐱𝑇𝐁𝐱

𝑑𝐱
=

𝑑𝐱𝑇𝐁𝐱

𝑑𝑥1
𝑑𝐱𝑇𝐁𝐱

𝑑𝑥2
⋮

𝑑𝐱𝑇𝐁𝐱

𝑑𝑥𝑁

= 𝐁𝐱 + 𝐁𝑇𝐱

If 𝐁 = 𝐁𝑇, then 
𝑑𝐱𝑇𝐁𝐱

𝑑𝐱
= 2𝐁𝐱



Vector Derivative
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• If 𝐁 = 𝐁𝑇, then 
𝑑𝐱𝑇𝐁𝐱

𝑑𝐱
= 2𝐁𝐱

• Calculate 
𝑑𝐱𝑇𝐱

𝑑𝐱
?

•
𝑑𝐱𝑇𝐱

𝑑𝐱
=

𝑑𝐱𝑇𝐈𝐱

𝑑𝐱
= 2𝐈𝐱 = 2𝐱



Matrix Inversion
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• If 𝐀𝐷×𝐷 is a full-rank square matrix, then

• 𝐀−1 exists

• 𝐀𝐀−1 = 𝐀−1𝐀 = 𝐈



Matrix Inversion
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• If 𝐀𝐷×𝐷 is a full-rank square matrix, then

• 𝐀−1 exists

• If 𝐲 = 𝐀𝐱, then
𝐱 = 𝐀−1𝐲

• If 𝐲𝑇 = 𝐱𝑇𝐀, then
𝐱𝑇 = 𝐲𝑇𝐀−1

• (𝐀𝐁)−1= 𝐁−1𝐀−1

• 𝐈−1 = 𝐈, where 𝐈 is an identity matrix


