Linear Algebra (Review)

COEN140 Santa Clara University

Vector

- A length-N vector in real domain can be denoted as $\mathbf{v} \in \mathbb{R}^N$
- Example

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{bmatrix} = [v_1, v_2, \cdots, v_N]^T$$

• Vector addition: add element by element

$$\mathbf{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_N \end{bmatrix}, \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix}, \mathbf{a} + \mathbf{b} = \begin{bmatrix} a_1 + b_1 \\ \vdots \\ a_N + b_N \end{bmatrix}$$

Vector

- Scalar: a real or complex number
- Multiplying a vector by a scalar

$$\mathbf{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_N \end{bmatrix}, \qquad \qquad \alpha \mathbf{a} = \begin{bmatrix} \alpha a_1 \\ \vdots \\ \alpha a_N \end{bmatrix}$$

Vector

• All-zero vector

- Column vector:
$$\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} 0, 0, \dots, 0 \end{bmatrix}^T$$

- Row vector: $\mathbf{0}^T = \begin{bmatrix} 0, 0, \dots, 0 \end{bmatrix}$

• All-one vector

- Column vector:
$$\mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = [1, 1, ..., 1]^T$$

- Row vector: $\mathbf{1}^T = [1, 1, ..., 1]$

Length of a Vector

• For any vector $\mathbf{v} = [v_1, v_2, \dots, v_N]^T \in \mathbb{R}^N$, its length is defined as

$$\|\mathbf{v}\|_2 = \sqrt{\sum_{i=1}^N v_i^2}$$

• $\|\mathbf{v}\|_2$ is also called the L₂-norm of vector \mathbf{v}

• If $\|\mathbf{v}\|_2 = 1$, we say the vector \mathbf{v} is normalized, or the vector \mathbf{v} has unit-norm.

Length of a Vector

- What is the L₂-norm of $\frac{\mathbf{v}}{\|\mathbf{v}\|_2}$?
- Answer: 1

Distance Between Vectors

The Euclidean distance between two vectors in a vector space is defined as

 $d(\mathbf{v}_1, \mathbf{v}_2) = \|\mathbf{v}_1 - \mathbf{v}_2\|_2$

Note that $d(\mathbf{v}_1, \mathbf{v}_2) = 0$ iff $\mathbf{v}_1 = \mathbf{v}_2$.

Inner Product Between Vectors

• Define the inner product between two vectors in \mathbb{R}^N by

$$< \mathbf{u}, \mathbf{v} > = \sum_{i=1}^{N} u_i \times v_i = \mathbf{v}^T \mathbf{u} = \mathbf{u}^T \mathbf{v}$$

• Two vectors \mathbf{u} and \mathbf{v} are orthogonal when $\mathbf{v}^T \mathbf{u} = 0$

Inner Product Between Vectors

• Calculate the vector L_2 -norm of $\mathbf{v} \in \mathbb{R}^N$

$$\|\mathbf{v}\|_2 = \sqrt{\mathbf{v}^T \mathbf{v}}$$

• The square of the L₂-norm

$$\|\mathbf{v}\|_{2}^{2} = \mathbf{v}^{T}\mathbf{v} = v_{1}^{2} + v_{2}^{2} + \dots + v_{N}^{2}$$

Matrix

- Matrix: is an array of numbers organized in rows and columns
- Here is a 3×4 matrix:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

- View a matrix as built from its columns
- $\mathbf{A} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4]$
- The k-th column $\mathbf{a}_k = \begin{bmatrix} a_{1k} & a_{2k} & a_{3k} \end{bmatrix}^T$

Linearly Dependent

• A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_M\}$ are linearly dependent, if there exist scalars $\alpha_1, \alpha_2, ..., \alpha_M$, not all zero, such that

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_M \mathbf{v}_M = \mathbf{0}$$

Linearly Independent

A set of vectors {v₁, v₂, ..., v_M} are linearly independent, if the equation

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_M \mathbf{v}_M = \mathbf{0}$$

can only be satisfied by

$$\alpha_1 = \alpha_2 = \dots = \alpha_M = 0$$

The Rank of a Matrix

• The rank of a matrix is the largest number of linearly independent rows (or columns) in the matrix

• For an $m \times n$ matrix, its rank is $r \le \min\{m, n\}$

Matrix-Vector Multiplication

• Let
$$\mathbf{a} = [a_1, a_2, \dots, a_N]^T$$

- Let $\mathbf{x} = [x_1, x_2, \dots, x_N]^T$
- $\mathbf{x}^T \mathbf{a} = \mathbf{a}^T \mathbf{x}$: a scalar
- Let **B** be an $N \times N$ matrix
- Bx: a column vector
- $\mathbf{x}^T \mathbf{B}$: a row vector

Matrix-Vector Multiplication

• Let
$$\mathbf{a} = [a_1, a_2, \dots, a_N]^T$$

- Let $\mathbf{x} = [x_1, x_2, \dots, x_N]^T$
- Let **B** be an $N \times N$ matrix
- $\mathbf{x}^T \mathbf{B} \mathbf{x}$ is a scalar

Partial Derivative

•
$$\mathbf{x}^T \mathbf{a} = \mathbf{a}^T \mathbf{x} = a_1 x_1 + a_2 x_2 + \dots + a_N x_N$$

$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial x_i} = a_i$$

• For example

$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial x_2} = a_2$$

Vector Derivative

•
$$\mathbf{x}^T \mathbf{a} = \mathbf{a}^T \mathbf{x} = a_1 x_1 + a_2 x_2 + \dots + a_N x_N$$

$$\frac{d\mathbf{a}^{T}\mathbf{x}}{d\mathbf{x}} = \frac{d\mathbf{x}^{T}\mathbf{a}}{d\mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{x}^{T}\mathbf{a}}{\partial x_{1}} \\ \frac{\partial \mathbf{x}^{T}\mathbf{a}}{\partial x_{2}} \\ \vdots \\ \frac{\partial \mathbf{x}^{T}\mathbf{a}}{\partial x_{N}} \end{bmatrix} = \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{N} \end{bmatrix} = \mathbf{a}$$

Identity Matrix

• $I_{D \times D}$: a $D \times D$ identity matrix, a square matrix

•
$$\mathbf{I}_{D \times D} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \ddots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- IA = A
- AI = A
- AIB = AB

Transpose

• $\mathbf{x}_{D \times 1}$: a vector

•
$$\mathbf{x}\mathbf{x}^T = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} \times \begin{bmatrix} x_1 & x_2 \dots & x_D \end{bmatrix}$$

•
$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

- $(\mathbf{x}\mathbf{x}^T)^T = \mathbf{x}\mathbf{x}^T$: symmetric
- $\mathbf{x}^T \mathbf{x} = \mathbf{x}^T \mathbf{I} \mathbf{x}$, where **I** is a $D \times D$ identity matrix

Transpose

- $\mathbf{X}_{m \times n}$: a matrix
- **XX**^T: $m \times m$

$$(\mathbf{X}\mathbf{X}^T)^T = \mathbf{X}\mathbf{X}^T$$

• $\mathbf{X}^T \mathbf{X}$: $n \times n$

$$(\mathbf{X}^T\mathbf{X})^T = \mathbf{X}^T\mathbf{X}$$

• Both are symmetric

Vector Derivative

• Let **B**: an $N \times N$ square matrix

•
$$\mathbf{x} = [x_1, x_2, \dots, x_N]^T$$

• $f(\mathbf{x}) = \mathbf{x}^T \mathbf{B} \mathbf{x} = f(x_1, x_2, \dots, x_N)$ is a function

$$\frac{d\mathbf{x}^T \mathbf{B} \mathbf{x}}{d\mathbf{x}} = \begin{bmatrix} \frac{d\mathbf{x}^T \mathbf{B} \mathbf{x}}{dx_1} \\ \frac{d\mathbf{x}^T \mathbf{B} \mathbf{x}}{dx_2} \\ \vdots \\ \frac{d\mathbf{x}^T \mathbf{B} \mathbf{x}}{dx_N} \end{bmatrix} = \mathbf{B} \mathbf{x} + \mathbf{B}^T \mathbf{x}$$

If
$$\mathbf{B} = \mathbf{B}^T$$
, then $\frac{d\mathbf{x}^T \mathbf{B} \mathbf{x}}{d\mathbf{x}} = 2\mathbf{B} \mathbf{x}$

Vector Derivative

• If
$$\mathbf{B} = \mathbf{B}^T$$
, then $\frac{d\mathbf{x}^T \mathbf{B} \mathbf{x}}{d\mathbf{x}} = 2\mathbf{B} \mathbf{x}$

• Calculate
$$\frac{d\mathbf{x}^T \mathbf{x}}{d\mathbf{x}}$$
?
• $\frac{d\mathbf{x}^T \mathbf{x}}{d\mathbf{x}} = \frac{d\mathbf{x}^T \mathbf{I} \mathbf{x}}{d\mathbf{x}} = 2\mathbf{I}\mathbf{x} = 2\mathbf{x}$

Matrix Inversion

- If $\mathbf{A}_{D \times D}$ is a full-rank square matrix, then
- A⁻¹ exists
- $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$

Matrix Inversion

- If $\mathbf{A}_{D \times D}$ is a full-rank square matrix, then
- A⁻¹ exists
- If $\mathbf{y} = \mathbf{A}\mathbf{x}$, then

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$$

• If
$$\mathbf{y}^T = \mathbf{x}^T \mathbf{A}$$
, then $\mathbf{x}^T = \mathbf{y}^T \mathbf{A}^{-1}$

- $(AB)^{-1} = B^{-1}A^{-1}$
- $I^{-1} = I$, where I is an identity matrix