Regression

COEN140

Santa Clara University

Regression Problem

- Purpose: to predict values from some inputs
- Example: predict the life satisfaction by the GDP per capita
- Objective: find a relation between the input and the output

Regression Problem

- Define a model
- A simple model: the input-output relation is a straight line

$$
\text { life_satisfaction }=w_{0}+w_{1} \times G D P _p e r_{-} c a p i t a
$$

- Model parameters: w_{0}, w_{1}

Regression Problem

- Goal: find w_{0}, w_{1}
- Why? If you are given a new GDP_per_capita, you can predict the corresponding life_satisfaction

$$
\text { life_satisfaction }=w_{0}+w_{1} \times G D P_{-} p e r_{-} c a p i t a
$$

Regression Problem

- How to find w_{0}, w_{1} ?
- N training samples: $\left(x_{n}, t_{n}\right), \quad n=1, \ldots, N$
$-x_{n}$ is the input, t_{n} is the target/true value
- Prediction model: $y_{n}=w_{0}+w_{1} x_{n}$
$-y_{n}$ is the predicted output

Regression Problem

- Prediction Error

$$
y_{n}-t_{n}=w_{0}+w_{1} x_{n}-t_{n}
$$

- Error Function: sum of the squared error between the predicted value $y_{n}\left(x_{n}, w_{0}, w_{1}\right)$ and the true target value t_{n}

$$
E\left(w_{0}, w_{1}\right)=\frac{1}{2} \sum_{n=1}^{N}\left\{w_{0}+w_{1} x_{n}-t_{n}\right\}^{2}
$$

Regression Problem

- Minimize the error function:

$$
E\left(w_{0}, w_{1}\right)=\frac{1}{2} \sum_{n=1}^{N}\left\{w_{0}+w_{1} x_{n}-t_{n}\right\}^{2}
$$

- Take the partial derivative of $E\left(w_{0}, w_{1}\right)$ with respect to (w.r.t.) w_{0}, and let it be 0

$$
\frac{\partial E\left(w_{0}, w_{1}\right)}{\partial w_{0}}=0
$$

$$
\frac{1}{2} \sum_{n=1}^{N} 2\left(w_{0}+w_{1} x_{n}-t_{n}\right)=0
$$

$$
\sum_{n=1}^{N}\left(w_{0}+w_{1} x_{n}-t_{n}\right)=0
$$

$$
\begin{equation*}
N w_{0}+w_{1} \sum_{n=1}^{N} x_{n}=\sum_{n=1}^{N} t_{n} \tag{1}
\end{equation*}
$$

Regression Problem

- Minimize the error function:

$$
E\left(w_{0}, w_{1}\right)=\frac{1}{2} \sum_{n=1}^{N}\left\{w_{0}+w_{1} x_{n}-t_{n}\right\}^{2}
$$

- Take the partial derivative of $E\left(w_{0}, w_{1}\right)$ w.r.t. w_{1}, and let it be 0

$$
\begin{align*}
& \frac{\partial E\left(w_{0}, w_{1}\right)}{\partial w_{1}}=0 \\
& \frac{1}{2} \sum_{n=1}^{N} 2\left(w_{0}+w_{1} x_{n}-t_{n}\right) x_{n}=0 \\
& \sum_{n=1}^{N}\left(w_{0}+w_{1} x_{n}-t_{n}\right) x_{n}=0 \\
& w_{0} \sum_{n=1}^{N} x_{n}+w_{1} \sum_{n=1}^{N} x_{n}^{2}=\sum_{n=1}^{N} t_{n} x_{n} \tag{2}
\end{align*}
$$

Regression Problem

- $N w_{0}+w_{1} \sum_{n=1}^{N} x_{n}=\sum_{n=1}^{N} t_{n}$
- $w_{0} \sum_{n=1}^{N} x_{n}+w_{1} \sum_{n=1}^{N} x_{n}^{2}=\sum_{n=1}^{N} t_{n} x_{n}$
- Solution

$$
\begin{aligned}
& w_{0}=\frac{\left(\sum_{n=1}^{N} x_{n}\right) \times\left(\sum_{n=1}^{N} t_{n} x_{n}\right)-\left(\sum_{n=1}^{N} t_{n}\right) \times\left(\sum_{n=1}^{N} x_{n}^{2}\right)}{\left(\sum_{n=1}^{N} x_{n}\right)^{2}-N\left(\sum_{n=1}^{N} x_{n}^{2}\right)} \\
& w_{1}=\frac{\left(\sum_{n=1}^{N} t_{n}\right)-N w_{0}}{\sum_{n=1}^{N} x_{n}}
\end{aligned}
$$

Example

- Ground-truths: $t=10+5 x+v$
- $v \sim \mathcal{N}(0,1)$

Normal distribution with mean 0 and variance 1

- Collect $N=100$ training samples
- $\left(x_{n}, t_{n}\right)$,
- $n=1,2, \ldots, 100$

Example

- Use linear regression to find a model:
- $y=w_{0}+w_{1} x$

Polynomial Curve Fitting

- Real-valued input: x
- True function: $\sin (2 \pi x)$
- Observations
$-\quad t=\sin (2 \pi x)+G a u s s i a n ~ N o i s e$
- Training set: N samples

$$
-\left(x_{n}, t_{n}\right), \quad n=1, \ldots, N
$$

Polynomial Curve Fitting

- We are given $N=10$ data points
- $x_{1}, x_{2, \ldots,}, x_{N}$
- Observations of the values of t
- $\mathbf{t}=\left[t_{1}, t_{2, \ldots,} t_{N}\right]^{T}$
- Objective: predict the target value t for some new input x

Polynomial Curve Fitting

- Method: Fit the data using a polynomial function
$y(x, \mathbf{w})=w_{0}+w_{1} x+w_{2} x^{2}+\ldots+w_{M} x^{M}=\sum_{j=0}^{M} w_{j} x^{j}$
$-\quad M:$ the order of the polynomial
- $x^{j}: x$ raised to the power of j
$-\mathbf{w}=\left[w_{0}, w_{1}, \ldots, w_{M}\right]^{T}:$ model parameters

Fitted curve

Polynomial Curve Fitting

- A simple version:

$$
y(x, \mathbf{w})=w_{0}+w_{2} x^{2}
$$

- Nonlinear in x

$$
\frac{d[y(x)]}{d x}=2 w_{2} x
$$

Not a constant!

Polynomial Curve Fitting

- A simple version:

$$
y(x, \mathbf{w})=w_{0}+w_{2} x^{2}
$$

- Linear in \mathbf{w}

$$
\frac{d[y(\mathbf{w})]}{d w_{0}}=1, \quad \frac{d[y(\mathbf{w})]}{d w_{2}}=x^{2}
$$

They are constants!

- Linear Regression: the model $y(x, \mathbf{w})$ is linear in the model parameter w

Polynomial Curve Fitting

- How do we find \mathbf{w} ?

$$
\begin{gathered}
y(x, \mathbf{w})=w_{0}+w_{1} x+w_{2} x^{2}+\ldots+w_{M} x^{M}=\sum_{j=0}^{M} w_{j} x^{j} \\
\mathbf{w}=\left[w_{0}, w_{1}, \ldots, w_{M}\right]^{T}
\end{gathered}
$$

The n-th data sample $\mathbf{x}_{n}=\left[\begin{array}{c}1 \\ x_{n}^{1} \\ \vdots \\ x_{n}^{M}\end{array}\right]=\left[1, \underset{n}{1}, \ldots, x_{n}^{M}\right]^{T}$ power

Polynomial Curve Fitting

- Minimize the error function:

$$
\begin{aligned}
& E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2} \\
& E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{\mathbf{x}_{n}^{T} \mathbf{w}-t_{n}\right\}^{2}
\end{aligned}
$$

Polynomial Curve Fitting

- The optimization problem:

$$
\begin{gathered}
\mathbf{w}^{*}=\arg \min _{\mathbf{w}} E(\mathbf{w}) \\
\mathbf{w}^{*}=\arg \min _{\mathbf{w}} \frac{1}{2} \sum_{n=1}^{N}\left\{\mathbf{x}_{n}^{T} \mathbf{w}-t_{n}\right\}^{2}
\end{gathered}
$$

- How to solve for \mathbf{w}^{*} ? Take the derivative of $E(\mathbf{w})$ w.r.t \mathbf{w} and set it as the $\mathbf{0}$ vector

Least Squares Solution

- Solution

$\cdot \mathbf{t}=\left[\begin{array}{c}t_{1} \\ \vdots \\ t_{N}\end{array}\right], \mathbf{w}=\left[\begin{array}{c}w_{0} \\ w_{1} \\ \vdots \\ w_{M}\end{array}\right], \mathbf{x}_{n}=\left[\begin{array}{c}1 \\ x_{n}^{1} \\ \vdots \\ x_{n}^{M}\end{array}\right], \quad \begin{aligned} & \text { power } \\ & n=1,2, \ldots, N\end{aligned}$
$\cdot \mathbf{X}=\left[\begin{array}{c}\mathbf{x}_{1}^{T} \\ \mathbf{x}_{2}^{T} \\ \vdots \\ \mathbf{x}_{N}^{T}\end{array}\right]$,

$$
\mathbf{X}^{T}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right]
$$

Model Selection: how to choose M ?

$$
y=w_{0}+w_{1} x
$$

Model Selection

- Rule of Thumb
- The number of training samples N should be no less than some multiple (say 5 or 10) of the number of adaptive parameters $(M+1)$
- Here: $N=10$
- $\quad M=9$: Over-fitting!

Model Selection

- Rule of Thumb
- $M=9$
- Increasing the size of the training set reduces the overfitting problem.

Magnitudes of the Weights

- The magnitude of the weights increases dramatically as M increases (for $N=10$)

	$M=0$	$M=1$	$M=6$	$M=9$
w_{0}^{\star}	0.19	0.82	0.31	0.35
w_{1}^{\star}		-1.27	7.99	232.37
w_{2}^{\star}			-25.43	-5321.83
w_{3}^{\star}			17.37	48568.31
w_{4}^{\star}				-231639.30
w_{5}^{\star}				640042.26
w_{6}^{\star}				-1061800.52
w_{7}^{\star}				1042400.18
w_{8}^{\star}				-557682.99
w_{9}^{\star}				125201.43

Magnitudes of the Weights

- The more flexible polynomials with larger values of M are becoming increasingly tuned to the random noise on the target values.

	$M=0$	$M=1$	$M=6$	$M=9$
w_{0}^{\star}	0.19	0.82	0.31	0.35
w_{1}^{\star}		-1.27	7.99	232.37
w_{2}^{\star}			-25.43	-5321.83
w_{3}^{\star}			17.37	48568.31
w_{4}^{\star}				-231639.30
w_{5}^{\star}				640042.26
w_{6}^{\star}				-1061800.52
w_{7}^{\star}				1042400.18
w_{8}^{\star}				-557682.99
w_{9}^{\star}				125201.43

Ridge Regression (Regularized Least Squares)

- To address the over-fitting problem
- Add a penalty term to the error function
- Discourage the weights from reaching large magnitudes
penalized error
function

$$
\tilde{E}(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2}
$$

target value

Polynomial Coefficients/Weights

	$\ln \lambda=-\infty$	$\ln \lambda=-18$	$\ln \lambda=0$
w_{0}^{\star}	0.35	0.35	0.13
w_{1}^{\star}	232.37	4.74	-0.05
w_{2}^{\star}	-5321.83	-0.77	-0.06
w_{3}^{\star}	48568.31	-31.97	-0.05
w_{4}^{\star}	-231639.30	-3.89	-0.03
w_{5}^{\star}	640042.26	55.28	-0.02
w_{6}^{\star}	-1061800.52	41.32	-0.01
w_{7}^{\star}	1042400.18	-45.95	-0.00
w_{8}^{\star}	-557682.99	-91.53	0.00
w_{9}^{\star}	125201.43	72.68	0.01

Polynomial Coefficients

- λ cannot be too large (e.g. $\ln \lambda=0$)
- λ cannot be too small (e.g. $\ln \lambda=-\infty$)
- The results for $N=10, M=9$

Ridge Regression (Regularized Least Squares)

- Setting the derivative w.r.t. \mathbf{w} to $\mathbf{0}$ and solving for \mathbf{w}

$$
\begin{gathered}
\tilde{E}(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2} \\
\mathbf{w}^{*}=\left(\underset{\mathbf{I}}{ }+\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{t} \\
\uparrow \\
(M+1) \times(M+1) \\
\text { identity matrix }
\end{gathered}
$$

- Recall $\mathbf{x}_{n}=\left[\begin{array}{c}1 \\ x_{n}^{1} \\ \vdots \\ x_{n}^{M}\end{array}\right], \quad n=1,2, \ldots, N, \quad \mathbf{X}^{T}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right]$

Housing price prediction

- Data set: California housing dataset
- $M=8$ attributes/features for the n-th input
- $x_{n 1}, x_{n 2}, \ldots, x_{n 8}$
- MedInc, HouseAge, AveRooms, AveBedrms, Population, AveOccup, Latitude, Longitude
- $n=1, \ldots, N$
- Total number of data samples: $N=20,640$
- Target output: the price of the house

$$
-\quad t_{n}, n=1, \ldots, N
$$

General Case

- The input data sample has multiple attributes: $x_{n 1}, x_{n 2}, \ldots, x_{n M}$, we can form the nth data sample as

$$
\mathbf{x}_{n}=\underset{\uparrow}{\left[1, x_{n 1}, x_{n 2}, \ldots, x_{n M}\right]^{T}}
$$

- Build a linear regression model

$$
y\left(\mathbf{x}_{n}, \mathbf{w}\right)=\mathbf{w}^{T} \mathbf{x}_{n}
$$

- Then find \mathbf{w} in the same way as the polynomial curve fitting example

Performance Evaluation

- How to know if your regression model works well or not?
- Try it on the Test Set!
- $N_{\text {test }}$ test data samples
$-\left(\mathbf{x}_{n}, t_{n}\right), n=1, \ldots, N_{\text {test }}$
- Performance Metric?
- Mean Squared Error (MSE)

$$
\begin{aligned}
-M S E & =\frac{1}{N_{\text {test }}} \sum_{n=1}^{N_{\text {test }}}\left\{y\left(\mathbf{x}_{n}, \mathbf{w}\right)-t_{n}\right\}^{2} \\
& =\frac{1}{N_{\text {test }}} \sum_{n=1}^{N_{\text {test }}}\left\{\mathbf{w}^{T} \mathbf{x}_{n}-t_{n}\right\}^{2}
\end{aligned}
$$

- The smaller the MSE, the better the performance.

Example: housing price prediction

```
housing_price_v3.py ■
    % linear regression example
    % California house price prediction
    """
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
housing = fetch_california_housing()
```



```
N,M = housing.data.shape
# Data matrix: currently, each row is one data sample
housing_data_plus_bias = np.c_[np.ones((N,1)), housing.data]
target_val = housing.target.reshape(-1,1) # reshape it as a column vector t
X_train, X_test, t_train, t_test = \
train_test_split(hōusing_da\overline{ta_plus_bias, target_val, test_size=0.2, random_state=42)}
# Ntrain = number of training samples
Ntrain=X_train.shape[0]
# Ntest = number of test samples
Ntest=X_test.shape[0]
```


Example: housing price prediction

```
# define the tensors
X = tf.placeholder(tf.float64, shape = (None,M+1), name = 'X') # rows as samples
t = tf.placeholder(tf.float64, shape = (None, l), name = 't') # target values: t vector
n = tf.placeholder(tf.float64, name='n') # number of samples
XT = tf.transpose(X)
w = tf.matmul(tf.matmul(tf.matrix_inverse(tf.matmul(XT,X)),XT),t) # w=inv(X'*X)*X'*t
# predicted values: a column vector y=[y1, y2,..., yn]', where yn=xn'*w
y = tf.matmul(X,w)
# mean-squared error of the prediction
MSE = tf.div(tf.matmul(tf.transpose(y-t),y-t),n)
with tf.Session() as sess:
    MSE_train, w_star,y_train = \
    ses\overline{S}.run([MS\overline{E},w,y], feed_dict={X: X_train,t: t_train, n: Ntrain})
    MSE_test,y_test = \
    ses\overline{s}.run([产SE,y],feed_dict={X:X_test,t:t_test,n:Ntest,w:w_star})
```


Example：housing price prediction

ヵロ⿴囗口力心			
Name	Type	Size	Value
M	int	1	8
MSE＿test	Array of float64	（1，．．．	［［0．5558916］］
MSE＿train	Array of float64	（1，．．．	［［0．51793313］］
N	int	1	20640
Ntest	int	1	4128
Ntrain	int	1	16512
X	python．framework．o．．．	1	Tensor object of tensorflow．python．framework．ops module
X＿test	Array of float64	（41．．．	
X＿train	Array of float64	（16．．．	$\left[\begin{array}{lllll}{\left[\begin{array}{lll}1.0 & \ldots & 3.2596 \\ 32.71 \ldots & \ldots & \end{array}\right]} & 3.6918138\end{array}\right.$
housing	utils．Bunch	4	Bunch object of sklearn．utils module
housing＿data＿plus＿bias	Array of float64	（20．．．	$\left[\begin{array}{ccccc}{\left[\begin{array}{c}1 . \\ 37.8\end{array} \quad 8.3252\right.} & 41 . & \end{array}\right.$
n	python．framework．o．．．	1	Tensor object of tensorflow．python．framework．ops module
sess	python．client．sess．．．	1	Session object of tensorflow．python．client．session module
t	python．framework．o．．．	1	Tensor object of tensorflow．python．framework．ops module
t＿test	Array of float64	（41．．．	$\left[\begin{array}{cc} {[0.477} \\ {[\cap H 58} \end{array}\right]$
t＿train	Array of float64	（16．．．	$\left[\begin{array}{lll} {[1.03} \\ 12 & 8711 \end{array}\right]$
target＿val	Array of float64	（20．．．	$\begin{array}{r} {\left[\begin{array}{ll} {[4.526]} \\ 12 & 5851 \end{array}\right]} \end{array}$

Example: housing price prediction

Remark: Line Fitting

- Notation:
- $\mathbf{w} \triangleq\left[w_{0}, w_{1}\right]^{T}$
- $\mathbf{x}_{n} \triangleq\left[1, x_{n}\right]^{T}$
- Inner product:
- $y_{n}=w_{0}+w_{1} x_{n}=\left[w_{0}, w_{1}\right] \times\left[\begin{array}{c}1 \\ x_{n}\end{array}\right]=\mathbf{w}^{T} \mathbf{x}_{n}$
- Prediction Error

$$
y_{n}-t_{n}=\mathbf{w}^{T} \mathbf{x}_{n}-t_{n}
$$

- Sum of the squared errors

$$
E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{\mathbf{w}^{T} \mathbf{x}_{n}-t_{n}\right\}^{2}
$$

Testing and Validation - Case 1

- When you only need to learn the model parameters:
- Split your data into two sets: the training set and the test set.
- It is common to use 80% of the data for training and hold out 20% for testing.
- You train your model using the training set, and you test it using the test set.
- The error rate on the test set is called the generalization error.

Testing and Validation - Case 2

- When you need to learn the model parameters and some hyperparameters, such as the λ in Ridge Regression
- Split your data set into three sets: training set, validation set, and test set
- You train multiple models with various hyperparameters using the training set, you select the model and hyperparameters that perform best on the validation set
- With the selected model, you run a single final test against the test set to get an estimate of the generalization error.

