K-means Clustering

COEN140 Santa Clara University

Example	А	В	С	D	Е
Attribute Value (X)	0.1	0.6	0.8	2.0	3.0

- Goal: group the 5 points into 2 clusters
- Each cluster has a "center"

Example	Α	В	С	D	Е
Attribute Value (X)	0.1	0.6	0.8	2.0	3.0

- Initialize the cluster centers:
 - Select A as center 1: $m_1 = 0.1$
 - Select B as center 2: $m_2 = 0.6$
- Assign a point to cluster-k if it is closer to m_k , k = 1, 2

Example	Α	В	С	D	E
Attribute Value (X)	0.1	0.6	0.8	2.0	3.0

- Initialize the cluster centers:
 - Select A as center 1: $m_1 = 0.1$
 - Select B as center 2: $m_2 = 0.6$
- Initial clustering results:
 - Cluster 1: A
 - Cluster 2: B, C, D, E

• Consider 5 data points

Example	Α	В	С	D	Е
Attribute Value (X)	0.1	0.6	0.8	2.0	3.0

- Initial clustering results:
 - Cluster 1: A
 - Cluster 2: B, C, D, E
- Update the cluster centers:

$$-m_1 = 0.1$$

 $-m_2 = 1.6$

• Consider 5 data points

Example	А	В	С	D	Е
Attribute Value (X)	0.1	0.6	0.8	2.0	3.0

• Updated cluster centers:

$$-m_1 = 0.1$$

$$-m_2 = 1.6$$

- Update clustering results:
 - Cluster 1: A, B, C
 - Cluster 2: D, E

• Consider 5 data points

Example	А	В	С	D	Е
Attribute Value (X)	0.1	0.6	0.8	2.0	3.0

- Updated clustering results:
 - Cluster 1: A, B, C
 - Cluster 2: D, E
- Update cluster centers:

$$- m_1 = 0.5$$

 $-m_2 = 2.5$

• Consider 5 data points

Example	А	В	С	D	Е
Attribute Value (X)	0.1	0.6	0.8	2.0	3.0

• Updated cluster centers:

$$m_1 = 0.5$$

 $m_2 = 2.5$

- Update clustering results:
 - Cluster 1: A, B, C
 - Cluster 2: D, E

Example	Α	В	С	D	E
Attribute Value (X)	0.1	0.6	0.8	2.0	3.0

- Since the clustering results are the same as in the previous iteration, we can stop the algorithm.
- What we have seen: K-means Clustering
 - The number of clusters K=2 in this example

Clustering

• Consider the problem of grouping N data points into K clusters

• Motivation: data compression

Clustering

• Consider the problem of grouping N data points into K clusters

• Assume: data was generated from a number of different classes. The aim is to cluster data from the same class together.

Clustering

- *N* data points: $\mathbf{x}_n \in \mathbb{R}^d$, n = 1, 2, ..., N
- They belong to *K* classes

- How to identify those classes?
- How to identify the data points that belong to each class?

K-means Clustering

- Initialization: randomly initialize cluster centers
- Then, the algorithm iteratively alternates between two steps:
 - Step 1: Assignment Assign each data point to the closest cluster

K-means Clustering

- Initialization: randomly initialize cluster centers
- Then, the algorithm iteratively alternates between two steps:
 - Step 1: Assignment Assign each data point to the closest cluster
 - Step 2: Cluster-center Update Move each cluster center to the center of the data points assigned to it

K-means Clustering

COEN 140, Machine Learning

Initialization

• Set K cluster means \mathbf{m}_k , k = 1, ..., K to random values

Repeat the Following Two Steps

- Step 1: Assignment
 - Each data point \mathbf{x}_n assigned to the nearest mean/center

$$\hat{k}_n = \arg\min_k \|\mathbf{m}_k - \mathbf{x}_n\|_2^2$$

Responsibilities:
$$r_{kn} = 1 \iff \hat{k}_n = k$$

 $r_{kn} = 1$, if \mathbf{x}_n is assigned to cluster k

 $r_{kn} = 0$, otherwise

Repeat the Following Two Steps

- Step 2: Cluster-center Update
 - Update \mathbf{m}_k by

$$\mathbf{m}_k = \frac{\sum_{n=1}^N r_{kn} \mathbf{x}_n}{\sum_{n=1}^N r_{kn}}$$

$$k = 1, 2, ..., K$$

Objective Function

 The sum of the squared distances of data points {x_n} to their assigned cluster centers

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{kn} \|\mathbf{m}_{k} - \mathbf{x}_{n}\|_{2}^{2}$$

where $r_{kn} = 1$ if \mathbf{x}_n is assigned to cluster k, and $r_{kn} = 0$ otherwise.

• Note:
$$\sum_{k=1}^{K} r_{kn} = 1$$

Objective Function

- The objective function value *J* decreases each time we execute Step 1 and Step 2.
- Also, J is non-negative.
- Therefore, the *J* value will converge.

Stopping Criterion

 When the decrease of the objective function J between two successive iterations is below a certain value ε, where ε is a small positive number.

$$J(Iter - 1) - J(Iter) < \varepsilon$$

Or when the number of iterations reaches a predefined value

Iter == maxIter

Convergence of K-means Clustering

 Plot of the objective function value J after each Assignment Step (blue circles) and Cluster-center Update Step (red circles)

K-means Clustering for Image Compression

K-means Clustering for Image Compression

- Assume a color image is $512x512 = 2^{18}$ pixels
- Each pixel: 3 channels (3 Bytes)
 - Red (8 bits): value is from 0 to 255
 - Green (8 bits)
 - Blue (8 bits)
- One image: 2¹⁸ pixels × 3 Bytes=786432 Bytes
- K=10 clustering
 - Cluster centers: 3Bytes x (K=10) = 30 Bytes
 - Assignment: $\log_2 10 \approx (4 \text{ bits} = 0.5 \text{ Bytes}) \text{ per pixel}$
 - 2¹⁸ pixels× 0.5 Bytes=131072 Bytes