Logistic Regression

COEN140 Santa Clara University

Classification Problem

- Purpose: to classify the input to a set of discrete classes
- Binary classification: 2 classes
- Estimate the probability that an input belongs to a particular class
 - e.g What is the probability that this email is spam?
 - If the estimated probability is greater than 50%
 - Label it as class "1": C₁
 - If the estimated probability is less than 50%
 - Label it as class "0": C₀

Binary Classification

- Given a set of training samples $\mathbf{x}_n \in \mathbb{R}^D$ and the corresponding target labels $t_n, n = 1, 2, ..., N$.
- $t_n \in \{0,1\}$
 - $t_n = 1$: \mathbf{x}_n belongs to class-1
 - $t_n = 0$: \mathbf{x}_n belongs to class-0

Logistic Regression: a classification method

- Estimate Probabilities
- Compute a weighted sum of the input features

•
$$\mathbf{w} = [w_1, ..., w_D]^T$$

• $\mathbf{x}_n = [x_{n1}, x_{n2}, ..., x_{nD}]^T$

•
$$a_n = \mathbf{w}^T \mathbf{x}_n$$

• Output the logistic of the result

•
$$y_n = \sigma(a_n) = \sigma(\mathbf{w}^T \mathbf{x}_n)$$

Logistic Regression

- Estimate Probabilities
- If we include a bias (intercept): b (same as w_0)

•
$$\mathbf{w} = [b, w_1, ..., w_D]^T$$

• $\mathbf{x}_n = [1, x_{n1}, x_{n2}, ..., x_{nD}]$

•
$$a_n = \mathbf{w}^T \mathbf{x}_n$$

• Output the logistic of the result

•
$$y_n = \sigma(a_n) = \sigma(\mathbf{w}^T \mathbf{x}_n)$$

T

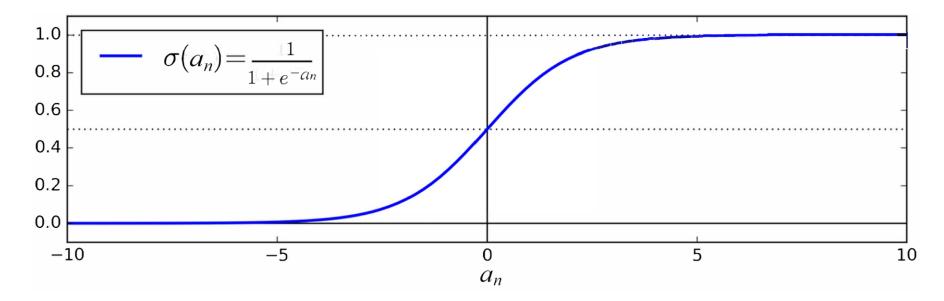
Logistic Regression

• Output the logistic of the result

•
$$y_n = \sigma(a_n) = \sigma(\mathbf{w}^T \mathbf{x}_n) = P(C_1 | \mathbf{x}_n)$$

•
$$1 - y_n = 1 - \sigma(a_n) = 1 - \sigma(\mathbf{w}^T \mathbf{x}_n) = P(C_0 | \mathbf{x}_n)$$

• Sigmoid: $\sigma(a_n) = \frac{1}{1 + \exp(-a_n)}$, represents a probability



Make Decisions

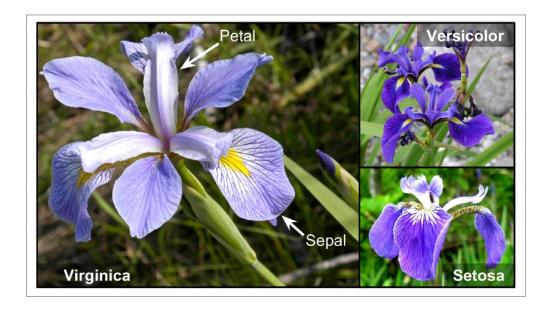
Decision Criterion

•
$$y_n = \sigma(\mathbf{w}^T \mathbf{x}_n) \underset{C_0}{\overset{C_1}{\gtrless}} 0.5$$

- 0.5: a threshold
- \bullet model parameter: ${\bf w}$

Example: Binary Classification

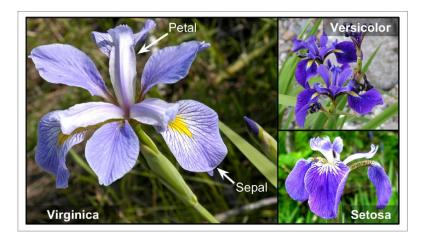
- Iris Plant
 - Virginica=1, Non-Virginica=0
- 1 feature
 - x_n =Petal width



Example: Binary Classification

•
$$\mathbf{x}_n = [1, x_n] = [1, 1.8]$$

• $\mathbf{w} = [b, w_1] = [-6.58, 3.96]$
• $a_n = \mathbf{w}^T \mathbf{x}_n = -6.58 \times 1 + 3.96 \times 1.8 = 0.55$
• $y_n = \sigma(a_n) = \frac{1}{1 + \exp(-0.55)} = 0.63 = P(C_1 | \mathbf{x}_n) > 0.5$



Hence, \mathbf{x}_n is classified as Virginica!

Make Decisions

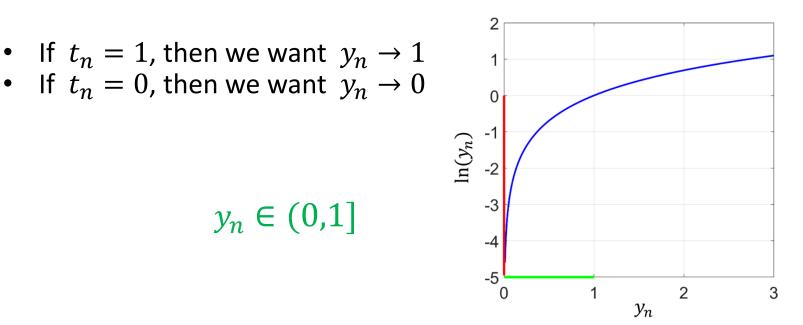
Decision Criterion

•
$$y_n = \sigma(\mathbf{w}^T \mathbf{x}_n) \underset{C_0}{\overset{C_1}{\gtrless}} 0.5$$

- 0.5: a threshold
- How to find **w**?
 - This is the model parameter

Binary Classification

- Cross-entropy error function
- For the *n*-th training sample
 - $E_n(\mathbf{w}) = -[t_n \ln y_n + (1 t_n) \ln(1 y_n)]$
 - $t_n \in \{0,1\}$ is the class label for \mathbf{x}_n
 - $y_n = \sigma(\mathbf{w}^T \mathbf{x}_n)$: the predicted class-1 probability for \mathbf{x}_n



Binary Classification

- Cross-entropy error function
- For the *n*-th training sample
 - $E_n(\mathbf{w}) = -[t_n \ln y_n + (1 t_n) \ln(1 y_n)]$
- For all training samples
 - $E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$

How to find w? Minimize the error function

• For one data sample

•
$$E_n(\mathbf{w}) = -[t_n \ln y_n + (1 - t_n) \ln(1 - y_n)]$$

•
$$y_n = \sigma(a_n), a_n = \mathbf{w}^T \mathbf{x}_n$$

•
$$\frac{dy_n}{da_n} = y_n(1-y_n), \frac{da_n}{dw} = \mathbf{x}_n$$

•
$$\frac{dE_n}{dy_n} = -[t_n \times \frac{1}{y_n} + (1 - t_n) \times \frac{1}{1 - y_n} \times (-1)]$$

• $= -t_n \times \frac{1}{y_n} + (1 - t_n) \times \frac{1}{1 - y_n}$

•
$$\nabla_{\mathbf{w}} E_n(\mathbf{w}) = \frac{dE_n}{dy_n} \times \frac{dy_n}{da_n} \times \frac{da_n}{d\mathbf{w}} = (y_n - t_n) \mathbf{x}_n$$

How to find w? Minimize the error function

• For all data samples

•
$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$$

= $-\sum_{n=1}^{N} [t_n \ln y_n + (1 - t_n) \ln(1 - y_n)]$

•
$$\nabla_{\mathbf{w}} E_n(\mathbf{w}) = (y_n - t_n) \mathbf{x}_n$$

•
$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \nabla_{\mathbf{w}} \sum_{n=1}^{N} E_n(\mathbf{w}) = \sum_{n=1}^{N} \nabla_{\mathbf{w}} E_n(\mathbf{w})$$

•
$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \mathbf{x}_n$$

Gradient Descent

• $\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \eta \nabla_{\mathbf{w}} E(\mathbf{w}^{(\tau-1)}) = \mathbf{w}^{(\tau-1)} - \eta \sum_{n=1}^{N} (y_n - t_n) \mathbf{x}_n$

Make Decisions

- Let \mathbf{x}_n be a test sample
- Assume ${f w}$ is already calculated
- Decision Criterion

•
$$y_n = \sigma(\mathbf{w}^T \mathbf{x}_n) \underset{C_0}{\overset{C_1}{\gtrless}} 0.5$$

Multi-Class Classification

- Given a set of training samples $\mathbf{x}_n \in \mathbb{R}^D$ and the corresponding target vectors $\mathbf{t}_n, n = 1, 2, ..., N$.
- *K*-class classification problem:
 - $\mathbf{t}_n \in \{0,1\}^K$
 - This is called: 1-of-*K* coding
 - $t_{nk} = 1$: \mathbf{x}_n belongs to class-k
 - $t_{nk} = 0$: \mathbf{x}_n does not belong to class-k
 - Example: K = 5, 5 classes
 - $\mathbf{t}_n = [0,0,0,1,0]^T : \mathbf{x}_n$ belongs to class-4

Model Parameters

- Need K weight vectors
- **w**₁, **w**₂, ..., **w**_K
- **x**_n: the *n*-th training sample
- $a_{nk} = \mathbf{w}_k^T \mathbf{x}_n, k = 1, 2, \dots, K$
- Softmax function:

•
$$y_{nk} = \frac{\exp(a_{nk})}{\sum_{j=1}^{K} \exp(a_{nj})} = P(C_k | \mathbf{x}_n), k = 1, 2, ..., K$$

• Outputs the probability of \mathbf{x}_n belonging to the k-th class

Softmax Function

•
$$a_{nk} = \mathbf{w}_k^T \mathbf{x}_n$$
, $k = 1, 2, ..., K$

• Property: all the probabilities sum up to 1

•
$$\sum_{k=1}^{K} y_{nk} = \sum_{k=1}^{K} P(C_k | \mathbf{x}_n) = \sum_{k=1}^{K} \frac{\exp(a_{nk})}{\sum_{j=1}^{K} \exp(a_{nj})}$$

= $\frac{\exp(a_{n1})}{\sum_{j=1}^{K} \exp(a_{nj})} + \frac{\exp(a_{n2})}{\sum_{j=1}^{K} \exp(a_{nj})} + \dots + \frac{\exp(a_{nK})}{\sum_{j=1}^{K} \exp(a_{nj})}$

= 1

Make Decisions

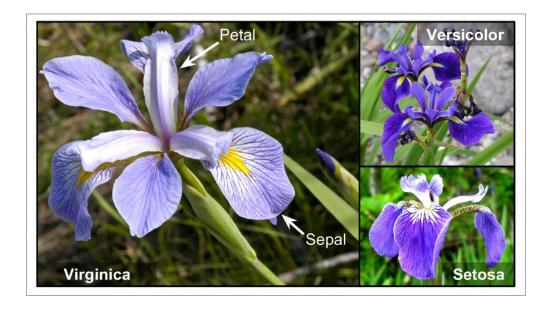
- Let \mathbf{x}_n be a test sample
- Assume \mathbf{w}_k , k = 1, ..., K are already calculated
 - Compute $a_{nk} = \mathbf{w}_k^T \mathbf{x}_n$, k = 1, 2, ..., K
 - Compute probabilities $y_{nk} = \frac{\exp(a_{nk})}{\sum_{j=1}^{K} \exp(a_{nj})}$, k = 1, 2, ..., K
- Decision Criterion
- The predicted class label for \mathbf{x}_n is

$$\hat{k}_n = \arg \max_k y_{nk}$$

• Or, equivalently,

$$\hat{k}_n = \arg \max_k a_{nk}$$

- Three Iris Plant Species
 - Setosa=0 , Versicolor=1, Virginica=2
- Four features
 - Sepal length, Sepal width, Petal length, Petal width
 - $\mathbf{x}_n = [x_{n1}, x_{n2}, x_{n3}, x_{n4}]^T$



- Calculated parameters (coefficients)
 - $\mathbf{w}_0 = [-0.53, 0.83, -2.34, -1.00]$
 - $\mathbf{w}_1 = [0.53 0.31 0.17 0.85]$
 - $\mathbf{w}_2 = [0.00, -0.52, 2.52 \ 1.85]$
- Bias (Incercept)
- $b_0 = 10.12$,
- $b_1 = 1.81$
- $b_2 = -11.93$
- $\mathbf{x}_n = [4.4, 3.0, 1.3, 0.2]^T$
- Probabilities $y_{nk} = ?$, k = 0, 1, 2

- Parameters (coefficients)
 - $\mathbf{w}_0 = [-0.53, 0.83, -2.34, -1.00]$
 - $\mathbf{w}_1 = [0.53 0.31 0.17 0.85]$
 - $\mathbf{w}_2 = [0.00, -0.52, 2.52 \ 1.85]$
- Bias (Incercept)
- $b_0 = 10.12$, $b_1 = 1.81$, $b_2 = -11.93$

•
$$\mathbf{x}_n = [4.4, 3.0, 1.3, 0.2]^T$$

- $a_{n0} = b_0 + \mathbf{w}_0^T \mathbf{x}_n$
- = $10.12 0.53 \times 4.4 + 0.83 \times 3.0 2.34 \times 1.3 1 \times 0.2$
- = 7.04

- Parameters (coefficients)
 - $\mathbf{w}_0 = [-0.53, 0.83, -2.34, -1.00]$
 - $\mathbf{w}_1 = [0.53 0.31 0.17 0.85]$
 - $\mathbf{w}_2 = [0.00, -0.52, 2.52 \ 1.85]$
- Bias (Incercept)
- $b_0 = 10.12$, $b_1 = 1.81$, $b_2 = -11.93$

•
$$\mathbf{x}_n = [4.4, 3.0, 1.3, 0.2]^T$$

- $a_{n1} = b_1 + \mathbf{w}_1^T \mathbf{x}_n$
- = $1.81 + 0.53 \times 4.4 0.31 \times 3.0 0.17 \times 1.3 0.85 \times 0.2$
- = 2.82

- Parameters (coefficients)
 - $\mathbf{w}_0 = [-0.53, 0.83, -2.34, -1.00]$
 - $\mathbf{w}_1 = [0.53 0.31 0.17 0.85]$
 - $\mathbf{w}_2 = [0.00, -0.52, 2.52 \ 1.85]$
- Bias (Incercept)
- $b_0 = 10.12$, $b_1 = 1.81$, $b_2 = -11.93$

•
$$\mathbf{x}_n = [4.4, 3.0, 1.3, 0.2]^T$$

- $a_{n2} = b_2 + \mathbf{w}_2^T \mathbf{x}_n$
- = $-11.93 + 0.00 \times 4.4 0.52 \times 3.0 + 2.52 \times 1.3 + 1.85 \times 0.2$
- = -9.84

•
$$a_{n0} = 7.04, a_{n1} = 2.82, a_{n2} = -9.84$$

•
$$y_{n0} = \frac{\exp(a_{n0})}{\sum_{j=1}^{3} \exp(a_{nj})} = 0.986$$

• $y_{n1} = \frac{\exp(a_{n1})}{\sum_{j=1}^{3} \exp(a_{nj})} = 0.014$
• $y_{n2} = \frac{\exp(a_{n2})}{\sum_{j=1}^{3} \exp(a_{nj})} = 0.000$

• Hence, the predicted label of \mathbf{x}_n is 0.

Cross-entropy error function

- For the *n*-th training sample
 - $E_n(\mathbf{w}_1, \dots, \mathbf{w}_K) = -\sum_{k=1}^K t_{nk} \ln y_{nk}$
 - t_{nk} is the one-of-K coding class label for the n-th training sample
 - Only 1 of the *K* terms is non-zero.
 - y_{nk} : the predicted probability of \mathbf{x}_n belonging to class-k
 - If $t_{nk} = 1$, then we want $y_{nk} \rightarrow 1$
- For all training samples
 - $E(\mathbf{w}_1, \dots, \mathbf{w}_K) = \sum_{n=1}^N E_n(\mathbf{w}_1, \dots, \mathbf{w}_K)$

How to find \mathbf{w}_k , k = 1, ..., K?

- For the *n*-th training sample
- $E_n(\mathbf{w}_1, \dots, \mathbf{w}_K) = -\sum_{k=1}^K t_{nk} \ln y_{nk}$

•
$$\nabla_{\mathbf{w}_k} E_n(\mathbf{w}_1, \dots, \mathbf{w}_K) = (y_{nk} - t_{nk}) \mathbf{x}_n$$

• For all training samples

•
$$\nabla_{\mathbf{w}_k} E(\mathbf{w}_1, \dots, \mathbf{w}_K) = \sum_{n=1}^N (y_{nk} - t_{nk}) \mathbf{x}_n$$

Gradient Descent

•
$$\mathbf{w}_k^{(\tau)} = \mathbf{w}_k^{(\tau-1)} - \eta \nabla_{\mathbf{w}_k} E\left(\mathbf{w}_1^{(\tau-1)}, \dots, \mathbf{w}_K^{(\tau-1)}\right)$$

- *k* = 1, ..., *K*
 - Need to update *K* weight vectors

How often to update the weights?

- 1. Batch Gradient Descent
 - In each iteration, compute the gradient based on the full training set

$$\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \eta \nabla_{\mathbf{w}} E(\mathbf{w}^{(\tau-1)})$$
$$= \mathbf{w}^{(\tau-1)} - \eta \nabla_{\mathbf{w}} \sum_{n=1}^{N} E_n(\mathbf{w}^{(\tau-1)})$$
$$= \mathbf{w}^{(\tau-1)} - \eta \sum_{n=1}^{N} \nabla_{\mathbf{w}} E_n(\mathbf{w}^{(\tau-1)})$$

How often to update the weights?

- 2. Stochastic Gradient Descent
 - In each iteration, compute the gradient based on only one training sample

$$\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \eta \nabla_{\mathbf{w}} E_n(\mathbf{w}^{(\tau-1)})$$

- 3. Mini-batch Gradient Descent
 - In each iteration, compute the gradient based on a small set of training samples
 - $\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} \eta \sum_{n \in \mathcal{N}_i} \nabla_{\mathbf{w}} E_n(\mathbf{w}^{(\tau-1)})$
 - \mathcal{N}_i : the set of indices for data samples in the *i*-th minibatch

Concepts

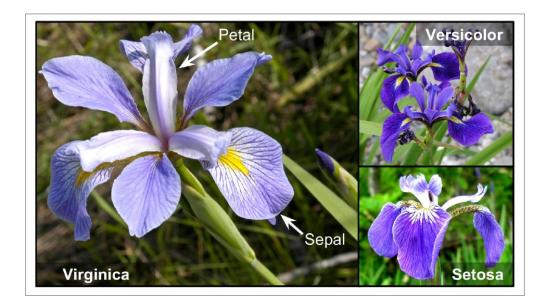
- For example, I have N = 10,000 training samples
- Batch size N_b = 200: the number of samples in a minibatch
- Number of iterations

$$= N / N_b = 10,000/200 = 50$$

- The number of iterations to go through all training samples once
- Equals to the number of mini-batches

Iris Plant Classification: K=3

- Three Iris Plant Species
 - Setosa=0 , Versicolor=1, Virginica=2
- Four features
 - Sepal length, Sepal width, Petal length, Petal width
 - $\mathbf{x}_n = [x_{n1}, x_{n2}, x_{n3}, x_{n4}]^T$

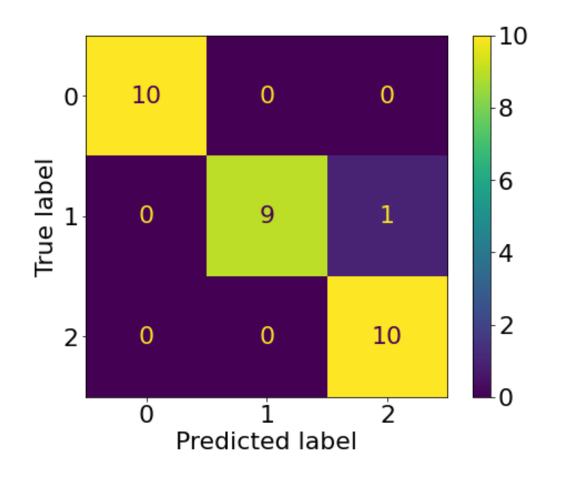


Iris Plant Classification

- 150 data samples
 - Class 0: 50 samples
 - Class 1: 50 samples
 - Class 2: 50 samples
- Split them into Training Set (80%) and Test Set (20%)
 - Training Set:
 - Class 0: 40 samples
 - Class 1: 40 samples
 - Class 2: 40 samples
 - Test Set:
 - Class 0: 10 samples
 - Class 1: 10 samples
 - Class 2: 10 samples

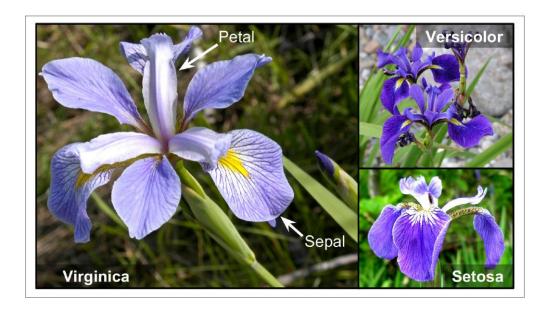
Iris Plant Classification

• Confusion Matrix



Binary Classification

- The same Iris dataset
 - Virginica=1, Non-Virginica=0
- 1 feature
 - Petal width
 - $\mathbf{x}_n = x_{n4}$

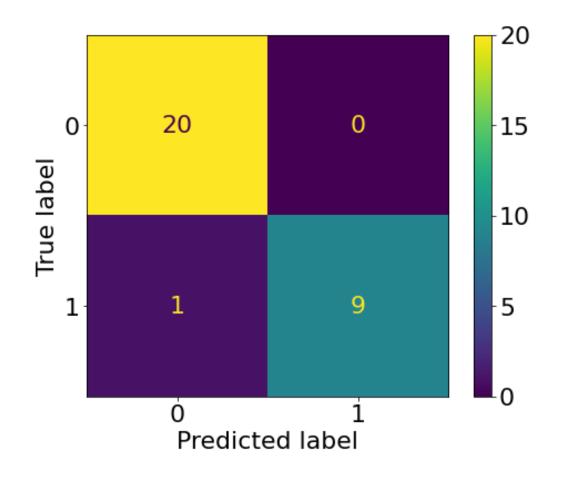


Iris Plant Classification: Binary Case

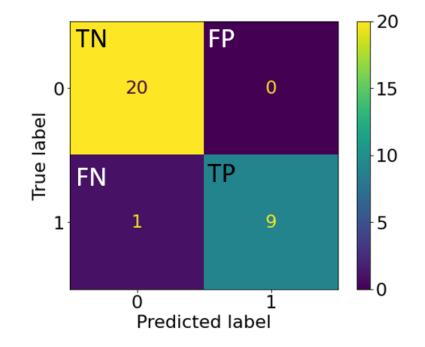
- 150 data samples
 - Class 0: 100 samples
 - Class 1: 50 samples
- Split them into Training Set (80%) and Test Set (20%)
 - Training Set:
 - Class 0: 80 samples
 - Class 1: 40 samples
 - Test Set:
 - Class 0: 20 samples
 - Class 1: 10 samples

Iris Plant Classification: Binary Case

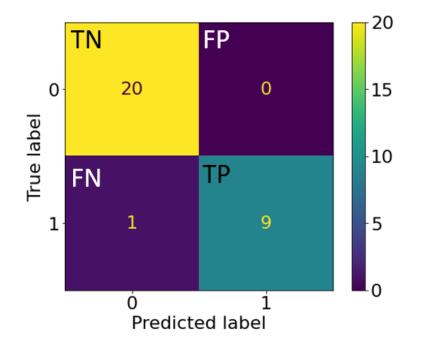
Confusion Matrix



- Class 1: positive class
- Class 0: negative class
- True Positive: TP
- False Positive: FP
- True Negative: TN
- False Negative: FN

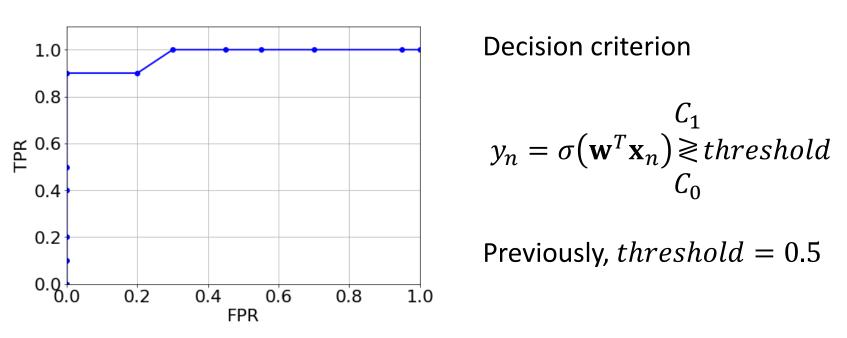


- Class 1: positive class
- Class 0: negative class
- True Positive Rate
 - $TPR = \frac{TP}{TP + FN}$
- False Positive Rate
 - $FPR = \frac{FP}{FP+TN}$



• We want high *TPR*, but low *FPR*

• Receiver Operating Characteristic (ROC) Curve



• Plot the TPR versus the FPR

- By setting a different *threshold*, you get different TP, TN, FP, FN
 - Hence, you get a different point on the ROC curve

• Receiver Operating Characteristic (ROC) Curve



• Plot the TPR versus the FPR

- AUC: area under the ROC curve
 - The larger the better
 - AUC ≤ 1