COEN140 Santa Clara University

- Classification Tasks
 - Text classification
 - Image classification

 Image compression (encoding) and decompression (decoding)

• A network with one hidden layer of four neurons

• A network with two layers of hidden units

Example: One-Layer Network

$$\overline{\chi} = \begin{bmatrix} \chi_{1} & \chi_{2} \end{bmatrix}^{T}$$

$$(\chi_{1}, W_{1})$$

$$(\chi_{2}, W_{2})$$

$$\chi_{2} = h(a)$$

$$(\chi_{2}, W_{2})$$

$$(\chi = W_{1}\chi_{1} + W_{2}\chi_{2})$$

$$(\chi = W_{1}\chi_{1} + W_{2}\chi_{2})$$

$$(\chi = \varphi(a) = \frac{1}{1 + e^{-a}} = P(C_{1} | \overline{\chi})$$

Question: How many parameters does the network have?

Answer: 2

Example: One-Layer Network

 $\vec{\chi} = [\chi, \chi_2]^T$ (a) y = h(a) $G = w_1 \chi_1 + w_2 \chi_2$ Let $y = \sigma(a) = \frac{1}{1 + e^{-a}} = P(C, |\bar{x})$ $a = 0.5 \times 2 + 0.2 \times 4 = 1 + 0.8 = 1.8$ $\chi_1 = 2$, $\chi_2 = 4$ $y = o(1.8) = \frac{1}{1+e^{-1.8}} = 0.86$ $\omega_1 = 0.5$, $\omega_2 = 0.2$ what is $P(C_1|\vec{x})$? $P(C_1|\vec{x}) = 0.86$

Example: Two-Layer Network

Question: How many parameters does the network have?

Answer: 6

 $\vec{W} = \begin{bmatrix} W_{11} & W_{12} & W_{21} & W_{22} & W_{1} & W_{2} \end{bmatrix}^{\mathsf{T}}$

$$a_{1} = w_{11} \chi_{1} + w_{12} \chi_{2}$$

$$a_{2} = w_{21} \chi_{1} + w_{22} \chi_{2}$$

$$Z_{1} = \delta(a_{1}), \quad Z_{2} = \delta(a_{2})$$

$$b = w_{1} Z_{1} + w_{2} Z_{2}$$

$$y = \delta(b)$$

- What we have just seen is called: Forward Pass
 - Pass the input through the network, layer by layer
 - Obtain the network output
 - Need to know the "weights" on the links

First Layer:

$$a_j = \sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)}$$

The non-linear activation function: $h(\cdot)$

$$z_j = h(a_j)$$

Instructor: Ying Liu

Activation Function: non-linear

• Sigmoid:
$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$
, represents a probability
• Tanh: $\tanh(a) = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)} = \frac{e^a - e^{-a}}{e^a + e^{-a}}$

• ReLU (Rectified Linear Unit): ReLU(a) = max(0, a)

COEN 140, Machine Learning and Data Mining

Activation Function: non-linear

• Softmax function:
$$\frac{\exp(a_k)}{\sum_{j=1}^{K} \exp(a_j)}$$

• Outputs the probability of the data sample belonging to the *k*-th class, *k* = 1, 2, ..., *K*

•
$$\sum_{k=1}^{K} \frac{\exp(a_k)}{\sum_{j=1}^{K} \exp(a_j)}$$
$$= \frac{\exp(a_1)}{\sum_{j=1}^{K} \exp(a_j)} + \frac{\exp(a_2)}{\sum_{j=1}^{K} \exp(a_j)} + \dots + \frac{\exp(a_K)}{\sum_{j=1}^{K} \exp(a_j)}$$

= 1

 How to calculate the weights?

 $\vec{\chi} = [\chi, \chi_2]^T$ w, X, $\mathcal{Y} = \mathcal{Q}(a)$ Wo 12 $\alpha = w_1 \chi_1 + w_2 \chi_2$ targ et output: t E[0, 1] Error function:

$$E(W_1, W_2) = \frac{1}{2}(y-t)^2$$

min
$$E(w_1, w_2)$$

 w_1, w_2
gradient: $\frac{dE}{dw_1} = \frac{dE}{dy} \cdot \frac{dy}{da} \cdot \frac{da}{dw_1}$
 $\frac{dE}{dy} = \frac{1}{2} \cdot 2 \cdot (y - t) = y - t$
 $\frac{dy}{da} = y(1 - y)$
 $\frac{da}{dw_1} = \chi_1$
 $\frac{dE}{dw_1} = (y - t) \cdot y \cdot (1 - y) \cdot \chi_1$
 $\frac{dE}{dw_2} = (y - t) \cdot y \cdot (1 - y) \cdot \chi_2$

g

$$\vec{\chi} = \begin{bmatrix} \chi_1 & \chi_2 \end{bmatrix}^T$$

$$\vec{\chi}_1 & \psi_1 \\ \vec{\chi}_2 & \psi_2 \end{bmatrix} = \sigma(a)$$

min
$$E(w_1, w_2)$$

 w_1, w_2
 $\frac{dE}{dw_1} = (y-t) \cdot y \cdot (1-y) \cdot \chi_1$
 $\frac{dE}{dw_2} = (y-t) \cdot y \cdot (1-y) \cdot \chi_2$

 $C_1 = w_1 \times_1 + w_2 \times_2$ gradient descent:

$$w_{l}^{(\tau)} = w_{l}^{(\tau-1)} - \eta \cdot (y - t) \cdot y \cdot (l - y) \cdot x_{l}$$

$$W_{2}^{(\tau)} = W_{2}^{(\tau-1)} - \eta \cdot (\eta - t) \cdot \eta \cdot (1 - \eta) \cdot \chi_{2}$$

where
$$y = \delta(a) = \delta(w_{1}^{(t-1)}x_{1} + w_{2}^{(t-1)}x_{2})$$

Question: How many parameters do we need to calculate?

Answer: 6

 $\vec{W} = \begin{bmatrix} W_{11} & W_{12} & W_{21} & W_{22} & W_{1} & W_{2} \end{bmatrix}^{\mathsf{T}}$

ヌ= (れ スリ) Z=5(a1) ω_{II} w, Output: W1 y=∢(b) 0 W2 a, WZZ $z_2 = \delta(a_2)$ $y = \sigma(b)$ b= W1 21 + W2 22 $Z_1 = \delta(\alpha_1), \quad Z_2 = \delta(\alpha_2)$ $a_1 = w_{11} \chi_1 + w_{12} \chi_2$ $\alpha_2 = \omega_{21} \chi_1 + \omega_{22} \chi_2$

min
$$E(\vec{w})$$
, $E(\vec{w}) = \frac{1}{2}(y - t)^2$
 \vec{w}
gradient descent

$$\frac{dE}{dw_{1}} = \frac{dE}{dy} \cdot \frac{dy}{db} \cdot \frac{db}{dw_{1}}$$

$$\frac{dE}{dy} = y - t$$

$$\frac{dy}{db} = y \cdot (1 - y)$$

$$\frac{db}{db} = z_{1}$$

$$\frac{dE}{dw_{1}} = (y - t) \cdot y \cdot (1 - y) \cdot z_{1}$$

$$\frac{dE}{dw_{2}} = (y - t) \cdot y \cdot (1 - y) \cdot z_{2}$$

え= (れ れ) Z1=0(Q1) ω_{II} W Output: WIZ y=∢(b) b W2_ a, WZZ $z_2 = \delta(a_2)$ $y = \sigma(b)$ b= W1 21 + W2 22 $Z_1 = \delta(\alpha_1), \quad Z_2 = \delta(\alpha_2)$ $a_1 = w_{11} \chi_1 + w_{12} \chi_2$ $\alpha_2 = \omega_{21} \chi_1 + \omega_{22} \chi_2$

min
$$E(\overline{w})$$
, $E(\overline{w}) = \frac{1}{2}(y-t)^{2}$
grodient descent

$$\frac{dE}{dw_{11}} = \frac{dE}{dy} \cdot \frac{dy}{db} \cdot \frac{db}{dz_{1}} \cdot \frac{dz_{1}}{da_{1}} \cdot \frac{da_{1}}{dw_{11}}$$

$$\frac{dE}{dy} = y-t, \quad \frac{dy}{db} = y \cdot (1-y), \quad \frac{db}{dz_{1}} = w_{1}$$

$$\frac{dz_{1}}{da_{1}} = z_{1}(1-z_{1}), \quad \frac{da_{1}}{dw_{11}} = \chi_{1}$$

$$\frac{dE}{dw_{11}} = (y-t) \cdot y \cdot (1-y) \cdot w_{1} \cdot z_{1} \cdot (1-z_{1}) \cdot \chi_{1}$$

$$\frac{dE}{dw_{12}} = (y-t) \cdot y \cdot (1-y) \cdot w_{1} \cdot z_{1} \cdot (1-z_{1}) \cdot \chi_{2}$$

Backpropagation

- What we have just seen is called: backpropagation
 - Propagation the (regression or classification) error from the output of the network to previous layers
 - to calculate the gradients of the error function with respect to the weights
 - and to update the weights by gradient descent

Summary

- Forward Pass
 - From input to output
 - Pass the input through the network, using the already known weights (parameters), and obtain the network output
- Backward Pass
 - From output to previous layers
 - Propagate the error from the network output to previous layers
 - Update the weights (parameters)

Regression problem

- For example:
 - Image compression and decompression

Target output:

$$- \mathbf{t}_{n} = [t_{n1}, t_{n2}, \dots, t_{nD}]^{T} = \mathbf{x}_{n} = [x_{n1}, x_{n2}, \dots, x_{nD}]^{T} \in \mathbb{R}^{D}$$

- Actual network output: $\mathbf{y}_n = [y_{n1}, y_{n2}, \dots, y_{nD}]^T \in \mathbb{R}^D$

Regression problem

- For example:
 - Image compression and decompression
- Sum-squared-error error function
 - N data samples

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n$$

where
$$E_n = \frac{1}{2} \sum_{k=1}^{D} (y_{nk}(\mathbf{x}_n, \mathbf{w}) - t_{nk})^2$$

Binary Classification

- Given a set of training samples $\mathbf{x}_n \in \mathbb{R}^D$ and the corresponding target vectors $t_n, n = 1, 2, ..., N$.
- Binary classification problem: $t_n \in \{0,1\}$

$$t_n = 1$$
: \mathbf{x}_n belongs to class-1

$$t_n = 0$$
: \mathbf{x}_n belongs to class-0

Binary Classification

Cross-entropy error function

$$- E(\mathbf{w}) = \sum_{n=1}^{N} E_n$$

- $E_n = -[t_n \ln y_n + (1 t_n) \ln(1 y_n)]$ is the error function for the *n*-th training sample
 - t_n ∈ {0,1} is the class label for the *n*-th training sample
 - y_n : the predicted class probability for the *n*-th training sample
 - $y_n = y_n(\mathbf{x}_n, \mathbf{w})$: a function of the input \mathbf{x}_n and the weights \mathbf{w}

K-class classification

- Given a set of training samples $\mathbf{x}_n \in \mathbb{R}^D$ and the corresponding target vectors $\mathbf{t}_n, n = 1, 2, ..., N$.
- For example
 - − *K*-class classification problem: $\mathbf{t}_n \in \{0,1\}^K$
 - This is called: 1-of-*K* coding
 - $t_{nk} = 1$: \mathbf{x}_n belongs to class-k
 - $t_{nk} = 0$: \mathbf{x}_n does not belong to class-k
 - Example: K = 5, 5 classes
 - $\mathbf{t}_n = [0,0,0,1,0]^T : \mathbf{x}_n$ belongs to class-4

K-class classification

• Cross-entropy error function

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n$$

where
$$E_n = -\sum_{k=1}^{K} t_{nk} \ln y_{nk}$$

- t_{nk} is the one-of-K coding class label for the n-th training sample
- $y_{nk} = y_{nk}(\mathbf{x}_n, \mathbf{w}), k = 1, ..., K$, is the predicted probability of the *n*-th training sample belonging to classk

Network Training

- Find weights: $\mathbf{w}^* = \arg\min_{\mathbf{w}} E(\mathbf{w})$
- Gradient descent:

$$\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \eta \nabla_{\mathbf{w}} E(\mathbf{w}^{(\tau-1)})$$

- where $\eta > 0$ is the learning rate
- τ : the iteration index
- The above is the general training method for
 - Regression
 - Binary classification
 - Multi-class classification

Mini-batch Gradient Descent

 In each iteration, compute the gradient based on a small set of training samples

•
$$\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \eta \sum_{n \in \mathcal{N}_i} \nabla_{\mathbf{w}} E_n(\mathbf{w}^{(\tau-1)})$$

• \mathcal{N}_i : the set of indices for data samples in the *i*-th minibatch

Concepts

- Epoch: the number of rounds to go through all training samples. Each round is an epoch.
- Shuffle: before starting each epoch, the training samples are shuffled, therefore the mini-batches in different epochs are different.
- Notations:
 - $-\tau$: iteration index (for weight update)
 - *n*: training sample index
 - *i*: mini-batch index

Training Procedure

- 10,000 training samples, Batch size = 200;
- 10,000/200 =50 mini-batches, Epoch=10
- Step 1: initialize $\mathbf{w}^{(0)}$
- Step 2: for epoch=1, 2, ..., 10, do shuffle the training samples for i =1:50

What's the total number of iterations?

How many times are the weights updated?

1. forward pass of the *i*-th mini-batch, using the old $\mathbf{w}^{(\tau-1)} : \mathbf{x}_n \to \mathbf{z}_n \to \mathbf{y}_n$ for the *n*-th sample in the *i*-th mini-batch

2. backward pass: backpropagate the gradients

$$\sum_{n\in\mathcal{N}_i} \nabla_{\mathbf{w}} E_n(\mathbf{w}^{(\tau-1)})$$

3. update w by
$$\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \eta \sum_{n \in \mathcal{N}_i} \nabla_{\mathbf{w}} E_n(\mathbf{w}^{(\tau-1)})$$

end

end

Summary

- Network Training
 - Use the training set
 - Calculate the network weights
 - Use both forward and backward pass
- Testing
 - Also called "inference"
 - After the model is trained (weights are found), use the test set to evaluate the model performance
 - Only use the forward pass

- Dataset Description
 - The Pima Indian Diabetes Dataset consists of information on 768 female patients (268 tested_positive instances and 500 tested_negative instances) coming from a population near Phoenix, Arizona, USA. Tested_positive and tested_negative indicates whether the patient is **diabetic** or not, respectively.
- 8 features
 - Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age.
- Labels
 - 1: tested_positive
 - 0: tested_negative

- Objective
 - Build a 3-layer neural network to predict whether a patient is diabetic or not.

```
8# Create first network with Keras
9from keras.models import Sequential
10 from keras.layers import Dense
11 import numpy
12 from sklearn.model_selection import train_test_split
13 from sklearn import metrics
14# fix random seed for reproducibility
15 \text{ seed} = 7
16numpy.random.seed(seed)
17# load pima indians dataset
18dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
19# split into input (X) and output (Y) variables
20X = dataset[:,0:8]
21Y = dataset[:,8]
22X_train, X_test, y_train, y_test = train_test_split(X, Y, \
                                                        stratify=Y, random state=42,test size=0.25)
23
```

```
24# create model
25model = Sequential() Output dimension
26model.add(Dense(12) input_dim=8, activation='relu'))
27model.add(Dense(8, activation='relu'))
28model.add(Dense(1, activation='sigmoid'))
```

- Dense layer: fully connected layer
- Input_dim: input dimension

```
29 # Compile model
30 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
31 # Fit the model
32 model.fit(X_train, y_train, epochs=150, batch_size=10, verbose=2)
33 # calculate predictions
34 predictions = model.predict(X_test)
35 # round predictions
36 y_test_hat = [round(x[0]) for x in predictions]
```

- Binary_crossentropy: the cost function (or error function) for binary classification problem. We need to minimize this function to find the weights
- optimizer: the method/solver used to minimize the cost function

```
46 fpr, tpr, thresholds = metrics.roc_curve(y_test, predictions, pos_label = 1)
47 import matplotlib.pyplot as plt
48 plt.plot(fpr,tpr, 'b-',linewidth=4)
49 plt.ylabel('True Positive Rate',fontsize = 26)
50 plt.xlabel('False Positive Rate',fontsize = 26)
51
52 plt.tick_params(labelsize=26)
53 plt.grid(True)
54 plt.show()
```

• Plot the ROC curve

- ROC curve: the receiver operating characteristic curve
- For binary classification, plot the false positive rate vs the true positive rate (obtained by setting different threshold)

9 from keras.models import Sequential
10 from keras.layers import Dense
11 import numpy
12 <pre>from sklearn.model_selection import train_test_split</pre>
13 from sklearn import metrics
14# fix random seed for reproducibility
15 seed = 7
16 numpy.random.seed(seed)
17# Load pima indians dataset
<pre>18dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")</pre>
19# split into input (X) and output (Y) variables
20X = dataset[:,0:8]
21Y = dataset[:,8]
<pre>22X_train, X_test, y_train, y_test = train_test_split(X, Y, \</pre>
23 stratify=Y, random_state=42,test_size=0.25
24# create model
25model = Sequential()
<pre>26model.add(Dense(12, input_dim=8, activation='relu'))</pre>
<pre>27model.add(Dense(8, activation='relu'))</pre>
<pre>28model.add(Dense(1, activation='sigmoid'))</pre>
29# Compile model
<pre>30model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])</pre>
31# Fit the model
<pre>32model.fit(X_train, y_train, epochs=150, batch_size=10, verbose=2)</pre>
33# calculate predictions
34predictions = model.predict(X_test)
35# round predictions
36y_test_hat = [round(x[0]) for x in predictions]
37
38 num_correct = 0
39for i in range(len(y_test)):
<pre>40 if y_test_hat[i]==y_test[i]:</pre>
41 num_correct +=1
42
43Accuracy_rate = num_correct/len(y_test)
44print("Accuracy Rate = ", Accuracy_rate)
45
46+pr, tpr, thresholds = metrics.roc_curve(y_test, predictions, pos_label = 1)
47 import matplotlib.pyplot as plt
48plt.plot(+pr,tpr, 'b-',linewidth=4)
49plt.ylabel('Irue Positive Rate', tontsize = 26)
50 plt.xlabel('False Positive Rate', tontsize = 26)
51 Soult title second (lebel des 26)
52pt.tick_params(labelslze=26)

Usage Here you can get either on the Edito

^

Help can also be parenthesis next t *Preferences > He*

1

Help	Variable explorer				File explorer		
IPython o	onsole						
Ca Co	nsole 1/A	×					
- 0s -	loss:	0.51	.81	-	acc:	0.7535	
Epoch 1	43/150		~ 7			0 7600	
- 0s - Enoch 1	Loss:	0.49	07	-	acc:	0.7639	
- 0s -	loss:	0.47	74	_	acc:	0.7917	
Epoch 1	45/150						
- 0s -	loss:	0.48	07	-	acc:	0.7847	
Epoch 1	.46/150	0 17	63	_	acc.	0 7795	
Epoch 1	47/150	0.4/	00		acc.	0.7755	
- 0s -	loss:	0.47	33	-	acc:	0.7847	
Epoch 1	.48/150						
- 0s -	loss:	0.48	09	-	acc:	0.7830	
- 0s -	· 1055:	0.49	36	_	acc:	0.7726	
Epoch 1	50/150	0.15	20		ucc.	01//20	
- 0s -	loss:	0.48	19	-	acc:	0.7778	
Accurac	y Rate	= 0	.71	.35	41666	56666666	
Tn [9]:							

Choice of Output Activation and Error Function

• Binary classification

- Sigmoid activation
- Cross-entropy error function
- Multi-class classification
 - Softmax activation function
 - Cross-entropy error function
- Regression problem
 - For example, image compression and decompression
 - (optional) Activation function
 - If input pixels are in [0,255]: can use ReLU
 - If input pixels are in [0,1]: can use Sigmoid
 - If input pixels are in [-1,1]: can use tanh
 - Sum-squared-error cost function