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Motivation

e Convolutional neural network (CNN): a computational
model that simulates how human eyes see the world

* Nodes: neurons in human visual cortex

 Neurons are connected
— But not fully connected
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Motivation

* Neurons have a small local receptive field

— They react only to visual stimuli in a limited region of
the visual field
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Motivation

* Some neurons react only to horizontal lines
e Some neurons react to vertical lines
e Some neurons react to curves
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Motivation

* Some neurons react to more complex patterns that
are combinations of the lower-level patterns

— Higher-level neurons are based on the outputs of
neighboring lower-level neurons
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Motivation

* This powerful architecture can detect all sorts of
complex patterns in any area of the visual field

e The above is the motivation of CNN
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Convolutional Neural Network (CNN)

* How exactly does a CNN work?
— In terms of computation...

A CNN has some convolutional layers (and some other
layers).

* A convolutional layer has a number of filters that
execute convolution operations.
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CNN Architecture

catdog ......
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CNN Architecture

* [nput: an image, some text, etc.
* Convolutional layer: generate feature maps

* Max pooling layer: capture the most important
features — those with the highest values

* Softmax function: outputs the probability distribution
over different classes (labels)
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Convolution-1D

* Stride (S): how the filter is shifted
» Zero padding (P): pad the input volume with zeroes

around the boarder

output
output . l .
//!E!\\//!E!L\//!E!\\
o121 1] -3||0
| input T | input

* Input size: W=5; Zero-padding: P=1

e Filter size: F=3

* Stride: S=1 (Left); S=2(right)

filter

* Qutput size: floor((W+2P-F)/S)+1: 5(Left); 3(Right)
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Convolution-2D

Image Matrix < 400

* Input: an image matrix
* Filter/Kernel: a smaller

j/
-

Size matrix
— e.g. 3 X 3 matrix

* The filter shifts on
Filter:w = [wy , ..., Wq |

the input image, INPUt X = [Xg, ooer Xio]”
The k-th Filter output:

9
— wTo _ E

O = W Xj = WiXki
i=1

Output Matrix

T

horizontally and vertically

* Output matrix

— Each entry: the inner product (sum of the element-
wise product) between the filter and a patch on the
input image
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Convolution-2D

nooE

Convolutional

Input matrix 3 x 3 filter Image
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One Conv Layer

Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

32 width

3 depth
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One Conv Layer

Convolution Layer

32x32x3 image

32

32
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ox5Hx3 filter

/7

I| Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”
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One Conv Layer

CO“VOIUtlon Layer Filters always extend the full
e depth of the input volume
32x32x3 image /
ox5x3 filter
32 £
I| Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32
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One Conv Layer

Convolution Layer

__— 32x32x3 Image

/ 5x5x3 filter 1w
=
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]

=0

32

"~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
(i.e. 553 = 75-dimensional dot product + bias)

whz + b
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One Conv Layer

Convolution Layer

activation map

__— 32x32x3 Image

/ 5x5x3 filter /
=

]

=0 i
convolve (slide) over all
spatial locations
32 28

3 1

Question: What are the values of W, P, F, and S in this example?
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One Conv Layer

Convolution Layer

__— 32x32x3 Image

/ 5x5x3 filter
=

]

@>® convolve (slide) over all

spatial locations

32
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One Conv Layer

Also called:
feature map, or
depth slice

For example, if we had 6 5x5 filters, we’ll get 6 separate jactivation maps:

/-
Convolution Layer
32 A

3 6

activation maps

We stack these up to get a “new image” of size 28x28x6!
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Convolutional Network (ConvNet)

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28
CONV,
RelLU
e.g.6
oX5x3
AA filters AA
3 6

Instructor: Ying Liu COEN 140, Machine Learning and Data Mining



Convolutional Network (ConvNet)

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

I
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CONV,

RelLU
e.g.6
aX5x3
filters

|Z

28

CONV,

RelLU
e.g. 10
oX5x6
filters

24

CONV,
RelLU

1/

10
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Convolutional Layer

* Neurons in the 1st conv. Layer Convolutional
Feature Q layer 2
— not connected to Map 1 I
every single pixel in the ki Mep2” i
. . Filters '
Input Image A
— only connected to pixels freeo Convolutional

E Map 1 FHIQY ' layer 1

in their own receptive fields p
Map 2

* Neurons in the 2" conv. Layer
— connected only to neurons

Input layer

. . Channels
located within a small Red
Green
cuboid in the 1st layer Blue
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Filters

A filter can be represented as: a small image the size
of the receptive field

Feétu re
Map 2

Feature
\V/EETol!
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— Apply two different filters to the same image, to get
two feature maps
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Filters

* If all neurons in a layer use the same vertical line filter
(and the same bias term)

Featuire
Map 2

Feature
\V/EETol!
e

" *\\"F ER1 LURRARERAAY

1t
|
i A

Vertical filter “

* In the output feature map: the vertical white lines get
enhanced, while the rest gets blurred
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Filters

* If all neurons in a layer use the same horizontal line
filter (and the same bias term)

Featuire
Map 2

Feature
\V/EETol!
e

" *\\"F ER1 LURRARERAAY

1l
|
a1l

Vertical filter “

* In the output feature map: the horizontal white lines
get enhanced, while the rest is blurred out
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Filters

A layer full of neurons using the same filter gives you
a feature map, which highlights the areas in an image
that are most similar to the filter’s pattern

* During training, a CNN finds the most useful filters
(i.e. filter patterns) for its task (such as classification,
or regression), and it learns to combine them into
more complex patterns



Summary

* One convolutional layer: composed of several 2D
feature maps of equal sizes, therefore one such layer
is 3D

* All neurons within one feature map: share the same
filter (i.e. parameters/weights)

— The elements in the filter are the parameters/weights

* Different feature maps may have different parameters

* A convolutional layer: simultaneously applies multiple
filters to its inputs, making it capable of detecting
multiple features in its inputs
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CNN-Pooling Layer

* Max pooling

224x224x64 . _
ooy Single depth slice
A
L 1] 1]2]4
max pool with 2x2 filters
oONNGN 7 | 8 and stride 2 6 | 8
| I 3 | 2 [NiEG 3|4
1|2 P34
> MRS 112
224 downsampling
112 >
224 y

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume.
Left: In this example, the input volume of size [224x224x64] is pooled with filter size 2, stride 2 into
output volume of size [112x112x64]. Notice that the volume depth is preserved. Right: The most
common downsampling operation is max, giving rise to max pooling, here shown with a stride of 2.
That is, each max is taken over 4 numbers (little 2x2 square).
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Pooling Layer

e Subsample the input image in order to reduce
— the computational load
— The memory use
— The number of parameters (thereby limiting the risk
of overfitting)

* Each neuron in a pooling layer is generated by using a
limited number of neurons in the previous layer
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Pooling Layer

* A pooling neuron has no weights

* |t aggregates the inputs using an aggregation function
— Max
— Mean

* Works on every input channel independently

e Qutput depth (number of channels): the same as the
input depth
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Pooling Layer

* A max pooling layer, with
— 2 X 2 pooling kernel
— Astride of 2
— No padding
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Typical CNN Architecture

* One convolutional layer
— Multiple feature maps
— Followed by a RelLU operation

* Then a pooling layer

T1--~
o111

i

Input Convolution Pooling Convolution Pooling Fully connected
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Typical CNN Architecture

* Then another convolutional layer

* Then another pooling layer

* And so on...

[TT1

Input
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Convolution Pooling Convolution Pooling Fully connected
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Typical CNN Architecture

* Then a regular neural network
— A few fully connected layers
— Each followed by a ReLU

— The final layer outputs the prediction (a softmax layer
that outputs estimated class probabilities)

[ e

Input Convolution Pooling Convolution Pooling Fully connected
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Y
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Dropout Layer

e Address the problem of over-fitting, while
— Network goes deeper
— Layer goes larger

Before dropout After dropout
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ImageNet

* A dataset of over 15 million labeled high-resolution
Images

* Roughly 22,000 categories

* The images were collected from the web and labeled
by human labelers



ImageNet Challenge

* ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC)

— An annual competition (2010-2017)
— Uses a subset of ImageNet database

— 1,000 categories, roughly 1,000 images each

* Some of the categories are really subtle (trying to
distinguish 120 dog breeds)

— Roughly 1.2 million training images
— 50,000 validation images
— 150,000 test images



ImageNet Challenge

e Tasks
— Image Classification
— Single-Object Localization
— Object Detection



ImageNet Challenge Tasks

Image classification

Steel drum |
> I
: Scale Scale
i Ste_el drum T-shirt T-shirt
| Folding chair Steel drum Giant panda
: Loudspeaker Drumstick Drumstick
: Mud turtle Mud turtle
|
|
Ground truth : Accuracy: 1 Accuracy: 1 Accuracy: 0
Single-object localization

Steel drum

Ground truth Accuracy: 1 Accuracy: 0 Accuracy: 0

Object detection

MICTODhOf\e Steel drum Person Folding chair Mlcrophone Steel drum Person Foldlngchalr Microphone Steel drum Person Foldlng chair

Ground truth

AP: 1.0 1.0 1.0 1.0 AP: 0.0 0.5 1.0 0.3 AP: 1.0 0.7 0.5 0.9
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