# Decision Tree 

## COEN140

Santa Clara University

## Decide whether to wait in a restaurant?

- Ask yourself questions
- Alternate: is there an alternative restaurant nearby?
- Bar: is there a comfortable bar area to wait in?
- Fri/Sat: is today Friday or Saturday?
- Hungry: are we hungry?
- Patrons: number of people in the restaurant (None, Some, Full)


## Decide whether to wait in a restaurant?

- Ask yourself questions
- Price: price range (\$, \$\$, \$\$\$)
- Raining: is it raining outside?
- Reservation: have we made a reservation?
- Type: kind of restaurant (French, Italian, Thai, Burger)
- WaitEstimate: estimated waiting time (0-10, 10-30, 3060, >60)


## Ask questions one by one



## Ask questions one by one

-What should be the first question to ask?

- What should be the next question to ask?
-...
- When can you get to a decision?


## Data Samples: a set of examples

- Classification of examples is positive (T) or negative (F)
- General form for data: $N$ samples, each with attributes $\left(x_{1}, x_{2}, x_{3}, \ldots x_{d}\right)$ and target value $y$.

| Example | Input Attributes |  |  |  |  |  |  |  |  |  | Goal <br> WillWait |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type | Est |  |
| $\mathbf{x}_{1}$ | Yes | No | No | Yes | Some | \$\$\$ | No | Yes | French | 0-10 | $\mathrm{y}_{1}=Y e s$ |
| $\mathrm{x}_{2}$ | Yes | No | No | Yes | Full | \$ | No | No | Thai | 30-60 | $\mathrm{y}_{2}=N o$ |
| $\mathrm{x}_{3}$ | No | Yes | No | No | Some | \$ | No | No | Burger | 0-10 | $\mathrm{y}_{3}=Y e s$ |
| $\mathrm{x}_{4}$ | Yes | No | Yes | Yes | Full | \$ | Yes | No | Thai | 10-30 | $\mathrm{y}_{4}=Y e s$ |
| $\mathbf{x}_{5}$ | Yes | No | Yes | No | Full | \$\$\$ | No | Yes | French | $>60$ | $\mathrm{y}_{5}=N o$ |
| $\mathbf{x}_{6}$ | No | Yes | No | Yes | Some | \$\$ | Yes | Yes | Italian | 0-10 | $\mathrm{y}_{6}=Y e s$ |
| $\mathbf{x}_{7}$ | No | Yes | No | No | None | \$ | Yes | No | Burger | 0-10 | $\mathrm{y}_{7}=N o$ |
| $\mathrm{x}_{8}$ | No | No | No | Yes | Some | \$\$ | Yes | Yes | Thai | 0-10 | $\mathrm{y}_{8}=Y e s$ |
| $\mathrm{x}_{9}$ | No | Yes | Yes | No | Full | \$ | Yes | No | Burger | > 60 | $\mathrm{y}_{9}=N o$ |
| $\mathbf{x}_{10}$ | Yes | Yes | Yes | Yes | Full | \$\$\$ | No | Yes | Italian | 10-30 | $\mathrm{y}_{10}=N o$ |
| $\mathbf{x}_{11}$ | No | No | No | No | None | \$ | No | No | Thai | 0-10 | $\mathrm{y}_{11}=N o$ |
| $\mathbf{x}_{12}$ | Yes | Yes | Yes | Yes | Full | \$ | No | No | Burger | 30-60 | $\mathrm{y}_{12}=Y e s$ |

## Decision Tree

- You want to "learn" a tree from those training examples
- a small tree consistent with the training examples



## Decision Tree

- Decision tree: is a classifier
- An input-output mapping
$-\quad y=f(\mathbf{x})$
$-\quad$ Input: $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{d}\right]^{T}$
$d$ attributes/features
- Output: $y$, the decision
- It performs classification (makes decisions) by:
- Executing a sequence of tests
- Each test: test the value of an attribute


## Decision Tree

- Decision tree: is a classifier
- An input-output mapping
$-\quad y=f(\mathbf{x})$
$-\quad$ Input: $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{d}\right]^{T}$ $d$ attributes
- Output: $y$, the decision
- We are given a set of training samples
- Learn a decision tree (i.e. learn a classifier)
- Then we can apply this decision tree to a new instance to make a decision


## Data Samples

- Classification of examples is positive (T) or negative (F)
- General form for data: $N$ instances, each with attributes $\left(x_{1}, x_{2}, x_{3}, \ldots x_{d}\right)$ and target value $y$.

| Example | Input Attributes |  |  |  |  |  |  |  |  |  | Goal <br> WillWait |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type | Est |  |
| $\mathbf{x}_{1}$ | Yes | No | No | Yes | Some | \$\$\$ | No | Yes | French | 0-10 | $\mathrm{y}_{1}=Y e s$ |
| $\mathrm{x}_{2}$ | Yes | No | No | Yes | Full | \$ | No | No | Thai | 30-60 | $\mathrm{y}_{2}=N o$ |
| $\mathrm{x}_{3}$ | No | Yes | No | No | Some | \$ | No | No | Burger | 0-10 | $\mathrm{y}_{3}=Y e s$ |
| $\mathrm{X}_{4}$ | Yes | No | Yes | Yes | Full | \$ | Yes | No | Thai | 10-30 | $\mathrm{y}_{4}=Y e s$ |
| $\mathrm{x}_{5}$ | Yes | No | Yes | No | Full | \$\$\$ | No | Yes | French | > 60 | $\mathrm{y}_{5}=N o$ |
| $\mathbf{x}_{6}$ | No | Yes | No | Yes | Some | \$\$ | Yes | Yes | Italian | 0-10 | $\mathrm{y}_{6}=Y e s$ |
| $\mathbf{x}_{7}$ | No | Yes | No | No | None | \$ | Yes | No | Burger | 0-10 | $\mathrm{y}_{7}=N_{0}$ |
| $\mathrm{x}_{8}$ | No | No | No | Yes | Some | \$\$ | Yes | Yes | Thai | 0-10 | $\mathrm{y}_{8}=Y e s$ |
| $\mathrm{x}_{9}$ | No | Yes | Yes | No | Full | \$ | Yes | No | Burger | > 60 | $\mathrm{y}_{9}=N_{0}$ |
| $\mathbf{x}_{10}$ | Yes | Yes | Yes | Yes | Full | \$\$\$ | No | Yes | Italian | 10-30 | $\mathrm{y}_{10}=N o$ |
| $\mathbf{x}_{11}$ | No | No | No | No | None | \$ | No | No | Thai | 0-10 | $\mathrm{y}_{11}=N o$ |
| $\mathbf{x}_{12}$ | Yes | Yes | Yes | Yes | Full | \$ | No | No | Burger | 30-60 | $\mathrm{y}_{12}=Y e s$ |

## How to choose an attribute?

- Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

- Patrons or type?


To wait or not to wait is still at $50 \%$.

## Information Theory

- Consider a discrete random source $S$, which takes on symbols from a fixed finite alphabet

$$
\mathcal{S}=\left\{s_{0}, s_{1}, \ldots, s_{K-1}\right\}
$$

with probabilities

$$
P\left(S=s_{k}\right)=p_{k}, \quad k=0,1, \ldots, K-1
$$

- The set of probabilities satisfy

$$
\sum_{k=0}^{K-1} p_{k}=1
$$

## Information Theory

- Measure how much information is produced by such a random source $S$ ?
- Information: related to "uncertainty"


## Example

- Let random source $S$ represent tomorrow will rain or not rain.
- $S=1$ : tomorrow will rain
- $S=0$ : tomorrow will not rain
- I told you:

$$
p_{1}=P(S=1)=0.98
$$

- When tomorrow arrives, it does rain.
- Is it surprising or not?
- What if $p_{1}=P(S=1)=0.01$ ?


## Uncertainty, Surprise, Information

■ Uncertainty: before the event $S=s_{k}$ occurs, there is an amount of uncertainty
$\square$ Surprise: when the event $S=s_{k}$ occurs, there is an amount of surprise
$\square$ Information: after the occurrence of the event $S=s_{k}$, there is gain in the amount of information.
The amount of information is related to the inverse of $p_{k}$ (probability of occurrence)

## Information

- Define the amount of information gained after observing the event $S=s_{k}$, which occurs with probability $p_{k}$



## Information

$$
I\left(s_{k}\right)=\log \frac{1}{p_{k}}
$$

■ $I\left(s_{k}\right)=0$ for $p_{k}=1$
$\square I\left(s_{k}\right) \geq 0$ for $0 \leq p_{k} \leq 1$
$\square I\left(s_{k}\right)>I\left(s_{i}\right)$ for $p_{k}<p_{i}$


## Information

$$
I\left(s_{k}\right)=\log \frac{1}{p_{k}}
$$

- base of the logarithm: arbitrary

■ we usually use $\log _{2}$

■ The resulting unit of information is called the bit

$$
I\left(s_{k}\right)=\log _{2} \frac{1}{p_{k}}=-\log _{2} p_{k}, k=0,1, \cdots, K-1
$$

e.g. If $k=0,1$, and $p_{k}=1 / 2$, then $I\left(s_{k}\right)=1$ bit (one bit is the amount of information that we gain when one of two possible and equally likely events occurs)

## Example

- You have a message to send to a friend
- $S$ : tomorrow's weather condition

| $k$ | $s_{k}$ | $P\left(S=s_{k}\right)$ | $I\left(s_{k}\right)=\log _{2} \frac{1}{p_{k}}$ |
| :---: | :---: | :---: | :---: |
| 1 | sunny | $1 / 4$ | 2 bits |
| 2 | rainy | $1 / 4$ | 2 bits |
| 3 | windy | $1 / 4$ | 2 bits |
| 4 | cloudy | $1 / 4$ | 2 bits |

- Encode these messages in a sequence of binary "bits".
- How many bits do you need to represent each of the four messages?


## Entropy

- The expectation of $I\left(s_{k}\right)$ over the source alphabet $\mathcal{S}$ is
- $H(S)=E\left[I\left(s_{k}\right)\right]=\sum_{k=0}^{K-1} p_{k} I\left(p_{k}\right)=\sum_{k=0}^{K-1} p_{k} \log _{2} \frac{1}{p_{k}}$
- The entropy of a discrete random source $S$

$$
\begin{gathered}
H(S)=\sum_{k=0}^{K-1} p_{k} \log _{2} \frac{1}{p_{k}} \\
\operatorname{Or} H(S)=-\sum_{k=0}^{K-1} p_{k} \log _{2} p_{k}
\end{gathered}
$$

## Information

- If there are $K$ symbols in the source alphabet, then

$$
0 \leq H(S) \leq \log _{2} K
$$

$\square H(S)=0$ if and only if $p_{k}=1$ for some $k$, and the remaining probabilities in the set are all zero
$\Rightarrow$ the lower bound of entropy (corresponds to no uncertainty)

■ $H(S)=\log _{2} K$ if and only if $p_{k}=1 / K$ for all $k$ (i.e. all symbols in the alphabet are equiprobable)
$\Rightarrow$ upper bound of entropy (corresponds to maximum uncertainty)

## Entropy of Binary Source (Classes)

- Symbol 0 occurs with probability $p_{0}$, symbol 1 occurs with probability $p_{1}=1-p_{0}$

■ The entropy of such a source equals

$$
\begin{aligned}
H(S) & =-p_{0} \log _{2} p_{0}-p_{1} \log _{2} p_{1} \\
& =-p_{0} \log _{2} p_{0}-\left(1-p_{0}\right) \log _{2}\left(1-p_{0}\right) \text { bits }
\end{aligned}
$$

■ Use a special notation for such $H(S)$, which is

$$
H\left(p_{0}\right)=-p_{0} \log _{2} p_{0}-\left(1-p_{0}\right) \log _{2}\left(1-p_{0}\right) \text { bits }
$$

## Entropy of Binary Source (Classes)



- When $p_{0}=0$ or $p_{0}=1, H\left(p_{0}\right)=0$ (no information)
- When $p_{0}=p_{1}=\frac{1}{2}, H\left(p_{0}\right)=1$ (maximum information)


## Example

- The distribution of a discrete random source $X$ is the following, calculate the entropy $H(X)$.
- $P\left(X=x_{1}\right)=\frac{1}{4}, P\left(X=x_{2}\right)=\frac{3}{4}$
- Answer
- $H(X)=-\sum_{i=1}^{2} p_{i} \times \log _{2} p_{i}=-\frac{1}{4} \log _{2} \frac{1}{4}-\frac{3}{4} \log _{2} \frac{3}{4}$
$=0.8113$ bits


## Example

- The distribution of a discrete random source $X$ is the following, calculate the entropy $H(X)$.
- $P\left(X=x_{1}\right)=\frac{1}{2}, P\left(X=x_{2}\right)=\frac{1}{4}, P\left(X=x_{3}\right)=\frac{1}{4}$
- Answer
- $H(X)=-\sum_{i=1}^{3} p_{i} \times \log _{2} p_{i}$
- $=-\frac{1}{2} \log _{2} \frac{1}{2}-\frac{1}{4} \log _{2} \frac{1}{4}-\frac{1}{4} \log _{2} \frac{1}{4}$
$=1.5$ bits


## Example - Compare different distributions

- Source $S_{1}: p_{1}=0, p_{2}=1$
- Source $S_{2}: p_{1}=\frac{1}{2}, p_{2}=\frac{1}{2}$
- Source $S_{3}: p_{1}=\frac{1}{3}, p_{2}=\frac{1}{3}, p_{3}=\frac{1}{3}$
- Source $S_{4}$ : $p_{1}=\frac{1}{2}, p_{2}=\frac{1}{3}, p_{3}=\frac{1}{6}$
- Compare $H\left(S_{1}\right), H\left(S_{2}\right), H\left(S_{3}\right), H\left(S_{4}\right)$ without computation?


## Example - Compare different distributions

- Source $S_{1}: p_{1}=0, p_{2}=1$
- Source $S_{2}: p_{1}=\frac{1}{2}, p_{2}=\frac{1}{2}$
- Source $S_{3}: p_{1}=\frac{1}{3}, p_{2}=\frac{1}{3}, p_{3}=\frac{1}{3}$
- Source $S_{4}: p_{1}=\frac{1}{2}, p_{2}=\frac{1}{3}, p_{3}=\frac{1}{6}$
- Answer:
- H(S1): smallest
- $\mathrm{H}(\mathrm{S} 2)<\mathrm{H}(\mathrm{S} 3)$
- H(S4)<H(S3)
- $\mathrm{H}(\mathrm{S} 2)$ vs $\mathrm{H}(\mathrm{S} 4)$ ?
- $\mathrm{H}(\mathrm{S} 2)<\mathrm{H}(\mathrm{S} 4)$


## Decision Tree

- What is the uncertainty of the outcome if we disclose the value of some attribute?
- Information Gain:

the uncertainty<br>the uncertainty<br>after testing an attribute

## Example



Uncertainty Before:


Entropy $(\mathrm{Y})=-\frac{1}{2} \log _{2} \frac{1}{2}-\frac{1}{2} \log _{2} \frac{1}{2}=\log _{2} 2=1$ bit:
There is " 1 bit of information to be discovered".
Uncertainty After testing the attribute Type:
If we go into branch "French", the uncertainty is still 1 bit, similarly for Italian, Thai, and Burger.
French: 1bit Italian: 1 bit

On average: 1 bit ! We gained no information! Thai: 1 bit
Burger: 1bit

## Example



Uncertainty Before: entropy $=-\frac{1}{2} \log _{2} \frac{1}{2}-\frac{1}{2} \log _{2} \frac{1}{2}=\log _{2} 2=1$ bit: There is " 1 bit of information to be discovered".

Uncertainty After testing attribute Patrons: In branches "None" and "Some": entropy = 0, In branch "Full" entropy $=-\frac{1}{3} \times \log _{2} \frac{1}{3}-\frac{2}{3} \times \log _{2} \frac{2}{3}=0.918$ bits Uncertainty is reduced! So attribute Patrons gains more information!

## Conditional Entropy

- Consider two RVs $X$ and $Y$
- $X$ has $N$ possible values: $x_{1}, x_{2}, \ldots, x_{N}$
- $Y$ also has a set of possible values
- The conditional entropy of $Y$ under $X$ (or given $X$ ) is defined as
- $H(Y \mid X)=\sum_{i=1}^{N} P\left(X=x_{i}\right) \times H\left(Y \mid X=x_{i}\right)$


## Conditional Entropy

- Combine branches to obtain the entropy (of the outcome) when testing a certain attribute Patrons:

$$
\begin{array}{r}
H(\text { outcome } \mid \text { Patrons })=\sum_{i=1}^{3} \frac{p_{i}+n_{i}}{p+n} H\left(\frac{p_{i}}{p_{i}+n_{i}}, \frac{n_{i}}{p_{i}+n_{i}}\right) \\
\text { weight for the } i^{\text {th }} \text { branch } \begin{array}{l}
\text { Conditional entropy } \\
\text { for the } i^{\text {th }} \text { branch. }
\end{array}
\end{array}
$$

Patrons: has 3 possible values, indexed by $i$
$p_{i}$ : the number of positive outcomes when
Patrons $=$ the $i^{\text {th }}$ value


## Conditional Entropy

- Combine branches to obtain the entropy (of the outcome) when testing a certain attribute Patrons:

$$
\begin{array}{r}
H(\text { outcome } \mid \text { Patrons })=\sum_{i=1}^{3} \frac{p_{i}+n_{i}}{p+n} H\left(\frac{p_{i}}{p_{i}+n_{i}}, \frac{n_{i}}{p_{i}+n_{i}}\right) \\
\text { weight for the } i^{\text {th }} \text { branch } \begin{array}{l}
\text { Conditional entropy } \\
\text { for the } i^{\text {th }} \text { branch. }
\end{array}
\end{array}
$$

Patrons: has 3 possible values, indexed by $i$
$n_{i}$ : the number of negative outcomes when Patrons $=$ the $i^{\text {th }}$ value


## Conditional Entropy

- Combine branches to obtain the entropy (of the outcome) when testing a certain attribute Patrons:

$$
\begin{array}{r}
H(\text { outcome } \mid \text { Patrons })=\sum_{i=1}^{3} \frac{p_{i}+n_{i}}{p+n} H\left(\frac{p_{i}}{p_{i}+n_{i}}, \frac{n_{i}}{p_{i}+n_{i}}\right) \\
\text { weight for the } i^{\text {th }} \text { branch } \begin{array}{l}
\text { Conditional entropy } \\
\text { for the } i^{\text {th }} \text { branch. }
\end{array}
\end{array}
$$

$p$ : the total number of positive outcomes in the training examples
$n$ : the total number of negative outcomes in the training examples

## Conditional Entropy

- Combine branches to obtain the entropy (of the outcome) when testing a certain attribute Patrons:

$$
\begin{array}{r}
H(\text { outcome } \mid \text { Patrons })=\sum_{i=1}^{3} \frac{p_{i}+n_{i}}{p+n} H\left(\frac{p_{i}}{p_{i}+n_{i}}, \frac{n_{i}}{p_{i}+n_{i}}\right) \\
\text { weight for the } i^{\text {th }} \text { branch } \begin{array}{l}
\text { Conditional entropy } \\
\text { for the } i^{\text {th }} \text { branch. }
\end{array}
\end{array}
$$

$\frac{p_{i}+n_{i}}{p+n}$ : proportion of
training examples when
Patrons $=$ the $i^{\text {th }}$ value

| 1 | 3 | 4 | 6 | 8 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 5 | 7 | 9 | 10 | 11 |



## Conditional Entropy

- Combine branches to obtain the entropy (of the outcome) when testing a certain attribute Patrons:

$$
\begin{array}{r}
H(\text { outcome } \mid \text { Patrons })=\sum_{i=1}^{3} \frac{p_{i}+n_{i}}{p+n} H\left(\frac{p_{i}}{p_{i}+n_{i}}, \frac{n_{i}}{p_{i}+n_{i}}\right) \\
\text { weight for the } i^{\text {th }} \text { branch } \begin{array}{l}
\text { Conditional entropy } \\
\text { for the } i^{\text {th }} \text { branch. }
\end{array}
\end{array}
$$

$\frac{p_{i}}{p_{i}+n_{i}}, \frac{n_{i}}{p_{i}+n_{i}}$ : distribution of positive and negative outcomes when
Patrons $=$ the $i^{\text {th }}$ value


## Minimum Conditional Entropy



- Find the Attribute that leads to the minimum conditional entropy of the outcome
- Find the attribute $A$ such that $H(\operatorname{Outcome} \mid A)$ is the minimum.
- $H($ Outcome $\mid$ Patrons $)=\frac{2}{12} H(0,1)+\frac{4}{12} H(1,0)+\frac{6}{12} H\left(\frac{2}{6}, \frac{4}{6}\right)=0.459$ bits


## Minimum Conditional Entropy



- Find the Attribute that leads to the minimum conditional entropy of the outcome
- Find the attribute $A$ such that $H(O$ utcome $\mid A)$ is the minimum.
- $H($ Outcome $\mid$ Patrons $)=\frac{2}{12} H(0,1)+\frac{4}{12} H(1,0)+\frac{6}{12} H\left(\frac{2}{6}, \frac{4}{6}\right)=0.459$ bits
- ${ }_{4}($ Outcome $\mid$ Type $)=\frac{2}{12} H\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{2}{12} H\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{4}{12} H\left(\frac{2}{4}, \frac{2}{4}\right)+$ $\frac{4}{12} H\left(\frac{2}{4}, \frac{2}{4}\right)=1$ bit


## Example contd.

- Decision tree learned from the 12 training examples:



## Example

- You are a robot in the aquarium section of a pet store, and must learn to discriminate Red fish from Blue fish. You will learn to discriminate them by body parts. You choose to learn a Decision Tree classifier. You are given the following examples:

| Example | Fins | Tail | Body | Class |
| :--- | :--- | :--- | :--- | :--- |
| Example \#1 | Thin | Small | Slim | Red |
| Example \#2 | Wide | Large | Slim | Red |
| Example \#3 | Thin | Large | Slim | Red |
| Example \#4 | Wide | Small | Medium | Red |
| Example \#5 | Thin | Small | Medium | Blue |
| Example \#6 | Wide | Large | Fat | Blue |
| Example \#7 | Thin | Large | Fat | Blue |
| Example \#8 | Wide | Small | Fat | Blue |

## Example

| Example | Fins | Tail | Body | Class |
| :--- | :--- | :--- | :--- | :--- |
| Example \#1 | Thin | Small | Slim | Red |
| Example \#2 | Wide | Large | Slim | Red |
| Example \#3 | Thin | Large | Slim | Red |
| Example \#4 | Wide | Small | Medium | Red |
| Example \#5 | Thin | Small | Medium | Blue |
| Example \#6 | Wide | Large | Fat | Blue |
| Example \#7 | Thin | Large | Fat | Blue |
| Example \#8 | Wide | Small | Fat | Blue |

- What is the entropy of Class before testing any attribute?
$H\left(\frac{4}{8}, \frac{4}{8}\right)=H\left(\frac{1}{2}, \frac{1}{2}\right)=-\frac{1}{2} \log _{2} \frac{1}{2}-\frac{1}{2} \log _{2} \frac{1}{2}=1$ bit


## Example

| Example | Fins | Tail | Body | Class |
| :--- | :--- | :--- | :--- | :--- |
| Example \#1 | Thin | Small | Slim | Red |
| Example \#2 | Wide | Large | Slim | Red |
| Example \#3 | Thin | Large | Slim | Red |
| Example \#4 | Wide | Small | Medium | Red |
| Example \#5 | Thin | Small | Medium | Blue |
| Example \#6 | Wide | Large | Fat | Blue |
| Example \#7 | Thin | Large | Fat | Blue |
| Example \#8 | Wide | Small | Fat | Blue |

-What is the conditional entropy of Class under attribute Fins?

$$
\begin{aligned}
& H(C \mid \text { Fins })=\frac{4}{8} \times H(C \mid \text { Fins }=\text { Thin })+\frac{4}{8} \times H(C \mid \text { Fins }=\text { Wide }) \\
& =\frac{1}{2} \times H\left(\frac{2}{4}, \frac{2}{4}\right)+\frac{1}{2} \times H\left(\frac{2}{4}, \frac{2}{4}\right) \\
& =\frac{1}{2} \times H\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} \times H\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{2} \times 1+\frac{1}{2} \times 1=1 \mathrm{bit}
\end{aligned}
$$

## Example

| Example | Fins | Tail | Body | Class |
| :--- | :--- | :--- | :--- | :--- |
| Example \#1 | Thin | Small | Slim | Red |
| Example \#2 | Wide | Large | Slim | Red |
| Example \#3 | Thin | Large | Slim | Red |
| Example \#4 | Wide | Small | Medium | Red |
| Example \#5 | Thin | Small | Medium | Blue |
| Example \#6 | Wide | Large | Fat | Blue |
| Example \#7 | Thin | Large | Fat | Blue |
| Example \#8 | Wide | Small | Fat | Blue |

- What is the conditional entropy of Class under attribute Tail ?

$$
\begin{aligned}
& H(C \mid \text { Tail })=\frac{4}{8} \times H(C \mid \text { Tail }=\text { Small })+\frac{4}{8} \times H(C \mid \text { Tail }=\text { Large }) \\
= & \frac{1}{2} \times H\left(\frac{2}{4}, \frac{2}{4}\right)+\frac{1}{2} \times H\left(\frac{2}{4}, \frac{2}{4}\right) \\
= & \frac{1}{2} \times H\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} \times H\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{2} \times 1+\frac{1}{2} \times 1=1 \mathrm{bit}
\end{aligned}
$$

## Example

| Example | Fins | Tail | Body | Class |
| :--- | :--- | :--- | :--- | :--- |
| Example \#1 | Thin | Small | Slim | Red |
| Example \#2 | Wide | Large | Slim | Red |
| Example \#3 | Thin | Large | Slim | Red |
| Example \#4 | Wide | Small | Medium | Red |
| Example \#5 | Thin | Small | Medium | Blue |
| Example \#6 | Wide | Large | Fat | Blue |
| Example \#7 | Thin | Large | Fat | Blue |
| Example \#8 | Wide | Small | Fat | Blue |

- What is the conditional entropy of Class under attribute Body ?
$H(C \mid$ Body $)=\frac{3}{8} \times H(C \mid$ Body $=$ Slim $)+\frac{2}{8} \times H(C \mid$ Body $=$ Medium $)+$
$\frac{3}{8} \times H(C \mid$ Body $=F a t)$
$=\frac{3}{8} \times H\left(\frac{3}{3}, \frac{0}{3}\right)+\frac{2}{8} \times H\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{3}{8} \times H\left(\frac{0}{3}, \frac{3}{3}\right)$
$=\frac{3}{8} \times H(1,0)+\frac{2}{8} \times H\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{3}{8} \times H(0,1)$
$=\frac{3}{8} \times 0+\frac{2}{8} \times 1+\frac{3}{8} \times 0=0.25$ bits


## Example

| Example | Fins | Tail | Body | Class |
| :--- | :--- | :--- | :--- | :--- |
| Example \#1 | Thin | Small | Slim | Red |
| Example \#2 | Wide | Large | Slim | Red |
| Example \#3 | Thin | Large | Slim | Red |
| Example \#4 | Wide | Small | Medium | Red |
| Example \#5 | Thin | Small | Medium | Blue |
| Example \#6 | Wide | Large | Fat | Blue |
| Example \#7 | Thin | Large | Fat | Blue |
| Example \#8 | Wide | Small | Fat | Blue |

- Which attribute will you select as the root attribute, and why? Body, because the conditional entropy of Class is the smallest under attribute Body.


## Example

| Example | Fins | Tail | Body | Class |
| :--- | :--- | :--- | :--- | :--- |
| Example \#1 | Thin | Small | Slim | Red |
| Example \#2 | Wide | Large | Slim | Red |
| Example \#3 | Thin | Large | Slim | Red |
| Example \#4 | Wide | Small | Medium | Red |
| Example \#5 | Thin | Small | Medium | Blue |
| Example \#6 | Wide | Large | Fat | Blue |
| Example \#7 | Thin | Large | Fat | Blue |
| Example \#8 | Wide | Small | Fat | Blue |

- What is the entropy of Class under Fins when Body=Medium?
- Answer:
- When Body=Medium, if Fins=Wide, then Class=Red; if Fins=Thin, then Class=Blue. Hence, there is no uncertainty.
- $\mathrm{H}(\mathrm{C} \mid$ Fins, Body=Medium $)=0$ bit


## Example

| Example | Fins | Tail | Body | Class |
| :--- | :--- | :--- | :--- | :--- |
| Example \#1 | Thin | Small | Slim | Red |
| Example \#2 | Wide | Large | Slim | Red |
| Example \#3 | Thin | Large | Slim | Red |
| Example \#4 | Wide | Small | Medium | Red |
| Example \#5 | Thin | Small | Medium | Blue |
| Example \#6 | Wide | Large | Fat | Blue |
| Example \#7 | Thin | Large | Fat | Blue |
| Example \#8 | Wide | Small | Fat | Blue |

- What is the entropy of Class under Tail when Body=Medium?
- Answer:
- When Body=Medium, Example \#4 and Example \#5 show that Tail=Small, and corresponding result is Class=Red and Class=Blue, respectively.
- Hence, $\mathrm{H}(\mathrm{C} \mid$ Tail, Body=Medium $)=\frac{2}{2} \times H\left(\frac{1}{2}, \frac{1}{2}\right)=1$


## Example

- Draw the complete decision tree.
- Answer:

From the previous results, the first attribute to test is Body. If Body=Slim, then Class=Red; if Body=Fat, then Class=Blue; if Body=Medium, then we test attribute Fins, because the entropy of Class under Fins given that Body=Medium is 0 .


## Example

- Consider the following data set comprised of three binary input attributes ( $A_{1}, A_{2}, A_{3}$ ), and one binary output:

| Example | $A_{1}$ | $A_{2}$ | $A_{3}$ | Output $y$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}_{1}$ | 1 | 0 | 0 | 0 |
| $\mathbf{x}_{2}$ | 1 | 0 | 1 | 0 |
| $\mathbf{x}_{3}$ | 0 | 1 | 0 | 0 |
| $\mathbf{x}_{4}$ | 1 | 1 | 1 | 1 |
| $\mathbf{x}_{5}$ | 1 | 1 | 0 | 1 |

- Learn a decision tree for these data.


## Example

| Example | $A_{1}$ | $A_{2}$ | $A_{3}$ | Output $y$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}_{1}$ | 1 | 0 | 0 | 0 |
| $\mathbf{x}_{2}$ | 1 | 0 | 1 | 0 |
| $\mathbf{x}_{3}$ | 0 | 1 | 0 | 0 |
| $\mathbf{x}_{4}$ | 1 | 1 | 1 | 1 |
| $\mathbf{x}_{5}$ | 1 | 1 | 0 | 1 |

- Before testing any attribute, $H(y)=$ ?
- $H(y)=H\left(\frac{2}{5}, \frac{3}{5}\right)=0.971$ bits


## Example

| Example | $A_{1}$ | $A_{2}$ | $A_{3}$ | Output $y$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}_{1}$ | 1 | 0 | 0 | 0 |
| $\mathbf{x}_{2}$ | 1 | 0 | 1 | 0 |
| $\mathbf{x}_{3}$ | 0 | 1 | 0 | 0 |
| $\mathbf{x}_{4}$ | 1 | 1 | 1 | 1 |
| $\mathbf{x}_{5}$ | 1 | 1 | 0 | 1 |

- What is the entropy of $y$ under attribute $A_{1}$ ?
- $H\left(y \mid A_{1}\right)=\frac{4}{5} \times H\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{5} \times H(0,1)$
- $\quad=\frac{4}{5} \times 1+0=0.8$ bits


## Example

| Example | $A_{1}$ | $A_{2}$ | $A_{3}$ | Output $y$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}_{1}$ | 1 | 0 | 0 | 0 |
| $\mathbf{x}_{2}$ | 1 | 0 | 1 | 0 |
| $\mathbf{x}_{3}$ | 0 | 1 | 0 | 0 |
| $\mathbf{x}_{4}$ | 1 | 1 | 1 | 1 |
| $\mathbf{x}_{5}$ | 1 | 1 | 0 | 1 |

- What is the entropy of $y$ under attribute $A_{2}$ ?
- $H\left(y \mid A_{2}\right)=\frac{3}{5} \times H\left(\frac{2}{3}, \frac{1}{3}\right)+\frac{2}{5} \times H(0,1)=0.6 \times 0.918=0.551$ bits


## Example

| Example | $A_{1}$ | $A_{2}$ | $A_{3}$ | Output $y$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}_{1}$ | 1 | 0 | 0 | 0 |
| $\mathbf{x}_{2}$ | 1 | 0 | 1 | 0 |
| $\mathbf{x}_{3}$ | 0 | 1 | 0 | 0 |
| $\mathbf{x}_{4}$ | 1 | 1 | 1 | 1 |
| $\mathbf{x}_{5}$ | 1 | 1 | 0 | 1 |

- What is the entropy of $y$ under attribute $A_{3}$ ?
- $H\left(y \mid A_{3}\right)=\frac{2}{5} \times H\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{3}{5} \times H\left(\frac{1}{3}, \frac{2}{3}\right)=0.4+0.6 \times 0.918=0.951$ bits
- Which attribute to test first?
- Test $A_{2}$ first!


## Example

| Example | $A_{1}$ | $A_{2}$ | $A_{3}$ | Output $y$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}_{1}$ | 1 | 0 | 0 | 0 |
| $\mathbf{x}_{2}$ | 1 | 0 | 1 | 0 |
| $\mathbf{x}_{3}$ | 0 | 1 | 0 | 0 |
| $\mathbf{x}_{4}$ | 1 | 1 | 1 | 1 |
| $\mathbf{x}_{5}$ | 1 | 1 | 0 | 1 |

- Test $A_{2}$ first!
- If $A_{2}=0$, do you need to test another attribute?
- If $A_{2}=0$, Output $y=0$, finished.
- If $A_{2}=1$, test $A_{1}$ or $A_{3}$ ?


## Example

| Example | $A_{1}$ | $A_{2}$ | $A_{3}$ | Output $y$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}_{1}$ | 1 | 0 | 0 | 0 |
| $\mathbf{x}_{2}$ | 1 | 0 | 1 | 0 |
| $\mathbf{x}_{3}$ | 0 | 1 | 0 | 0 |
| $\mathbf{x}_{4}$ | 1 | 1 | 1 | 1 |
| $\mathbf{x}_{5}$ | 1 | 1 | 0 | 1 |

- If $A_{2}=1$, test $A_{1}$ or $A_{3}$ ?
- $\mathrm{H}\left(\mathrm{y} \mid A_{1}, A_{2}=1\right)=$ ?
- $\mathrm{H}\left(\mathrm{y} \mid A_{1}, A_{2}=1\right)=\frac{2}{3} \times H(1,0)+\frac{1}{3} \times H(0,1)=0$ bit


## Example

| Example | $A_{1}$ | $A_{2}$ | $A_{3}$ | Output $y$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}_{1}$ | 1 | 0 | 0 | 0 |
| $\mathbf{x}_{2}$ | 1 | 0 | 1 | 0 |
| $\mathbf{x}_{3}$ | 0 | 1 | 0 | 0 |
| $\mathbf{x}_{4}$ | 1 | 1 | 1 | 1 |
| $\mathbf{x}_{5}$ | 1 | 1 | 0 | 1 |

- If $A_{2}=1$, test $A_{1}$ or $A_{3}$ ?
- $\mathrm{H}\left(\mathrm{y} \mid A_{3}, A_{2}=1\right)=$ ?
- $\mathrm{H}\left(\mathrm{y} \mid A_{3}, A_{2}=1\right)=\frac{1}{3} \times H(1,0)+\frac{2}{3} \times H\left(\frac{1}{2}, \frac{1}{2}\right)>0$ bit


## Example

| Example | $A_{1}$ | $A_{2}$ | $A_{3}$ | Output $y$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x}_{1}$ | 1 | 0 | 0 | 0 |
| $\mathbf{x}_{2}$ | 1 | 0 | 1 | 0 |
| $\mathbf{x}_{3}$ | 0 | 1 | 0 | 0 |
| $\mathbf{x}_{4}$ | 1 | 1 | 1 | 1 |
| $\mathbf{x}_{5}$ | 1 | 1 | 0 | 1 |

- If $A_{2}=1$, test $A_{1}$ or $A_{3}$ ?
- $\mathrm{H}\left(\mathrm{y} \mid A_{1}, A_{2}=1\right)=0 \mathrm{bit}$
- $\mathrm{H}\left(\mathrm{y} \mid A_{3}, A_{2}=1\right)>0$ bit
- Hence, test $A_{1}$ !


## Example

- Draw the decision tree


