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Rank of a matrix
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Rank of a matrix
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• I have 5 different face images of the same person. 
Vectorize each image as a long vector. Form a matrix of 
size 𝐷 × 5. 𝐷 is the number of pixels in each image, 𝐷 ≫
5.

• What is the rank of matrix 𝐗? Answer: 5

𝐗 = [𝐱1 𝐱2 𝐱3 𝐱4 𝐱5] ∈ ℝ𝐷×(𝑁=5)



Rank of a matrix
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• I take one face image of a person, repeat it 5 times to form 
a matrix

• What is the rank of the matrix? Answer: 1

𝐗 = [𝐱 𝐱 𝐱 𝐱 𝐱] ∈ ℝ𝐷×(𝑁=5)



Eigenvalues and Eigenvectors

• For a square matrix 𝐀𝐷×𝐷, which vectors get mapped to a 
scalar multiple of themselves?

• More precisely, which vectors 𝐮 satisfy the following
𝐀𝐮 = 𝜆𝐮

• These 𝐮’s: eigenvectors of 𝐀

• 𝐮 ∈ ℝ𝐷

• The scalar 𝜆’s: the associated eigenvalues
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Eigenvalues and Eigenvectors

• For a full-rank matrix 𝐀𝐷×𝐷, there are 𝐷 eigenvectors

• 𝐮1, 𝐮2, … , 𝐮𝐷, and the corresponding eigenvalues are 
𝜆1, 𝜆2, … , 𝜆𝐷

• These eigenvectors are orthogonal to each other.
𝐮𝑖
𝑇𝐮𝑗 = 0, ∀𝑖 ≠ 𝑗

• Each eigenvector has unit-norm: 𝐮𝑖 2 = 1, 𝑖 = 1,… , 𝐷.

• Usually we sort the eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐷
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Eigenvalues and Eigenvectors

• Let 𝐔 = 𝐮1 𝐮2 …𝐮𝐷

• Property: 𝐔𝑇𝐔 = 𝐔𝐔𝑇 = 𝐈𝐷: 𝐷 × 𝐷 identity matrix

• Hence, 𝐔−1 = 𝐔𝑇
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Eigen-Value Decomposition (EVD)

• Let 𝐔 = [𝐮1 𝐮2 …𝐮𝐷 ]

• Let 𝚲 = diag 𝜆1, 𝜆2, … , 𝜆𝐷 =
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝐷

• EVD: 𝐀 = 𝐔𝚲𝐔𝑇

• Recall
• 𝐀𝐷×𝐷 is a square matrix

• 𝐀𝐮 = 𝜆𝐮

• ⇒ 𝐀𝐔 = 𝐔𝚲

• ⇒ 𝐀𝐔𝐔𝑇 = 𝐀 = 𝐔𝚲𝐔𝑇
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Singular-Value Decomposition (SVD)

• Consider a full-rank matrix 
𝐗𝐷×𝑁 = [𝐱1, … , 𝐱𝑁] ∈ ℝ𝐷×𝑁

• SVD: 𝐗𝐷×𝑁 = 𝐔𝐷×𝐷𝚺𝐷×𝑁𝐕𝑁×𝑁
T

• 𝐔𝐷×𝐷 = 𝐮1, 𝐮2, ⋯ , 𝐮𝐷 : left singular vectors

⎻ 𝐮𝑖 ∈ ℝ𝐷×1, 𝑖 = 1,… , 𝐷: same length as one column of 𝐗

⎻ Unitary matrix: 𝐔𝑇𝐔 = 𝐔𝐔𝑇 = 𝐈
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Singular-Value Decomposition (SVD)

• Consider a full-rank matrix 
𝐗𝐷×𝑁 = [𝐱1, … , 𝐱𝑁] ∈ ℝ𝐷×𝑁

• SVD: 𝐗𝐷×𝑁 = 𝐔𝐷×𝐷𝚺𝐷×𝑁𝐕𝑁×𝑁
T

• 𝐕𝑁×𝑁 = 𝐯1, 𝐯2, ⋯ , 𝐯𝑁 : right singular vectors

⎻ 𝐯𝑖 ∈ ℝ𝑁×1, 𝑖 = 1,… ,𝑁: same length as one row of 𝐗

⎻ Unitary matrix: 𝐕𝑇𝐕 = 𝐕𝐕𝑇 = 𝐈
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Singular-Value Decomposition (SVD)

• Consider a full-rank matrix 
𝐗𝐷×𝑁 = [𝐱1, … , 𝐱𝑁] ∈ ℝ𝐷×𝑁

• SVD: 𝐗 = 𝐔𝐷×𝐷𝚺𝐷×𝑁𝐕𝑁×𝑁
T

• If 𝐷 > 𝑁, then 

𝚺𝐷×𝑁 =

𝜎1 0
0 𝜎2

⋯ 0
⋯ 0

⋮ ⋱ ⋮
𝜎𝑁

0 ⋯
⋮
0

• The singular values (assume sorted): 
σ1 ≥ σ2 ≥ ⋯ ≥ σ𝑁



Dimensionality Reduction

• High-dimensional data may be approximately lying in a 
low-dimensional subspace.

• Most information in the data would be retained if we 
project the data onto this subspace

• Advantages: visualization, extracting meaningful 
attributes, computational efficiency

• Principal-component analysis (PCA):
• A dimensionality reduction method
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Dimensionality Reduction
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How to select the projection direction?
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PCA

• We search for the direction in which the data projection 
has the largest energy.
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𝑁 data points:
𝐱𝑛, 𝑛 = 1, 2, … , 𝑁
Assume 𝐱𝑛 ∈ ℝ2

Look for the direction 
𝐮 ∈ ℝ2 and 𝐮 2 = 1 such that

𝐮 = arg max
𝐮𝑇𝐮=1
𝐮∈ℝ2

σ𝑛=1
𝑁 |𝐱𝑛

𝑇𝐮|2



PCA

• In general
• if the data samples are 𝐱𝑛 ∈ ℝ𝐷, 𝑛 = 1, 2, … ,𝑁.

• Then we want to find 𝐮 ∈ ℝ𝐷 such that

𝐮 = arg max
𝐮𝑇𝐮=1
𝐮∈ℝ𝐷

σ𝑛=1
𝑁 |𝐱𝑛

𝑇𝐮|2

• That is, we find the direction that maximizes the sum of 
the squared data projection.
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PCA

• The solution:

• Form a data matrix 
𝐗 = 𝐱1, 𝐱2, ⋯ , 𝐱𝑁 ∈ ℝ𝐷×𝑁

• Obtain the matrix 𝐗𝐗𝑇 ∈ ℝ𝐷×𝐷

• EVD: 𝐗𝐗𝑇 = 𝐔𝚲𝐔𝑇

• 𝐔 = 𝐮1, 𝐮2, ⋯ , 𝐮𝐷 ∈ ℝ𝐷×𝐷

• The solution 𝐮 is

• 𝐮 = 𝐮1: the eigenvector of matrix 𝐗𝐗𝑇that corresponds 
to the largest eigenvalue 𝜆1

• We call 𝐮1: the top eigenvector
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PCA

• 𝐔 = 𝐮1, 𝐮2, ⋯ , 𝐮𝐷

• 𝑦𝑖: the projection (or the coefficient) of the data sample 𝐱
along direction 𝐮𝑖

• Data projection

𝑦𝑖 = 𝐮𝑖
𝑇𝐱, 𝑖 = 1, 2, … , 𝐷
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• Use 𝑑 top eigenvectors of 𝐗𝐗𝑇 for projection (those that 
correspond to the 𝑑 largest eigenvalues)

𝐲 =

𝑦1
⋮
𝑦𝑑

=
𝐮1
𝑇𝐱
⋮

𝐮𝑑
𝑇𝐱

• For example, 𝑑 = 3

• The 𝐷-dimensional data sample 𝐱 is reduced to 

3-dimensional data point 𝐲

PCA
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𝐮3𝐮2𝐮1

𝐲 =

𝑦1
𝑦2
𝑦3

=

𝐮1
𝑇𝐱

𝐮2
𝑇𝐱

𝐮3
𝑇𝐱

𝐔:,[1:3] =



Singular-Value Decomposition (SVD)

• The principal components 𝐔 = 𝐮1, 𝐮2, ⋯ , 𝐮𝐷 can also be 
found by singular-value decomposition (SVD).

• Let the data matrix be 𝐗𝐷×𝑁 = 𝐱1, 𝐱2, ⋯ , 𝐱𝑁

• SVD: 𝐗𝐷×𝑁 = 𝐔𝐷×𝐷𝚺𝐷×𝑁𝐕𝑁×𝑁
T

• 𝐗𝐗𝑇 = 𝐔𝐷×𝐷𝚺𝐷×𝑁𝐕𝑁×𝑁
T 𝐕𝑁×𝑁𝚺𝑁×𝐷

T 𝐔𝐷×𝐷
T

= 𝐔𝐷×𝐷𝚺𝐷×𝑁𝚺𝑁×𝐷
T 𝐔𝐷×𝐷

T

• EVD: 𝐗𝐗𝑇 = 𝐔𝚲𝐔𝑇

⎻ 𝐔 = 𝐮1, 𝐮2, ⋯ , 𝐮𝐷 : the left singular vectors of 𝐗𝐷×𝑁 are 
the same as the eigenvectors of 𝐗𝐗𝑇
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• Use 𝑑 top left singular vectors of 𝐗𝐷×𝑁 for projection 
(those that correspond to the 𝑑 largest singular values)

𝐲 =

𝑦1
⋮
𝑦𝑑

=
𝐮1
𝑇𝐱
⋮

𝐮𝑑
𝑇𝐱

• For example, 𝑑 = 3

• The 𝐷-dimensional data sample 𝐱 is reduced to 

3-dimensional data point 𝐲

PCA
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𝐮3𝐮2𝐮1

𝐲 =

𝑦1
𝑦2
𝑦3

=

𝐮1
𝑇𝐱

𝐮2
𝑇𝐱

𝐮3
𝑇𝐱

𝐔:,[1:3] =



Face Recognition
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Assume:
Original image 
dimension: 𝐷
After dimensionality 
reduction (feature 
extraction): 𝑑

𝑑 ≪ 𝐷



Face Recognition
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• If we apply SVD for face feature extraction,

• 𝑓(𝐱) =?

• 𝑓(𝐱) = 𝐲𝑑×1 = 𝐔:,[1:𝑑]
𝑇𝐱𝐷×1, 𝑑 ≪ 𝐷

• That is: 𝐲𝑑×1 =

𝑦1
⋮
𝑦𝑑

=
𝐮1
𝑇𝐱
⋮

𝐮𝑑
𝑇𝐱



Face Recognition

• 𝐶 subjects/Classes

• Training set (each subject has 𝑁 training images)
⎻ Subject 1: 𝐱11, … , 𝐱1𝑁 (i.e. 𝐱1𝑛, 𝑛 = 1,⋯ ,𝑁 )

⎻ Subject 2: 𝐱21, … , 𝐱2𝑁
⎻ …

⎻ Subject 𝐶: 𝐱𝐶1, … , 𝐱𝐶𝑁
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Face Recognition

• SVD for dimensionality reduction
⎻ 𝐗=[𝐱11, … , 𝐱1𝑁, 𝐱21, … , 𝐱2𝑁, …, 𝐱𝐶1, … , 𝐱𝐶𝑁]

𝐗 = 𝐔𝚺𝐕T

⎻ Find the top-𝑑 left singular vectors
𝐔:,[1:𝑑] = [𝐮1, ⋯ , 𝐮𝑑 ]

⎻ Project each training image onto these vectors

• The 𝑛th training image of the 𝑐th subject: 𝐱𝑐𝑛

𝐲𝑐𝑛 =

𝑦𝑐𝑛,1
⋮

𝑦𝑐𝑛,𝑑
= 𝐔:,[1:𝑑]

𝑇𝐱𝑐𝑛 =
𝐮1
𝑇𝐱𝑐𝑛
⋮

𝐮𝑑
𝑇𝐱𝑐𝑛

Instructor: Ying Liu COEN 140, Machine Learning and Data Mining 29



Face Recognition

• Nearest-Neighbor Classifier
⎻ For a test image 𝐱

⎻ Project the test image onto vectors 

𝐲 =

𝑦1
⋮
𝑦𝑑

=
𝐮1
𝑇𝐱
⋮

𝐮𝑑
𝑇𝐱

= 𝐔:,[1:𝑑]
𝑇 𝐱

⎻ Determine its class label by

Ƹ𝑐 = arg min
𝑐=1,2,…,𝐶
𝑛=1,2,…,𝑁

𝐲 − 𝐲𝑐𝑛 2

Instructor: Ying Liu COEN 140, Machine Learning and Data Mining 30


