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Rank of a matrix

m rank(A): the largest number of linearly independent columns (or
rows) of matrix A.

mIf A e R"™*" then
rank(A) < min(m,n);

A has full rank if rank(A) = min(m, n)

m Example: This matrix has rank of 3 because the 4th column can be
written as a combination of the first 3 columns

1 0 0 1
01 0 2
A=10 0 1 1
000 0
0 0 0 0
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Rank of a matrix

* | have 5 different face images of the same person.
Vectorize each image as a long vector. Form a matrix of

size D X 5. D is the number of pixels in each image, D >
5.

 What is the rank of matrix X? Answer: 5

X = [X; X, X3 X4 Xz | € RPX(V=5) | J |
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Rank of a matrix

* | take one face image of a person, repeat it 5 times to form
a matrix

e What is the rank of the matrix? Answer: 1

!

X = [xxx xX] € RPX(N=5)
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Eigenvalues and Eigenvectors

* For a square matrix Apy«p, which vectors get mapped to a
scalar multiple of themselves?

* More precisely, which vectors u satisfy the following
Au = Au

 These u’s: eigenvectors of A
c ueR?

 The scalar A’s: the associated eigenvalues



Eigenvalues and Eigenvectors

* For a full-rank matrix Ap«p, there are D eigenvectors

* U4, U,,...,Up, and the corresponding eigenvalues are
A, Ay, o Ap

* These eigenvectors are orthogonal to each other.
uju; =0,Vi #j

* Each eigenvector has unit-norm: ||u;||, = 1,i =1, ..., D.

e Usually we sort the eigenvalues A, = 1, = .- = 4,



Eigenvalues and Eigenvectors

e letU = [u1 U, uD]
* Property: UTU = UUT =1,: D x D identity matrix

e Hence, U~1 = U7



Eigen-Value Decomposition (EVD)

e letU = [u1 U, uD:

e let A = diag(il; AZ; ---)AD) —

* EVD: A = UAUT

e Recall

* Ap.pisasquare matrix
e Au=Au

e = AU =UA
« = AUUT = A = UAUT
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Singular-Value Decomposition (SVD)

e Consider a full-rank matrix
XDXN — [Xl, ""XN] € IRDXN

* SVD: Xpxn = UpupZpxn Vi

* Upyp = [uq,u,, -, up]: left singular vectors

— w; € RP*Li =1, ..., D: same length as one column of X

— Unitary matrix: UTU = UUT =1
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Singular-Value Decomposition (SVD)

e Consider a full-rank matrix
XDXN — [Xl, ""XN] € IRDXN

* SVD: Xpxn = UpxpZpxn Vaxn

* Viusny = [Vq, vy, -+, Vi ]: right singular vectors

— v; € RVl i =1, ..., N: same length as one row of X

— Unitary matrix: VIV = VVT =]
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Singular-Value Decomposition (SVD)

e Consider a full-rank matrix
XDXN — [Xl, ""XN] € IRDXN

* SVD: X = UpypZpun Vaxn
 If D > N, then

(04 0 vee 0

0 P o0
LpxN = | U:N

0 - 0.

* The singular values (assume sorted):
0-120-22'”201\[
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Dimensionality Reduction

* High-dimensional data may be approximately lying in a
low-dimensional subspace.

e Most information in the data would be retained if we
project the data onto this subspace

* Advantages: visualization, extracting meaningful
attributes, computational efficiency

* Principal-component analysis (PCA):
A dimensionality reduction method



Dimensionality Reduction
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How to select the projection direction?

e —
| 1 | I | 1 |
—————— _.——————
| I | I | I |
--------------------- -

i i i i i i i
—2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0
21

Instructor: Ying Liu COEN 140, Machine Learning and Data Mining



PCA

* We search for the direction in which the data projection
has the largest energy.

N data points:
X,,n=12,..,N
Assume X,, € R?

Look for the direction
u € R? and ||u||, = 1 such that

u = arg max YN_; |x, u|?
ulu=1
ucR?

The Origin
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PCA

* |n general
e ifthe data samplesarex, € R’,n=1,2,..,N.

* Then we want to find u € R? such that

u = arg max YN_, |x, u|?
ulu=1
uer?

* That is, we find the direction that maximizes the sum of
the squared data projection.



PCA

e The solution:

e Form a data matrix
X — [XIJXZJ “‘,XN] - RDXN

* Obtain the matrix XX’ € RP*P
 EVD: XXT = UAUT

* U=[ug,uy -, up] € RP*P
* The solution u is

* u = u,: the eigenvector of matrix XX’ that corresponds
to the largest eigenvalue A,

* We call u;: the top eigenvector



PCA

L4 U = [ul,uz,...,uD]

* y;: the projection (or the coefficient) of the data sample x

along direction u;

* Data projection

y, =w;'x,i=1,2,
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PCA

* Use d top eigenvectors of XX” for projection (those that
correspond to the d largest eigenvalues)

Y1 ulx
y=|:|=
yal |uix
* For example, d = 3
Hatiats 1 ulx]
U. 131 = y=1|Y2| = ugx
Y3 _ugx_

* The D-dimensional data sample X is reduced to

3-dimensional data pointy



Singular-Value Decomposition (SVD)

* The principal components U = [uy,u,,:-,Up] can also be
found by singular-value decomposition (SVD).

* Let the data matrix be Xp«n = [X1, X5, **, Xp]

* SVD: Xpxn = UpxpZpxn Vaxy

« XX = UDxDszNV£xN VNxNzlr{lxD UEXD

= UDxDZDxNZ;{/xD UI’I)‘XD
« EVD: XXT = UAUT

— U = [uq,uy, -+, up]: the left singular vectors of X are
the same as the eigenvectors of XX’
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PCA

* Use d top left singular vectors of X, for projection
(those that correspond to the d largest singular values)

3’.1 _ufx_
yal |uix
* For example, d = 3

Ujuyjusz

U:,[1:3] = y =

* The D-dimensional data sample X is reduced to

3-dimensional data pointy



Face Recognition

Training
Data Set

Establish
(Learn)

Feature Extraction
Mechanism [ (+)

o |
Feature Extraction
y=f(x)eR9

Test Face 5 \®/
Image X € R
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Face Recognition

* |f we apply SVD for face feature extraction,
 f(0) =
* f(X) = Yax1 = U:,[l:d]TXDX1; d <D

V1] _u{x_
e Thatis:yyx1 =1 | =]
Yal  |ujx



Face Recognition

e C subjects/Classes

* Training set (each subject has N training images)
o SUbjECt 1:X11,...,X1N (|e Xin, N = 1,,N)
o SUbjECt 2:X21,...,X2N

— Subject C: X1, -, XN
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Face Recognition

* SVD for dimensionality reduction

X=[X11, -, X{N, X021, ey XoN, o0 X1y o) XN ]
X =Uzv!

— Find the top-d left singular vectors

U:,[1:d] — [ul' e, Ug ]

— Project each training image onto these vectors

* The nth training image of the cth subject: X,

y c.n,l u{x cn

Yen = : — U:,[l:d]Tch —

_YCn,d_ _ugxcn_
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Face Recognition

* Nearest-Neighbor Classifier
— ForatestimageXx

— Project the test image onto vectors

Y1 _ufx_
y = . = . = U:’[l:d]T X
val |ujx

— Determine its class label by

¢ =arg_min |y = yenll2

n=1,2,...N
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