Principal-Component Analysis

COEN140
Santa Clara University

Rank of a matrix

$\square \operatorname{rank}(\mathbf{A})$: the largest number of linearly independent columns (or rows) of matrix \mathbf{A}.

- If $\mathbf{A} \in \mathbb{R}^{m \times n}$, then $\operatorname{rank}(\mathbf{A}) \leq \min (m, n) ;$
\mathbf{A} has full rank if $\operatorname{rank}(\mathbf{A})=\min (m, n)$
- Example: This matrix has rank of 3 because the 4 th column can be written as a combination of the first 3 columns

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Rank of a matrix

- I have 5 different face images of the same person. Vectorize each image as a long vector. Form a matrix of size $D \times 5 . D$ is the number of pixels in each image, $D \gg$ 5.
- What is the rank of matrix X? Answer: 5

$$
\mathbf{X}=\left[\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \mathbf{x}_{5}\right] \in \mathbb{R}^{D \times(N=5)}
$$

Rank of a matrix

- I take one face image of a person, repeat it 5 times to form a matrix
- What is the rank of the matrix? Answer: 1

$$
\mathbf{X}=[\mathbf{X} \mathbf{X X X} \mathbf{x}] \in \mathbb{R}^{D \times(N=5)}
$$

Eigenvalues and Eigenvectors

- For a square matrix $\mathbf{A}_{D \times D}$, which vectors get mapped to a scalar multiple of themselves?
- More precisely, which vectors u satisfy the following $\mathbf{A u}=\lambda \mathbf{u}$
- These u's: eigenvectors of \mathbf{A}
- $\mathbf{u} \in \mathbb{R}^{D}$
- The scalar λ 's: the associated eigenvalues

Eigenvalues and Eigenvectors

- For a full-rank matrix $\mathbf{A}_{D \times D}$, there are D eigenvectors
- $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{D}$, and the corresponding eigenvalues are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{D}$
- These eigenvectors are orthogonal to each other.

$$
\mathbf{u}_{i}^{T} \mathbf{u}_{j}=0, \forall i \neq j
$$

- Each eigenvector has unit-norm: $\left\|\mathbf{u}_{i}\right\|_{2}=1, i=1, \ldots, D$.
- Usually we sort the eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{D}$

Eigenvalues and Eigenvectors

- Let $\mathbf{U}=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \ldots & \mathbf{u}_{D}\end{array}\right]$
- Property: $\mathbf{U}^{T} \mathbf{U}=\mathbf{U} \mathbf{U}^{T}=\mathbf{I}_{D}: D \times D$ identity matrix
- Hence, $\mathbf{U}^{-1}=\mathbf{U}^{T}$

Eigen-Value Decomposition (EVD)

- Let $\mathbf{U}=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \ldots & \mathbf{u}_{D}\end{array}\right]$
- Let $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{D}\right)=\left[\begin{array}{ccc}\lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{D}\end{array}\right]$
- EVD: $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}$
- Recall
- $\mathbf{A}_{D \times D}$ is a square matrix
- $\mathbf{A u}=\lambda \mathbf{u}$
- $\Rightarrow \mathbf{A U}=\mathbf{U} \boldsymbol{\Lambda}$
- $\Rightarrow \mathbf{A U U}^{T}=\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}$

Singular-Value Decomposition (SVD)

- Consider a full-rank matrix

$$
\mathbf{X}_{D \times N}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right] \in \mathbb{R}^{D \times N}
$$

- SVD: $\mathbf{X}_{D \times N}=\mathbf{U}_{D \times D} \boldsymbol{\Sigma}_{D \times N} \mathbf{V}_{N \times N}^{\mathrm{T}}$
- $\mathbf{U}_{D \times D}=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{D}\right]$: left singular vectors
- $\quad \mathbf{u}_{i} \in \mathbb{R}^{D \times 1}, i=1, \ldots, D$: same length as one column of \mathbf{X}
- Unitary matrix: $\mathbf{U}^{T} \mathbf{U}=\mathbf{U} \mathbf{U}^{T}=\mathbf{I}$

Singular-Value Decomposition (SVD)

- Consider a full-rank matrix

$$
\mathbf{X}_{D \times N}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right] \in \mathbb{R}^{D \times N}
$$

- SVD: $\mathbf{X}_{D \times N}=\mathbf{U}_{D \times D} \boldsymbol{\Sigma}_{D \times N} \mathbf{V}_{N \times N}^{\mathrm{T}}$
- $\mathbf{V}_{N \times N}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{N}\right]$: right singular vectors
- $\quad \mathbf{v}_{i} \in \mathbb{R}^{N \times 1}, i=1, \ldots, N$: same length as one row of \mathbf{X}
- Unitary matrix: $\mathbf{V}^{T} \mathbf{V}=\mathbf{V V}^{T}=\mathbf{I}$

Singular-Value Decomposition (SVD)

- Consider a full-rank matrix

$$
\mathbf{X}_{D \times N}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right] \in \mathbb{R}^{D \times N}
$$

- SVD: $\mathbf{X}=\mathbf{U}_{D \times D} \boldsymbol{\Sigma}_{D \times N} \mathbf{V}_{N \times N}^{\mathrm{T}}$
- If $D>N$, then

$$
\boldsymbol{\Sigma}_{D \times N}=\left[\begin{array}{cccc}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
& & & \sigma_{N} \\
& \cdots & & \vdots \\
0 & \cdots & & 0
\end{array}\right]
$$

- The singular values (assume sorted):

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{N}
$$

Dimensionality Reduction

- High-dimensional data may be approximately lying in a low-dimensional subspace.
- Most information in the data would be retained if we project the data onto this subspace
- Advantages: visualization, extracting meaningful attributes, computational efficiency
- Principal-component analysis (PCA):
- A dimensionality reduction method

Dimensionality Reduction

How to select the projection direction?

PCA

- We search for the direction in which the data projection has the largest energy.

N data points:
$\mathbf{x}_{n}, n=1,2, \ldots, N$
Assume $\mathbf{x}_{n} \in \mathbb{R}^{2}$
Look for the direction $\mathbf{u} \in \mathbb{R}^{2}$ and $\|\mathbf{u}\|_{2}=1$ such that

$$
\mathbf{u}=\arg \max _{\substack{\mathbf{u}^{T} \mathbf{u}=1 \\ \mathbf{u} \in \mathbb{R}^{2}}} \sum_{n=1}^{N}\left|\mathbf{x}_{n}^{T} \mathbf{u}\right|^{2}
$$

PCA

- In general
- if the data samples are $\mathbf{x}_{n} \in \mathbb{R}^{D}, n=1,2, \ldots, N$.
- Then we want to find $\mathbf{u} \in \mathbb{R}^{D}$ such that

$$
\mathbf{u}=\arg \max _{\substack{\mathbf{u}^{T} \mathbf{u}=1 \\ \mathbf{u} \in \mathbb{R}^{D}}} \sum_{n=1}^{N}\left|\mathbf{x}_{n}{ }^{T} \mathbf{u}\right|^{2}
$$

- That is, we find the direction that maximizes the sum of the squared data projection.

PCA

- The solution:
- Form a data matrix

$$
\mathbf{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{N}\right] \in \mathbb{R}^{D \times N}
$$

- Obtain the matrix $\mathbf{X X}^{T} \in \mathbb{R}^{D \times D}$
- EVD: $\mathbf{X X} \mathbf{X}^{T}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}$
- $\mathbf{U}=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{D}\right] \in \mathbb{R}^{D \times D}$
- The solution \mathbf{u} is
- $\mathbf{u}=\mathbf{u}_{1}$: the eigenvector of matrix $\mathbf{X X} \mathbf{X}^{T}$ that corresponds to the largest eigenvalue λ_{1}
- We call \mathbf{u}_{1} : the top eigenvector

PCA

- $\mathbf{U}=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{D}\right]$
- y_{i} : the projection (or the coefficient) of the data sample \mathbf{x} along direction \mathbf{u}_{i}
- Data projection
$y_{i}=\mathbf{u}_{i}{ }^{T} \mathbf{x}, i=1,2, \ldots, D$

PCA

- Use d top eigenvectors of $\mathbf{X} \mathbf{X}^{T}$ for projection (those that correspond to the d largest eigenvalues)

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{d}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{x} \\
\vdots \\
\mathbf{u}_{d}^{T} \mathbf{x}
\end{array}\right]
$$

- For example, $d=3$

$$
\mathbf{U}_{:,[1: 3]}=\underbrace{\mathbf{u}_{1} \mid \mathbf{u}_{2} \mathbf{u}_{3}}
$$

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{u}_{1}^{T} \mathbf{x} \\
\mathbf{u}_{2}^{T} \mathbf{x} \\
\mathbf{u}_{3}^{T} \mathbf{x}
\end{array}\right]
$$

- The D-dimensional data sample \mathbf{x} is reduced to 3-dimensional data point y

Singular-Value Decomposition (SVD)

- The principal components $\mathbf{U}=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{D}\right]$ can also be found by singular-value decomposition (SVD).
- Let the data matrix be $\mathbf{X}_{D \times N}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{N}\right]$
- SVD: $\mathbf{X}_{D \times N}=\mathbf{U}_{D \times D} \boldsymbol{\Sigma}_{D \times N} \mathbf{V}_{N \times N}^{\mathrm{T}}$
- $\mathbf{X X} \mathbf{X}^{T}=\mathbf{U}_{D \times D} \boldsymbol{\Sigma}_{D \times N} \mathbf{V}_{N \times N}^{\mathrm{T}} \mathbf{V}_{N \times N} \boldsymbol{\Sigma}_{N \times D}^{\mathrm{T}} \mathbf{U}_{D \times D}^{\mathrm{T}}$
$=\mathbf{U}_{D \times D} \boldsymbol{\Sigma}_{D \times N} \boldsymbol{\Sigma}_{N \times D}^{\mathrm{T}} \mathbf{U}_{D \times D}^{\mathrm{T}}$
- EVD: $\mathbf{X X}^{T}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}$
$-\mathbf{U}=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{D}\right]$: the left singular vectors of $\mathbf{X}_{D \times N}$ are the same as the eigenvectors of $\mathbf{X} \mathbf{X}^{T}$

PCA

- Use d top left singular vectors of $\mathbf{X}_{D \times N}$ for projection (those that correspond to the d largest singular values)

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{d}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{x} \\
\vdots \\
\mathbf{u}_{d}^{T} \mathbf{x}
\end{array}\right]
$$

- For example, $d=3$

$$
\mathbf{U}_{:,[1: 3]}=\underbrace{\mathbf{u}_{1} \mathbf{u}_{2} \mathbf{u}_{3}}
$$

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{u}_{1}^{T} \mathbf{x} \\
\mathbf{u}_{2}^{T} \mathbf{x} \\
\mathbf{u}_{3}^{T} \mathbf{x}
\end{array}\right]
$$

- The D-dimensional data sample \mathbf{x} is reduced to 3-dimensional data point y

Face Recognition

Face Recognition

- If we apply SVD for face feature extraction,
- $f(\mathbf{x})=$?
- $f(\mathbf{x})=\mathbf{y}_{d \times 1}=\mathbf{U}_{\cdot,[1: d]}^{T} \mathbf{x}_{D \times 1}, d \ll D$
- That is: $\mathbf{y}_{d \times 1}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{d}\end{array}\right]=\left[\begin{array}{c}\mathbf{u}_{1}^{T} \mathbf{x} \\ \vdots \\ \mathbf{u}_{d}^{T} \mathbf{x}\end{array}\right]$

Face Recognition

- C subjects/Classes
- Training set (each subject has N training images)
$-\quad$ Subject 1: $\mathbf{x}_{11}, \ldots, \mathbf{x}_{1 N}$ (i.e. $\mathbf{x}_{1 n}, n=1, \cdots, N$)
- Subject 2: $\mathbf{x}_{21}, \ldots, \mathbf{x}_{2 N}$
$-\quad$ Subject $C: \mathbf{x}_{C 1}, \ldots, \mathbf{x}_{C N}$

Face Recognition

- SVD for dimensionality reduction

$$
\begin{aligned}
- & \mathbf{X}=\left[\mathbf{x}_{11}, \ldots, \mathbf{x}_{1 N}, \mathbf{x}_{21}, \ldots, \mathbf{x}_{2 N}, \ldots, \mathbf{x}_{C 1}, \ldots, \mathbf{x}_{C N}\right] \\
& \mathbf{X}=\boldsymbol{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}
\end{aligned}
$$

- Find the top- d left singular vectors

$$
\mathbf{U}_{:[1: d]}=\left[\mathbf{u}_{1}, \cdots, \mathbf{u}_{d}\right]
$$

- Project each training image onto these vectors
- The nth training image of the c th subject: $\mathbf{x}_{c n}$

$$
\mathbf{y}_{c n}=\left[\begin{array}{c}
y_{c n, 1} \\
\vdots \\
y_{c n, d}
\end{array}\right]=\mathbf{U}_{:,[1: d]}^{T} \mathbf{x}_{c n}=\left[\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{x}_{c n} \\
\vdots \\
\mathbf{u}_{d}^{T} \mathbf{x}_{c n}
\end{array}\right]
$$

Face Recognition

- Nearest-Neighbor Classifier

- For a test image \mathbf{x}
- Project the test image onto vectors

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{d}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{x} \\
\vdots \\
\mathbf{u}_{d}^{T} \mathbf{x}
\end{array}\right]=\mathbf{U}_{:,[1: d]}^{T} \mathbf{x}
$$

- Determine its class label by

$$
\hat{c}=\arg _{\substack{c=1,2, \ldots, C \\ n=1,2, \ldots, N}}\left\|\mathbf{y}-\mathbf{y}_{c n}\right\|_{2}
$$

