Solving Problems by
Searching

CSEN266
Artificial Intelligence

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

Navigation in Romania

Agent:

Currently in Arad,
Neamt Need to drive to
Bucharest

MY Oradea
71

Sibi
ihiu 99
15

Hirsova

Bucharest

Drobeta [

S .. Eforie
Craiova) Crinrgin

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 2

The goal of the problem?

e Get to Bucharest from Arad

] Oradea

Neamt

bl Hirsova

3]
Bucharest
Drobeta]

Eforie

Ty e 3 3
Craiova ™ Giurgiu

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

How to achieve the goal?

* Where to go from Arad? Sibiu, Timisoara, or Zerind?
* What actions to take? = Making decisions

Eforie

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

Search Problem

 Search: look for a sequence of actions that reaches the
goal

O,
@ @ ®
N |
®»® © © ®» © @
I B N
@ @® © @@
N N
@@Q@Cp@
@ ©@© @
@

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

An Agent Wants to Do a Task

» Search Phase: the process of looking for the action
sequence that achieves the goal

— Search Algorithm: takes a problem as input and returns a
solution

— Solution: an action sequence that leads from the initial state
to a goal state

* Execution Phase: the agent will carry out the actions
recommended by the solution

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

Define a Search Problem

] Oradea

* Five components
1. States
e.g. In(Arad), In(Sibiu), In(Fagaras)
Initial State: In(Arad)
Goal State: In(Bucharest)

Sibiu 99 Fagaras

Rimnicu Vilcea

] Timisoara

2. Actions (available to the agent)

e Given a state s, Actions(s) returns the set of actions that can be
executed in s

* Actions(/n(Arad)): {Go(Sibiu), Go(Timisoara), Go(Zerind)}

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 7

Define a Search Problem

* Five components
3. Transition Model

A description of what each action does

* Result(s,a): returns the state that results from doing action g in
state s

* Result(In(Arad), Go(zerind)) = In(Zerind)

] Oradea

Fagaras

Rimnicu Vilcea

™ Timisoara

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

Define a Search Problem

* Five components
4. Goal test: a function that verifies whether a given state is a
goal state

* e.g. In the Romania Navigation problem: the goal state is the
singleton set {In(Bucharest)}

5. Path cost function: assigns a numeric cost to each path
e e.g. Romania: the cost of a path can be its length in kilometers

 step cost c(s,a,s’): the cost of taking action a in state s to reach
state s’

[f Oradea

Arad

Sibiu 99 Fagaras

Rimnicu Vilcea N\

Timisoara

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

Define a Search Problem

* Additional Concepts

The State Space: the set of all states reachable from the initial
state by any sequence of actions.

- A directed graph (e.g. the map of Romania)
. the states
* Links: actions

— A path in the state space: a sequence of states connected by
a sequence of actions

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 10

The Solution of a Search Problem
* An action sequence that leads from the initial state to a
goal state.

* The quality of the solution: measured by the path cost
function

* Optimal solution: lowest path cost

[f Oradea

Sibiu 99 Fagaras

e . Rimnicu Vilcea N\
lNmisoara

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 11

Vacuum World

e States

— 2 agent locations (squares), each location might or might not

contain dirt

e.g. [‘Dirty’, ‘Dirty’, ‘A’] represents: square A is dirty, square B

is dirty, the robot is currently in square A.

- 2 X 2% = 8 states
- If n locations, then how many states?
n X 2™ states

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

12

Vacuum World

* |nitial state
— Any state can be designated as the initial state

 Actions

A B
- Left, Right, Suck d@
— Larger environments: Up, Down 0§88 0§88

* Transition Model
- e.g. s=['Dirty’, ‘Dirty’, ‘A’], a=‘Suck’

s’ = Result(s, a) = [‘Clean’, ‘Dirty’, ‘A’]

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

13

Vacuum World

The complete state space (and transition model)

1 R ~
| R
L 0SR y,
- L — -
.-"’F-’F ” ---E-‘; “i --E-H- T T
, L~ R R --\\I
L| L |
\ 0.?735 9‘5
M 7 - . _/
B S
_ “;_-..;;—_:'__H S
s m l{ =~ i -H\I
L| =" =" IR
V4
L -
e e
5 5
Figure 3.3 FILES: figures/vacuum2-state-space.eps (Tue Nov 3 16:24:01 2009). The state space
for the vacuum world. Links denote actions: L = Left, R = Right, S = Suck.

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

14

Vacuum World

e Goal Test
— Check whether all squares are clean

e Path cost
— Each step costs 1 (i.e. 1 per action)
— The path cost is the number of steps (actions) in the path

- R
' n ~,
L| ‘dgd i = IR
NP o8 |28 N/
— L il
- —_— R . R -
r/ " N \\ /"\ A \
L =] =M \r o |=H =] r
_4 e 1 il o = . oz J
y * T - I
./ § T~ 5 N
S - S
. — R e)
o =
L |/ = = '| R
o I:_/
G E
R e
S S
Figure 3.3 FILES: figures/vacuum2-state-space.eps (Tue Nov 3 16:24:01 2009). The state space
for the vacuum world. Links denote actions: L = Left, R = Right, S = Suck.

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

The 8-puzzle

* A tile adjacent to the blank space can slide into the space
* Objective: reach a specified goal state

7 2 = l 2

5 6 3 = 5

8 3 l 6 7 8
Start State Goal State

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

16

The 8-puzzle

e States?
- any location combination of 8 tiles and the blank

e |nitial state?
- given
e Actions?

- Movements of the blank space: left, right, up, down, or a
subset of these

7 2 ||| 4 I)

5 6 30 4 |]] 5

g Il 3 || 1 6 (|| 7 ||l 8
Start State Goal State

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

17

The 8-puzzle

* Transition model?

- given a location combination and a movement, this returns
the resulting location combination

* Goal test?
- check whether the state matches the goal configuration

e Path cost?
— (each step costs 1) the number of steps in the path

h
N
oy
=
N

8 3 l 6 7 8

Start State Goal State

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

18

* Donald Knuth (1964): starting with the number 4, a
sequence of factorial, square root, and floor operations
will reach any desired positive integer.

YV =

States?
— Positive numbers

* [nitial state?
- 4
* Actions?
— Apply factorial, square root,
or floor operation

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 19

* Donald Knuth (1964): starting with the number 4, a
sequence of factorial, square root, and floor operations
will reach any desired positive integer.

YV =

* Transition model?
— Definition of these math
operations
* Goal test?
— State is the desired positive
integer

* Infinite state space

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 20

Search Algorithms

* Look for a sequence of actions that achieve the goal
e Search Tree

Arad

> G (o> @i

- Nodes: states in the state space
* Parent node, child nodes
* Leaf node: a node with no children

— Root Node: initial state
* In(Arad)
— Branches: actions

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

Search Algorithms

* Expand a node and generate a new set of nodes

* How to choose which node to expand?

Arad

Carad > Cragaras> COradea> @mies Ve

) Oradea

Arad

Sibiu 99 Fagaras

118

Rimnicu Vilcea

Timisoara

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 22

Search Algorithms

* Frontier nodes: the candidate nodes to be expanded

Arad

Carad > Cragaras> COradea> @mies Ve

) Oradea

Arad

Sibiu 99 Fagaras

118

Rimnicu Vilcea

Timisoara

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 23

Tree-Search Scheme

] Oradea

e The same state can be visited

repeatedly
- Arad-Sibiu-Arad
- Loopy path Sibiu , Fagaras
 The complete search tree
for Romania is infinite [y imisoara imnen Vileen

* Can cause certain algorithms to fail

Arad

Cra> G et @D

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 24

Graph-Search Scheme

* Never expands the same state twice

Arad

Cra> G et @D

CSEN266: Artificial Intelligence

©Ying Liu, Santa Clara University

25

Data structure for node n on the search tree

e Data structure: keeps track of the search tree

* n.State: the state in the state space to which the node
corresponds.

* n.Parent: the node in the search tree that generated this
node.

— Arrows point from child to parent

PARENT

A Node ACTION = Right

PATH-COST =6

STATE

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 26

Data structure for node n on the search tree

* n.Action: the action that was applied to the parent to
generate the node.

- e.g. n.Action: movement of the blank tile
Draw the state of the parent node?

* n.Path-Cost g(n): the cost of the path from the initial
node to node n, as indicated by the parent pointers.

PARENT

A Node ACTION = Right

PATH-COST =6

STATE

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 27

Data structure for node n on the search tree

* lllustrate: n.State, n.Parent, n.Action, n.Path-Cost=g(n)

O
@ o e
® © @ ®» © @
I N
@ @® © o
N N
@@2@@@
@ ©@© @
(@

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

28

Frontier Set

* The set of Frontier

- a FIFO queue, or
— a LIFO stack, or
— a Priority queue

CSEN266: Artificial Intelligence

nodes

©Ying Liu, Santa Clara University

29

Performance Measurement

* Completeness: Is the search algorithm guaranteed to find
a solution when there is one?

* Optimality: Does the strategy find the optimal solution
(w.r.t some performance measure)?

- e.g. The path cost of the solution found (such as the total
length of the path in kilometers)

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

30

Performance Measurement

* Time complexity: How fast does the algorithm find a
solution?

— Measured in terms of the number of nodes
expanded/visited/explored during the search process

* Space complexity: How much memory is needed to
perform the search?

— Measured in terms of the maximum number of nodes stored
in memory during the search process

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 31

Parameters

* b - Branching factor
— Maximum number of successors of any node

* d - The depth of the shallowest goal node (shallowest
solution)
- i.e. the number of steps along the path from the root

* m —the maximum length of any path in the state space

— For tree search
 m can be much larger than d
e m s infinite if the tree is unbounded

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 32

Parameters

 What are b, d, and m for this search tree?

O

@ 2
® © @ ®» O
| N N
@ @® © o
N | <N
@@2@@@

@ ©@© @

(@

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

33

Uninformed Search

e Also called: Blind Search

* The search strategy
- does not know which non-goal states are better than other
non-goal states

- canonly
* Generate successors
* Distinguish a goal state from a non-goal state

* Different uninformed search strategies
- distinguished by the order in which nodes are expanded

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

34

Breadth-First Search

Search
! ® © ©
Tiers | | TN
(@ a h r
RN |
N p q f
| N
q C G
I
a

Initial State: S
Goal State: G
Explored: color circled
Frontier: white circled
Unexplored: uncircled

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

Breadth-First Search

* Shallower nodes are expanded before deeper nodes
e Achieved by using a FIFO queue for the frontier nodes

4 O,
@ (& ®
Search o |
/! ® O ® ® O @
Tiers | | RN PN |
@ a h r p g f
PN | | N
. p q f q © 6
| PN !
q

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 36

Breadth-First Search

* Optimality?
- In terms of solution path cost

— Optimal in the sense that it always finds the
shallowest goal node

 Complete?
— Yes if the branching factor b is finite

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

37

Graph-Search Scheme

e |dea: never visit the same state twice

* How to implement:

— Construct a search tree

- Keep a set of visited states

- Expand the search tree node-by-node as in a tree search
strategy, but...

- Before expanding a node, check whether its state has been
visited before
* |f yes, skip the node;
* If no
— add its state to the set of visited states
- expand the node and generate the successors

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

38

Graph-Search Scheme

e |dea: never visit the same state twice

 Example: in the following breadth-first graph search, we
do not expand the circled nodes

S

d e P
N |

b/m h r q
| N |
@@ s
oy

a

)
|
f
PR
G

C
I
a

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

39

Uniform-cost Search

* Expands the node n with the lowest path cost g(n)
- Done by storing the frontier as a priority queue ordered by g

— Path cost g(n): the cost of the path from the initial node to node
n

* Example: get from Sibiu to Bucharest

Sibiu oo Fagaras

Rimnicu Vilcea

Pitesti

Bucharest

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

40

Uniform-cost Search

Visited Nodes Frontier
S F,R
R F,P
F P, B,
P By, B,
B

Sibiu oo Fagaras

Rimnicu Vilcea
Solution path: S = R—> P - B,

Pitesti
Solution path cost: 278

Bucharest

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

41

Uniform-cost Search

* Guided by path costs
* Does not care about the number of steps a path has

Sibiu oo Fagaras

Rimnicu Vilcea

Pitesti

Bucharest

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

42

Uniform-cost Search

* Optimal or not? Sibiu Fagaras
- Yes

Rimnicu Vilcea

Pitesti

Bucharest

* Completeness?

- Guaranteed if the cost of every step is greater than a
small positive value &

— If there’s a path with an infinite sequence of zero-cost
actions, then it will get stuck in an infinite loop

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 43

Depth-First Search

Initial State: S
Goal State: G
Explored: color circled
Frontier: white circled
Unexplored: uncircled

@ (& ®
® © © " ;
I | PN
@ @ O p q f

@@é\ i

| |

© ©® ;
@

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

44

Depth-First Search

* Expands the deepest node in the current frontier

* LIFO stack —the most recently generated node is chosen
for expansion

* Explored nodes with no descendants are removed from

memory
B O]
ﬁ QID

o K "
@@ @ p q f
@@glp\qc/\g
I |
@ O
@

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 45

Depth-First Search

 Complete or not?
— Depth-first Graph-search: Yes (avoids repeated states)
— Depth-first Tree-search: No

~ Arad

D R D R RN

* Arad-Sibiu-Arad-Sibiu loop forever!

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

46

Depth-First Search

* Optimal or not? (in terms of the cost of the solution path)

N O)

@ (& ®
® © ® o :
I | N
@ @ O, p q f

@@9'9\ . <

| I

© ©© :
@

e Answer: No!

* The solution returned by the DFS will get to the goal state
in 5 steps instead of 4 steps

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 47

Depth-Limited Search

e Supply DFS with a predetermined depth limit [
- Solves the infinite path problem

 Complete or not?
- Ifl < d:incomplete! (e.g. when d is unknown)

e Optimal or not?
- If Il > d: Not guaranteed.

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

48

Iterative Deepening DFS
* Repeatedly applies depth-limited search with increasing

limits [

* Terminates an iteration when a solution is found or if the
depth-limited search returns failure (no solution for that
depth limit)

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

49

Iterative Deepening DFS

Limit = 0 O]]
Limit = 1 v® . .
o e o o o Fogr |ter.at|ons
of iterative
Limit =2 »®

deepening DFS
on a binary tree

>

Suppose: M is
the goal node

Limit = 3 r®

Black circles:
nodes removed
from memory

@%5?%
D

o
,p
o

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 50

O

Iterative Deepening DFS

Path followed by

aDFsS |/

We want to find node 2" of the given “deep” tree.

A DFS starting from node ‘0" will dive left, towards node 1 and so
on

Hence, a DFS wastes a lot of time in coming back to node 2

An Iterative Deepening DFS overcomes this and quickly finds the
desired node.

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 51

Iterative Deepening DFS

* Complete? Yes when b is finite

* Optimal? Yes in the sense that it can always find the
shallowest solution.

® ®

@

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

Iterative Deepening DFS

e Combines the benefits of DFS and BFS

- Benefit of BFS: optimal (shallowest solution)
- Benefit of DFS: space complexity

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

53

Informed Search Strategies

* The search strategies have extra information regarding
how “close” a node is to a goal node

* Can find solutions more efficiently than uninformed
search strategies

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

54

Heuristic Function h(n)

* Heuristic function
h(n)= estimated cost of the cheapest path

from node n to a goal state

* Let h(n) be
- Nonnegative
- Problem-specific functions
— Define: if nis a goal node, then h(n) =0

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

55

Greedy Search

* Expands the node that seems closest to the goal
* Evaluates nodes by using a heuristic function h(n)

* Example: route-finding problem in Romania
— Use straight-line distance heuristic hg;p

The straight-line distance to Bucharest

Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 1 60) Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 1 76 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
lLasi 226 Vaslui 199
Lugoj 244 Zerind 374

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

Greedy Search

The straight-line distance to Bucharest -pe™

Arad 366 Mehadia 241

Bucharest 0 Neamt 234 Arad [

Craiova 160 Oradea 380

Drobeta 242 Pitesti 100 118

Eforie 161 Rimnicu Vilcea 193

Fagaras 176 Sibiu 253

Giurgiu 77 Timisoara 329

Hirsova 151 Urziceni 80

lLasi 226 Vaslui 199 Mehadia
Lugoj 244 Zerind 374

Dobreta [

H Craiova

[] Giurgiu

Arad

329 374

Foore> o> oD
366

253 0
CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 57

Greedy Search

 Why is it called “greedy”?
— At each step, it tries to get as close to the goal as it can

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

58

Greedy Search

* Not optimal
- Itignores the cost of getting to n

— Can be led astray exploring nodes that cost a lot but seem to
be close to the goal

Stonl: — step cost=10

Ston3: — step cost=100

h(n1) = 20 =10

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 59

Greedy Search

 Completeness

- Greedy tree search: Incomplete even in a finite state space
(does not guarantee to find a solution)

[] Mehadia

Dobreta [

Eforie

- The graph search version: Complete in finite state spaces,
but not in infinite state spaces

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 60

A" Search

* Minimizes the estimated total cost of a solution path
f(n) =gm) + h(n)

- g(n) - the path cost from the initial node to node n

- h(n) - the estimated cheapest cost to get from node n to the
goal node

- f[(n) — estimated total cost of the cheapest path that
continuous from node n to a goal

5/

R
%3@
® ©

G

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 61

A* Search Example

h=1
e Start from S, G is the goal

* Expanded nodes in order: S, B, A, G
e Solution path: S->A->G

 Solution path cost: 4

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

62

Solution path: S —- A - G4

Solution path cost: 4

CSEN266: Artificial Intelligence

A" f(n) = g(n) + h(n)

Visited Frontier
S A, B
B A; GZ
A G,, G4
Gy
h=2

©Ying Liu, Santa Clara University

63

BFS Example

* Sis the start node, G is the goal node, use BFS to find a
path from S to G. List the expanded nodes in order, give
the solution path, and solution path cost. Use alphabetical
order to break ties.

[(A (D=
(O——(Er>{0)
2 M

* Answer:

* Expanded nodes: S,A,B,D,C,G
 Solution path: SBG

e Path cost: 22

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 64

0 5rs
2
\ Visited:

S,A,B,D,C,G,

on
%
&)

Solution path:

3
@ % S — B - G,
)

Sol. path cost:
2+ 20 =22

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

65

DFS Example

 Solve the same problem by depth-first search.

[(A (D=
(O——(Er>{0)
2 M

* Answer:

* Expanded nodes: S,A,D,G
 Solution path: S,A,D,G

* Path cost: 18

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

66

(s) o
visited:

S—>A-D - G,

3
@ @ sol. path:
2
: S—>A->D - Gy

sol. path cost:

oue

o
/-

)

5 8
C>—’@’\ 5+5+8=18

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

67

IDDFS Example

* Solve the same problem by the Iterative Deepening DFS

strategy.
5@ : '@PS\‘
ROENCRY
2 M
* Answer:

* Expanded nodes: S; SAB; SADBCG.
 Solution path: SBG
e Path cost: 22

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

68

@ IDDFS
2
\ Visited:

20 5
7 \ S, A, B;
@ S,4,D,B,C, G,
8 | |3
@ @ sol. path: S - B - G,
2
@ sol path cost: 2+20=22

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

UCS Example

 Solve the same problem by the uniform-cost search.

5 @ : '@PS\‘
(O ——(E)={a)
2 M

* Answer:

* Expanded nodes: S,B,A,C,D,E,G
 Solution path: SBCEG

* Path cost: 14

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

70

UCS: g valves.

X Visited Frontier
S A B

oo

B
A
8 3
C G,,D,E
® © o
@ E GZ) Gl) GS
G3
Sol.path: S > B> C —» E - G5 - @’\

o 8
Sol. path cost: 14 . @_3'@_2’
*(B) 20

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

©

~

QRN

C,G,, D

Greedy Search Example

* Solve the same problem by greedy search. The heuristic
function values are given.

5@ : '@PS\‘
(c——(E{c)
L

y

* Answer:

h(S)=12, h(A)=8,
* Expanded nodes: S,A,D,G hEB))=1z, h((C))=3,
* Solution path: S,A,D,G h(D)=7, h(E)=1,

h(G)=0.
e Path cost: 18

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

@ Greedy
Search

Visited
/N .
h=8 h=12 .
5 7%
T o
h=o@ @|“>h=1
2

o

@h=

Frontier
A B
B,D
B, G4

solution path: S - A - D - G,

solution path cost: 18

f——

L

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

S)=12, h(A)=8,
B)=12, h(C)=3,
D)=7, h(E)=1,

h
h
h
h(G)=0.

o p— p— p—

73

A* Search Example

* Solve the same problem by the A* search strategy.

5 @ : '@PS\‘
(O ——(E)={a)
2 M

e Answer:

h(S)=12, h(A)=8,
* Expanded nodes: S,A,B,C,E,G h(B)=12, h(C)=3,

h(D)=7, h(E)=1,
 Solution path: SBCEG h(G)=0.

e Path cost: 14

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

74

@ A f(n) = g(n) + h(n)

Visited Frontier
S A B
A B,D
B D,C,G,
C D,G,, E
E D, G,, G,
G3

Sol.path: S5 B —>C - E - G5

Sol. path cost: 14

h(5)=12, h(A)=8,
h(B)=12, h(C)=3,
h(D)=7, h(E)=1,
h(G)=0.

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 75

	Slide 1: Solving Problems by Searching
	Slide 2: Navigation in Romania
	Slide 3: The goal of the problem?
	Slide 4: How to achieve the goal?
	Slide 5: Search Problem
	Slide 6: An Agent Wants to Do a Task
	Slide 7: Define a Search Problem
	Slide 8: Define a Search Problem
	Slide 9: Define a Search Problem
	Slide 10: Define a Search Problem
	Slide 11: The Solution of a Search Problem
	Slide 12: Vacuum World
	Slide 13: Vacuum World
	Slide 14: Vacuum World
	Slide 15: Vacuum World
	Slide 16: The 8-puzzle
	Slide 17: The 8-puzzle
	Slide 18: The 8-puzzle
	Slide 19
	Slide 20
	Slide 21: Search Algorithms
	Slide 22: Search Algorithms
	Slide 23: Search Algorithms
	Slide 24: Tree-Search Scheme
	Slide 25: Graph-Search Scheme
	Slide 26: Data structure for node n on the search tree
	Slide 27: Data structure for node n on the search tree
	Slide 28: Data structure for node n on the search tree
	Slide 29: Frontier Set
	Slide 30: Performance Measurement
	Slide 31: Performance Measurement
	Slide 32: Parameters
	Slide 33: Parameters
	Slide 34: Uninformed Search
	Slide 35: Breadth-First Search
	Slide 36: Breadth-First Search
	Slide 37: Breadth-First Search
	Slide 38: Graph-Search Scheme
	Slide 39: Graph-Search Scheme
	Slide 40: Uniform-cost Search
	Slide 41: Uniform-cost Search
	Slide 42: Uniform-cost Search
	Slide 43: Uniform-cost Search
	Slide 44: Depth-First Search
	Slide 45: Depth-First Search
	Slide 46: Depth-First Search
	Slide 47: Depth-First Search
	Slide 48: Depth-Limited Search
	Slide 49: Iterative Deepening DFS
	Slide 50: Iterative Deepening DFS
	Slide 51: Iterative Deepening DFS
	Slide 52: Iterative Deepening DFS
	Slide 53: Iterative Deepening DFS
	Slide 54: Informed Search Strategies
	Slide 55: Heuristic Function h open paren n close paren
	Slide 56: Greedy Search
	Slide 57: Greedy Search
	Slide 58: Greedy Search
	Slide 59: Greedy Search
	Slide 60: Greedy Search
	Slide 61: A to the asterisk operator Search
	Slide 62: A to the asterisk operator Search Example
	Slide 63
	Slide 64: BFS Example
	Slide 65
	Slide 66: DFS Example
	Slide 67
	Slide 68: IDDFS Example
	Slide 69
	Slide 70: UCS Example
	Slide 71
	Slide 72: Greedy Search Example
	Slide 73
	Slide 74: A* Search Example
	Slide 75

