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Navigation in Romania

Agent:
Currently in Arad;
Need to drive to 
Bucharest
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The goal of the problem?

• Get to Bucharest from Arad
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How to achieve the goal?

• Where to go from Arad? Sibiu, Timisoara, or Zerind?

• What actions to take? ⇒ Making decisions

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 4



• Search: look for a sequence of actions that reaches the 
goal
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An Agent Wants to Do a Task

• Search Phase: the process of looking for the action 
sequence that achieves the goal

− Search Algorithm: takes a problem as input and returns a 
solution

− Solution: an action sequence that leads from the initial state 
to a goal state

• Execution Phase: the agent will carry out the actions 
recommended by the solution
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Define a Search Problem

• Five components
1. States

       e.g. In(Arad), In(Sibiu), In(Fagaras)

     Initial State: In(Arad)

     Goal State: In(Bucharest)

2. Actions (available to the agent)

• Given a state s, Actions(s) returns the set of actions that can be 
executed in s

• Actions(In(Arad)): {Go(Sibiu), Go(Timisoara), Go(Zerind)}
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Define a Search Problem

• Five components
3. Transition Model 

     A description of what each action does
• Result(s,a): returns the state that results from doing action a in 

state s 

• Result(In(Arad), Go(zerind)) = In(Zerind)
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Define a Search Problem

• Five components
4.  Goal test: a function that verifies whether a given state is a 
goal state

• e.g. In the Romania Navigation problem: the goal state is the 
singleton set {In(Bucharest)}

5.  Path cost function: assigns a numeric cost to each path
• e.g. Romania: the cost of a path can be its length in kilometers

• step cost c(s,a,s’): the cost of taking action a in state s to reach 
state s’ 
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Define a Search Problem

• Additional Concepts
The State Space: the set of all states reachable from the initial 
state by any sequence of actions.

− A directed graph (e.g. the map of Romania)
•  Nodes: the states     

•  Links: actions

− A path in the state space: a sequence of states connected by 
a sequence of actions
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The Solution of a Search Problem

• An action sequence that leads from the initial state to a 
goal state.

• The quality of the solution: measured by the path cost 
function

• Optimal solution: lowest path cost 
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Vacuum World

• States
− 2 agent locations (squares), each location might or might not 

contain dirt

     e.g. [‘Dirty’, ‘Dirty’, ‘A’] represents: square A is dirty, square B 
is dirty, the robot is currently in square A. 

− 2 × 22 = 8 states

− If 𝑛 locations, then how many states?

 𝑛 × 2𝑛 states
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Vacuum World

• Initial state
− Any state can be designated as the initial state

• Actions
− Left, Right, Suck

− Larger environments: Up, Down

• Transition Model
− e.g. s= [‘Dirty’, ‘Dirty’, ‘A’], a=‘Suck’

     s’ = Result(s, a) = [‘Clean’, ‘Dirty’, ‘A’]
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Vacuum World
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The complete state space (and transition model)



Vacuum World

• Goal Test
− Check whether all squares are clean

• Path cost
− Each step costs 1 (i.e. 1 per action)

− The path cost is the number of steps (actions) in the path
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The 8-puzzle

• A tile adjacent to the blank space can slide into the space

• Objective: reach a specified goal state
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The 8-puzzle

• States?
− any location combination of 8 tiles and the blank

• Initial state? 
− given

• Actions?
− Movements of the blank space: left, right, up, down, or a 

subset of these

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 17



The 8-puzzle

• Transition model? 
− given a location combination and a movement, this returns 

the resulting location combination

• Goal test? 
− check whether the state matches the goal configuration

• Path cost? 
− (each step costs 1) the number of steps in the path
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19

• Donald Knuth (1964): starting with the number 4, a 
sequence of factorial, square root, and floor operations 
will reach any desired positive integer. 

• States? 

− Positive numbers

• Initial state? 

− 4

• Actions? 

− Apply factorial, square root, 

    or floor operation
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20

• Donald Knuth (1964): starting with the number 4, a 
sequence of factorial, square root, and floor operations 
will reach any desired positive integer. 

• Transition model? 
− Definition of these math

     operations

• Goal test? 
− State is the desired positive

     integer

• Infinite state space
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• Look for a sequence of actions that achieve the goal

• Search Tree

− Nodes: states in the state space
• Parent node, child nodes

• Leaf node: a node with no children

− Root Node: initial state
• In(Arad)

− Branches: actions

Search Algorithms
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Search Algorithms

• Expand a node and generate a new set of nodes

• How to choose which node to expand?
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Search Algorithms

• Frontier nodes: the candidate nodes to be expanded
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Tree-Search Scheme

• The same state can be visited

   repeatedly
− Arad-Sibiu-Arad

− Loopy path
• The complete search tree 

    for Romania is infinite

• Can cause certain algorithms to fail
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Graph-Search Scheme

• Never expands the same state twice 

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 25



Data structure for node 𝑛 on the search tree

• Data structure: keeps track of the search tree

• 𝑛.State: the state in the state space to which the node 
corresponds.

• 𝑛.Parent: the node in the search tree that generated this 
node.

− Arrows point from child to parent
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Data structure for node 𝑛 on the search tree

• 𝑛.Action: the action that was applied to the parent to 
generate the node.

− e.g. 𝑛.Action: movement of the blank tile

     Draw the state of the parent node?

• 𝑛.Path-Cost 𝑔(𝑛): the cost of the path from the initial 
node to node 𝑛, as indicated by the parent pointers.
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• Illustrate: 𝑛.State, 𝑛.Parent, 𝑛.Action, 𝑛.Path-Cost=𝑔(𝑛)
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Data structure for node 𝑛 on the search tree
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Frontier Set

• The set of Frontier nodes
− a FIFO queue, or

− a LIFO stack, or

− a Priority queue
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Performance Measurement

• Completeness: Is the search algorithm guaranteed to find 
a solution when there is one?

• Optimality: Does the strategy find the optimal solution 
(w.r.t some performance measure)?

− e.g. The path cost of the solution found (such as the total 
length of the path in kilometers)
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Performance Measurement

• Time complexity: How fast does the algorithm find a 
solution?

− Measured in terms of the number of nodes 
expanded/visited/explored during the search process

• Space complexity: How much memory is needed to 
perform the search?

− Measured in terms of the maximum number of nodes stored 
in memory during the search process
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Parameters

• 𝑏 - Branching factor 
− Maximum number of successors of any node

• 𝑑 - The depth of the shallowest goal node (shallowest 
solution)

− i.e. the number of steps along the path from the root

• 𝑚 – the maximum length of any path in the state space
− For tree search

• 𝑚 can be much larger than 𝑑

• 𝑚 is infinite if the tree is unbounded
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• What are 𝑏, 𝑑, and 𝑚 for this search tree?
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Uninformed Search

• Also called: Blind Search

• The search strategy 
− does not know which non-goal states are better than other 

non-goal states

− can only 
• Generate successors

• Distinguish a goal state from a non-goal state

• Different uninformed search strategies
− distinguished by the order in which nodes are expanded
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Breadth-First Search
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Breadth-First Search
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• Shallower nodes are expanded before deeper nodes

• Achieved by using a FIFO queue for the frontier nodes



Breadth-First Search

• Optimality?
− In terms of solution path cost

− Optimal in the sense that it always finds the 
shallowest goal node

• Complete?
− Yes if the branching factor 𝑏 is finite
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Graph-Search Scheme

• Idea: never visit the same state twice

• How to implement: 

− Construct a search tree

− Keep a set of visited states

− Expand the search tree node-by-node as in a tree search 
strategy, but…

− Before expanding a node, check whether its state has been 
visited before
• If yes, skip the node;

• If no
− add its state to the set of visited states

− expand the node and generate the successors
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Graph-Search Scheme

• Idea: never visit the same state twice

• Example: in the following breadth-first graph search, we 
do not expand the circled nodes
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Uniform-cost Search
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• Expands the node 𝑛 with the lowest path cost 𝑔(𝑛)
− Done by storing the frontier as a priority queue ordered by 𝑔

− Path cost 𝑔(𝑛): the cost of the path from the initial node to node 
𝑛

• Example: get from Sibiu to Bucharest

                                                                                                                       

                                                         



Uniform-cost Search
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𝑔 = 278𝐵2

101

𝑃𝐵1𝑔 = 310 𝑔 = 177

97211

𝑔 = 99 𝑔 = 80

99 80

𝑆

𝑅𝐹

Visited Nodes
𝑆
𝑅
𝐹
𝑃
𝐵2

Frontier
𝐹, 𝑅
𝐹, 𝑃
𝑃, 𝐵1

𝐵1, 𝐵2

Solution path: 𝑆 → 𝑅 → 𝑃 → 𝐵2

Solution path cost: 278 



Uniform-cost Search

• Guided by path costs

• Does not care about the number of steps a path has
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Uniform-cost Search

• Optimal or not? 
− Yes

• Completeness? 
− Guaranteed if the cost of every step is greater than a 

small positive value 𝜀

− If there’s a path with an infinite sequence of zero-cost 
actions, then it will get stuck in an infinite loop
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Depth-First Search
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Depth-First Search
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• Expands the deepest node in the current frontier 

• LIFO stack – the most recently generated node is chosen 
for expansion

• Explored nodes with no descendants are removed from 
memory
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Depth-First Search

• Complete or not?
− Depth-first Graph-search: Yes (avoids repeated states)

− Depth-first Tree-search: No

• Arad-Sibiu-Arad-Sibiu loop forever!
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Depth-First Search
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• Optimal or not? (in terms of the cost of the solution path)

• Answer: No! 

• The solution returned by the DFS will get to the goal state 
in 5 steps instead of 4 steps



Depth-Limited Search

• Supply DFS with a predetermined depth limit 𝑙
− Solves the infinite path problem

• Complete or not?
− If 𝑙 < 𝑑: incomplete! (e.g. when 𝑑 is unknown)

• Optimal or not?
− If 𝑙 > 𝑑: Not guaranteed.
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Iterative Deepening DFS

• Repeatedly applies depth-limited search with increasing 
limits 𝑙

• Terminates an iteration when a solution is found or if the 
depth-limited search returns failure (no solution for that 
depth limit)
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Iterative Deepening DFS

Four iterations 
of iterative 
deepening DFS 
on a binary tree

Suppose: M is 
the goal node

Black circles: 
nodes removed 
from memory
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Iterative Deepening DFS
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• We want to find node ‘2’ of the given “deep” tree.

• A DFS starting from node ‘0’ will dive left, towards node 1 and so 
on

• Hence, a DFS wastes a lot of time in coming back to node 2

• An Iterative Deepening DFS overcomes this and quickly finds the 
desired node.



Iterative Deepening DFS

• Complete? Yes when 𝑏 is finite

• Optimal? Yes in the sense that it can always find the 
shallowest solution.
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Iterative Deepening DFS

• Combines the benefits of DFS and BFS
− Benefit of BFS: optimal (shallowest solution)

− Benefit of DFS: space complexity

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 53



Informed Search Strategies

• The search strategies have extra information regarding 
how “close” a node is to a goal node

• Can find solutions more efficiently than uninformed 
search strategies
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Heuristic Function ℎ(𝑛) 

• Heuristic function

ℎ(𝑛)= estimated cost of the cheapest path 

               from node 𝑛 to a goal state

• Let ℎ(𝑛) be
− Nonnegative

− Problem-specific functions

− Define: if 𝑛 is a goal node, then ℎ(𝑛) = 0
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Greedy Search

• Expands the node that seems closest to the goal

• Evaluates nodes by using a heuristic function ℎ(𝑛)

• Example: route-finding problem in Romania
− Use straight-line distance heuristic ℎ𝑆𝐿𝐷

The straight-line distance to Bucharest
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Greedy Search

The straight-line distance to Bucharest
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Greedy Search

• Why is it called “greedy”?
− At each step, it tries to get as close to the goal as it can
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Greedy Search

• Not optimal
− It ignores the cost of getting to n

− Can be led astray exploring nodes that cost a lot but seem to 
be close to the goal

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 59

S to n1:

S to n3:



Greedy Search

• Completeness
− Greedy tree search: Incomplete even in a finite state space 

(does not guarantee to find a solution)

− The graph search version: Complete in finite state spaces, 
but not in infinite state spaces
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A∗ Search

• Minimizes the estimated total cost of a solution path
𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)

− 𝑔 𝑛  - the path cost from the initial node to node 𝑛

− ℎ(𝑛) - the estimated cheapest cost to get from node 𝑛 to the 
goal node

− 𝑓(𝑛) – estimated total cost of the cheapest path that 
continuous from node 𝑛 to a goal
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• Start from S, G is the goal

• Expanded nodes in order: S, B, A, G

• Solution path: S->A->G

• Solution path cost: 4

A∗ Search Example
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𝑆

𝐴 𝐵

𝐺1 𝐺2

2 2

2 3

𝑔 = 2
ℎ = 1
𝑓 = 3

𝑔 = 4
ℎ = 0
𝑓 = 4

𝑔 = 2
ℎ = 2
𝑓 = 4

𝑔 = 5
ℎ = 0
𝑓 = 5

Solution path: 𝑆 → 𝐴 → 𝐺1

Solution path cost: 4

𝐴∗: 𝑓 𝑛 = 𝑔 𝑛 + ℎ 𝑛

Visited              Frontier

𝑆
𝐵
𝐴
𝐺1

𝐴, 𝐵
𝐴, 𝐺2

𝐺2, 𝐺1



BFS Example

• S is the start node, G is the goal node, use BFS to find a 
path from S to G. List the expanded nodes in order, give 
the solution path, and solution path cost. Use alphabetical 
order to break ties.

• Answer: 

• Expanded nodes: S,A,B,D,C,G

• Solution path: SBG

• Path cost: 22
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BFS

Visited:

𝑆, 𝐴, 𝐵, 𝐷, 𝐶, 𝐺2

Solution path:

𝑆 → 𝐵 → 𝐺2

Sol. path cost:

2 + 20 = 22
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DFS Example

• Solve the same problem by depth-first search.

• Answer: 

• Expanded nodes: S,A,D,G

• Solution path: S,A,D,G

• Path cost: 18
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sol. path:

S → 𝐴 → 𝐷 → 𝐺1

S → 𝐴 → 𝐷 → 𝐺1

DFS

visited:

sol. path cost:

5 + 5 + 8 = 18
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IDDFS Example

• Solve the same problem by the Iterative Deepening DFS 
strategy.

• Answer: 

• Expanded nodes: S; SAB; SADBCG.

• Solution path: SBG

• Path cost: 22
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Visited:

IDDFS

𝑆, 𝐴, 𝐵;

𝑆;

𝑆, 𝐴, 𝐷, 𝐵, 𝐶, 𝐺2

sol. path: 𝑆 → 𝐵 → 𝐺2

sol path cost: 2 + 20 = 22
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UCS Example

• Solve the same problem by the uniform-cost search.

• Answer: 

• Expanded nodes: S,B,A,C,D,E,G

• Solution path: SBCEG

• Path cost: 14
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UCS: 𝑔 valves.

Visited Frontier

𝑔 = 5

𝑔 = 10

𝑔 = 18

𝑔 = 2

𝑔 = 22
𝑔 = 9

𝑔 = 12

𝑔 = 14
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Sol. path:

Sol. path cost: 14

𝑆 → 𝐵 → 𝐶 → 𝐸 → 𝐺3

𝑆

𝐵

𝐴

𝐶

𝐷

𝐸

𝐺3

𝐴, 𝐵

𝐴, 𝐶, 𝐺2

𝐶, 𝐺2, 𝐷

𝐺2, 𝐷, 𝐸

𝐺2, 𝐸, 𝐺1

𝐺2, 𝐺1, 𝐺3



Greedy Search Example

• Solve the same problem by greedy search. The heuristic 
function values are given.

• Answer: 

• Expanded nodes: S,A,D,G

• Solution path: S,A,D,G

• Path cost: 18
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h(S)=12, h(A)=8,
h(B)=12, h(C)=3,
h(D)=7, h(E)=1,
h(G)=0.
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Visited Frontier

solution path:

solution path cost: 18

𝑆 → 𝐴 → D → 𝐺1

𝑆 𝐴, 𝐵

𝐴 𝐵, 𝐷

𝐷 𝐵, 𝐺1

𝐺1

h(S)=12, h(A)=8,
h(B)=12, h(C)=3,
h(D)=7, h(E)=1,
h(G)=0.
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A* Search Example

• Solve the same problem by the A* search strategy. 

• Answer: 

• Expanded nodes: S,A,B,C,E,G

• Solution path: SBCEG

• Path cost: 14
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h(S)=12, h(A)=8,
h(B)=12, h(C)=3,
h(D)=7, h(E)=1,
h(G)=0.
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𝐴∗: 𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛) 

Visited Frontier

𝑆

𝐴

𝐵

𝐸

𝐶

𝐴, 𝐵

𝐵, 𝐷

𝐷, 𝐶, 𝐺2

𝐷, 𝐺2, 𝐸

𝐷, 𝐺2, 𝐺3

𝐺3

Sol. path:

Sol. path cost:14

𝑆 → 𝐵 → 𝐶 → 𝐸 → 𝐺3

𝑓 = 14

𝑓 = 22

𝑓 = 13

𝑓 = 14

𝑓 = 18

𝑓 = 17

𝑓 = 13

𝑓 = 12

ℎ = 8

ℎ = 7

ℎ = 0

ℎ = 12

ℎ = 0
ℎ = 3

ℎ = 1

ℎ = 0

5

5 2

20

8

𝐺2

𝐵𝐴

𝐺3

E

C

𝑆

𝐷

𝐺1

𝑔 = 5

𝑔 = 10

𝑔 = 18

𝑔 = 2

𝑔 = 22
𝑔 = 9

𝑔 = 12

𝑔 = 14

7

3

2

h(S)=12, h(A)=8,
h(B)=12, h(C)=3,
h(D)=7, h(E)=1,
h(G)=0.
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