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Adversarial Search - Games

• Multi-agent environment
⎻ Impact of each agent on the others is significant

• Objective: 
⎻ Determine the best action that each player should 

take at each state 𝑠 such that it can win the game
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Tic-tac-toe
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until we reach leaf nodes corresponding to terminal states such that one player has three in

a row or all the squares are filled. The number on each leaf node indicates the utility value

of the terminal state from the point of view of MAX; high values are assumed to be good for

MAX and bad for MIN (which is how the players get their names).

For tic-tac-toe the game tree is relatively small—fewer than 9! = 362, 880 terminal

nodes. But for chess there are over 1040 nodes, so the game tree is best thought of as a

theoretical construct that we cannot realize in the physical world. But regardless of the size

of the game tree, it is MAX’s job to search for a good move. We use the term search tree for aSEARCHTREE

tree that is superimposed on the full game tree, and examines enough nodes to allow a player

to determine what move to make.
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Figure 5.1 A (partial) game tree for the game of tic-tac-toe. The top node is the initial

state, and MAX moves first, placing an X in an empty square. We show part of the tree, giving

alternating moves by MIN (O) and MAX (X), until we eventually reach terminal states, which

can be assigned utilities according to the rules of the game.

5.2 OPTIMAL DECISIONS IN GAMES

In a normal search problem, the optimal solution would be a sequence of actions leading to

a goal state—a terminal state that is a win. In adversarial search, MIN has something to say

about it. MAX therefore must find a contingent strategy, which specifies MAX’s move inSTRATEGY

the initial state, then MAX’s moves in the states resulting from every possible response by

• MAX places X
• MIN places O

• Terminal states: 
one player has 
three markers in a 
row or all the 
squares are filled



Tic-tac-toe
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Figure 5.1 A (partial) game tree for the game of tic-tac-toe. The top node is the initial

state, and MAX moves first, placing an X in an empty square. We show part of the tree, giving

alternating moves by MIN (O) and MAX (X), until we eventually reach terminal states, which

can be assigned utilities according to the rules of the game.

5.2 OPTIMAL DECISIONS IN GAMES

In a normal search problem, the optimal solution would be a sequence of actions leading to

a goal state—a terminal state that is a win. In adversarial search, MIN has something to say

about it. MAX therefore must find a contingent strategy, which specifies MAX’s move inSTRATEGY

the initial state, then MAX’s moves in the states resulting from every possible response by

• The number on each leaf 
node
⎻ the utility value of the 

terminal state
⎻ It’s the payoff/reward 

for the players

• High values: good for 
MAX, bad for MIN



Typical Game Set Up

• Two players: MAX and MIN

• MAX moves first

• Then they take turns moving until the game is over

• The end-states have pay-off (utility function, or 
objective function)

⎻ MAX wants to maximize the pay-off

⎻ MIN wants to minimize the pay-off

⎻ They have opposite goals
• Compete with each other
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Typical Game Set Up

• Objective: to determine what is the best action for 
each player at each state 𝑠?

• A decision-making problem
⎻ Formulate the problem as a search problem
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Game as A Search Problem

• 𝑠0: the initial state
⎻ Specifies how the game is set up at the start

• Player(𝑠)
⎻ Defines which player has the move in the state

• Actions(𝑠)
⎻ Returns the set of legal moves in a state

• Results(𝑠, 𝑎): transition model
⎻ Defines the resulting state of taking action 𝑎 at state 

𝑠
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Game as A Search Problem

• Terminal-Test(𝑠): terminal test
⎻ True when the game is over, False otherwise

• Utility(𝑠): utility function
⎻ Defines the pay-off for a game that ends in terminal 

state 𝑠 

• The optimal strategy for a certain player
⎻ Actions leading to a terminal state that is as good as 

possible for this player
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Minimax Algorithm

• Let’s consider player MIN

• What action should MIN take?
⎻ The one that leads to a smaller pay-off

8 2 5 6

max

min2 5

Terminal states 
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Minimax Algorithm

• Let’s consider player MIN

• 2 and 5 are the best that MIN can get

8 2 5 6

max

min2 5

Terminal states 

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 10



Minimax Algorithm

• Let’s consider player MAX

• What action should MAX take?
⎻ The one that leads to a larger pay-off

8 2 5 6

max

min2 5

5

Terminal states 
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Minimax Algorithm

• Question: why doesn’t MAX choose the left branch, 
given that there’s a chance to get to the terminal 
state “8”?

8 2 5 6

max

min

Terminal states 
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Minimax Algorithm

• Answer: We assume that MIN plays optimally 
⎻ i.e. MIN is a rational agent

8 2 5 6

max

min2 5

5

Terminal states 
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Minimax Algorithm

• Question: What if MIN does not play optimally?

• Answer: Then that’s even better for MAX

8 2 5 6

max

min2 5

5

Terminal states 

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 14



Minimax Value

• Minimax value of state 𝑠: minimax(𝑠)

• minimax(𝑠) values are computed recursively 
⎻ Propagated from the leaf nodes to upper layers

8 2 5 6

max

min2 5

5

Terminal states 
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Minimax Value

• minimax(𝑠): it is the pay-off value that the players 
will get when the game is over, assuming that both 
players play optimally from state-𝑠 to the end of the 
game
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8 2 5 6

max

min2 5

5

Terminal states 



Minimax Value

• 𝑠: current state

• 𝑠’: next state, obtained from 𝑠’=Result(𝑠, 𝑎), 𝑎 is any 
possible action that can be taken at 𝑠

⎻ If 𝑠 is a terminal state, then minimax(𝑠)=Utility(𝑠)

⎻ If Player(𝑠) = MAX, then 

       Minimax(𝑠) = max
𝑠′

(Minimax(𝑠’))

⎻ If Player(𝑠) = MIN, then 

       Minimax(𝑠) = min
𝑠′

(Minimax(𝑠’))
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Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8
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… …



Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:
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Single-Agent Trees

8

2 0 2 6 4 6… …
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Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… …
Terminal States:

Value of a state: 
The best achievable 

outcome (utility) 
from that state
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Minimax Algorithm Example
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The minimax value of each node: determined by passing values 
recursively from terminal states to upper layers  



Minimax Algorithm Example
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The minimax value of each node: determined by passing values 
recursively from terminal states to upper layers  



Multiplayer Games

• Extend the minimax algorithm to multiplayer games
⎻ Three-player game

⎻ Players A, B, C

⎻ Minimax value: a vector (𝑣𝐴, 𝑣𝐵, 𝑣𝐶)

⎻ For terminal states, each element in this vector gives 
the utility of the state from corresponding player’s 
viewpoint
• e.g. (20, 5, 10) at a terminal state means player A’s payoff 

is 20, player B’s payoff is 5, and player C’s payoff is 10.

⎻ Each player takes actions to maximize its own value
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Multiplayer Games

The minimax value of each node is a 3-tuple
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Alpha-Beta Pruning

•    Evaluating the whole game tree is cumbersome

• Pruning: No need to evaluate values that cannot 
change the maximum/minimum score player 
MAX/MIN can get
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• If we have found enough information to infer that 
𝑚 > 𝑛, then we don’t need to evaluate the node with 
value 𝑛, because we will never get to the node with 
value 𝑛 in play.

Alpha-Beta Pruning
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Assume 𝑚 and 𝑥 have been visited
If 𝑚 > 𝑥, 
then 𝑦 and 𝑛 don’t need to be visited
That is, we don’t need to know 
the exact values of 𝑦 and 𝑛 

𝑥

≥ 𝑚

≤ 𝑥

𝑦

MAX

MIN

MAX

MIN

⋮



The General Case

• For each node, two values are assigned

[𝛼, 𝛽]

• 𝛼 = the lower bound of the minimax value for that 
node

• 𝛽 = the upper bound of the minimax value for that 
node

• The 𝛼-𝛽 pruning algorithm
⎻ Keeps updating the lower and/or upper bound of a 

node, until no further inference is needed
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𝛼-𝛽 Pruning Example

MAX knows that it can 

at least get “3” by 

playing this branch

MIN will choose “3”, because 

it minimizes the utility 

(which is good for MIN)
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𝛼-𝛽 Pruning Example

MIN can certainly do 

as good as 2, but 

maybe better 

(i.e., smaller)

MAX knows that the 

new branch 

will never be better 

(bigger) than 2.

This branch can be 

ignored.
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𝛼-𝛽 Pruning Example

MIN will do at least as good as 14 in this branch

(which is very good for MAX!) so MAX will want

to explore this branch more.
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𝛼-𝛽 Pruning Example

MIN will do at least as good as 5 in this branch

(which is still good for MAX) so MAX will want

to explore this branch more.
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𝛼-𝛽 Pruning Example

Bummer (for MAX): MIN will be able

to play this last branch and get 2. This 

is worse than 3, so MAX will play 3.
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𝛼-𝛽 Pruning Example
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𝛼-𝛽 Pruning Example
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𝛼-𝛽 Pruning Example
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𝛼-𝛽 Pruning Example
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𝛼-𝛽 Pruning Example
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𝛼-𝛽 Pruning Example
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𝛼-𝛽 Pruning Example
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𝛼-𝛽 Pruning Example
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𝛼-𝛽 Pruning Example
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𝛼-𝛽 Pruning Example
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𝛼-𝛽 Pruning Example
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𝛼-𝛽 Pruning Example
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Properties of 𝛼-𝛽 Pruning

• Pruning does not affect the final result (the sequence 
of actions is the same as that found without pruning).
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• Backgammon
⎻ Each player rolls dice to determine the legal moves

Stochastic Games
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• White: moves clockwise 
toward 25

• Black: moves 
counterclockwise toward 0

• One can start moving 
checkers off the board only 
when all his/her checkers 
are in his/her home area

• Goal: move all one’s 
checkers off the board



• Backgammon
⎻ Each player rolls dice to determine the legal moves

Stochastic Games
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• White knows what his/her 
own legal moves are

• White does not know what 
Black is going to roll, and 
does not know what Black’s 
legal moves will be

• We cannot construct a 
standard game tree



• Chance Nodes: Circles in this figure

Stochastic Games
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• Branches leading 
from each chance 
node denote the 
possible dice rolls

• Each branch is 
labeled with the 
roll and its 
probability

• 36 ways to roll 
two dice

• Only 21 distinct 
rolls



• Chance Nodes: Circles in this figure

Stochastic Games
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• The six doubles 
(1-1 through 6-6): 
each has a 
probability of 
1/36

• The other 15 
distinct rolls each 
has a 1/18 
probability



• Expecti-minimax values
⎻ The minimax values for nodes in a game tree with 

chance nodes

• For terminal nodes, MAX and MIN nodes:  this value 
is calculated in the same way as before

• For chance nodes: compute the expected value, 
which is the sum of the value over all outcomes, 
weighted by the probability of each chance action

Stochastic Games
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• Calculate the expecti-minimax value

Expecti-minimax values
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Example 1

• Calculate the expectiminimax value of the chance 
node
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5 78 24 -12

1/2
1/3

1/6

v = (1/2)× 8 + (1/3) ×24 + (1/6)× (-12) = 10



• In the tree below assume that the nodes D, …, I are 
positions where a fair coin is flipped (so going to each 
child has probability 0.5). What is the Expectiminimax 
value at node A? 

Example 2

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 54



• Answer: 15

Example 2
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• Fill in the values of each of the nodes in the following Minimax 
tree. The upward pointing trapezoids correspond to maximizer 
nodes (layer 1 and 3), and the downward pointing trapezoids 
correspond to minimizer nodes (layer 2). Each node has two 
actions available, Left and Right.

Example 3: Standard Minimax
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• Mark the sequence of 
actions that correspond 
to Minimax play.



• Fill in the values of each of the nodes in the following Minimax 
tree. The upward pointing trapezoids correspond to maximizer 
nodes (layer 1 and 3), and the downward pointing trapezoids 
correspond to minimizer nodes (layer 2). Each node has two 
actions available, Left and Right.

Example 3: Standard Minimax
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• Mark the sequence of 
actions that correspond 
to Minimax play.



• Pacman (= maximizer) has mastered some dark magic. With 
his dark magic skills Pacman can take control over his 
opponent’s muscles while they execute their move - and in 
doing so be fully in charge of the opponent’s move. But the 
magic comes at a price: every time Pacman uses his magic, he 
pays a price of 𝑐 - which is measured in the same units as the 
values at the bottom of the tree.

• Note: For each of his opponent’s actions, Pacman has the 
choice to either let his opponent act (optimally according to 
minimax), or to take control over his opponent’s move at a cost 
of 𝑐.

Example 4: Dark Magic
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• (i) Dark Magic at Cost 𝑐 =  2

• Let Pacman have access to his magic at cost 𝑐 =  2. Is it 
optimal for Pacman to use his dark magic? If so, mark in the 
tree below where he will use it. Mark what the outcome of the 
game will be and the sequence of actions that lead to that 
outcome.

Example 4: Dark Magic
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• (i) Dark Magic at Cost 𝑐 =  2

• Let Pacman have access to his magic at cost 𝑐 =  2. Is it 
optimal for Pacman to use his dark magic? If so, mark in the 
tree below where he will use it. Mark what the outcome of the 
game will be and the sequence of actions that lead to that 
outcome.

Example 4: Dark Magic
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• (ii) Dark Magic at Cost 𝑐 = 5

• Let Pacman have access to his magic at cost 𝑐 = 5. Is it 
optimal for Pacman to use his dark magic? If so, mark in the 
tree below where he will use it. Mark what the outcome of the 
game will be and the sequence of actions that lead to that 
outcome.

Example 4: Dark Magic
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• (ii) Dark Magic at Cost 𝑐 = 5

• Let Pacman have access to his magic at cost 𝑐 = 5. Is it 
optimal for Pacman to use his dark magic? Mark in the tree 
below where he will use it. Mark what the outcome of the 
game will be and the sequence of actions that lead to that 
outcome.

Example 4: Dark Magic
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• You and your friend are planning for a trip. You want to 
minimize the cost, but your friend wants to choose a higher-
cost trip to enjoy it. Finally, you decided to select the Coast, 
your friend will select the city to travel to, and each city has 2 
or 3 trip plans available at random with equal probability. The 
prices are labeled on the leaf nodes and they are nonnegative.

Example 5:
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• A. Fill in the values of all the nodes that do not depend on the 
unknowns 𝑥 and 𝑦.

Example 5:
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• B. What values of 𝑥 will make you select West Coast regardless 
of the price of 𝑦? 

Example 5:
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• C. We know that 𝑦 is at most $1200. What values of 𝑥 will 
result in a trip to Miami regardless of the exact price of 𝑦? 

Example 5:
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