
Adversarial Search (Games)

CSEN266

Artificial Intelligence

1CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University

Adversarial Search - Games

• Multi-agent environment
⎻ Impact of each agent on the others is significant

• Objective:
⎻ Determine the best action that each player should

take at each state 𝑠 such that it can win the game

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 2

Tic-tac-toe

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 3

Section 5.2. Optimal Decisions in Games 163

until we reach leaf nodes corresponding to terminal states such that one player has three in

a row or all the squares are filled. The number on each leaf node indicates the utility value

of the terminal state from the point of view of MAX; high values are assumed to be good for

MAX and bad for MIN (which is how the players get their names).

For tic-tac-toe the game tree is relatively small—fewer than 9! = 362, 880 terminal

nodes. But for chess there are over 1040 nodes, so the game tree is best thought of as a

theoretical construct that we cannot realize in the physical world. But regardless of the size

of the game tree, it is MAX’s job to search for a good move. We use the term search tree for aSEARCHTREE

tree that is superimposed on the full game tree, and examines enough nodes to allow a player

to determine what move to make.

XX
XX

X

X
X

XX

X X
O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

Figure 5.1 A (partial) game tree for the game of tic-tac-toe. The top node is the initial

state, and MAX moves first, placing an X in an empty square. We show part of the tree, giving

alternating moves by MIN (O) and MAX (X), until we eventually reach terminal states, which

can be assigned utilities according to the rules of the game.

5.2 OPTIMAL DECISIONS IN GAMES

In a normal search problem, the optimal solution would be a sequence of actions leading to

a goal state—a terminal state that is a win. In adversarial search, MIN has something to say

about it. MAX therefore must find a contingent strategy, which specifies MAX’s move inSTRATEGY

the initial state, then MAX’s moves in the states resulting from every possible response by

• MAX places X
• MIN places O

• Terminal states:
one player has
three markers in a
row or all the
squares are filled

Tic-tac-toe

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 4

Section 5.2. Optimal Decisions in Games 163

until we reach leaf nodes corresponding to terminal states such that one player has three in

a row or all the squares are filled. The number on each leaf node indicates the utility value

of the terminal state from the point of view of MAX; high values are assumed to be good for

MAX and bad for MIN (which is how the players get their names).

For tic-tac-toe the game tree is relatively small—fewer than 9! = 362, 880 terminal

nodes. But for chess there are over 1040 nodes, so the game tree is best thought of as a

theoretical construct that we cannot realize in the physical world. But regardless of the size

of the game tree, it is MAX’s job to search for a good move. We use the term search tree for aSEARCHTREE

tree that is superimposed on the full game tree, and examines enough nodes to allow a player

to determine what move to make.

XX
XX

X

X
X

XX

X X
O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

Figure 5.1 A (partial) game tree for the game of tic-tac-toe. The top node is the initial

state, and MAX moves first, placing an X in an empty square. We show part of the tree, giving

alternating moves by MIN (O) and MAX (X), until we eventually reach terminal states, which

can be assigned utilities according to the rules of the game.

5.2 OPTIMAL DECISIONS IN GAMES

In a normal search problem, the optimal solution would be a sequence of actions leading to

a goal state—a terminal state that is a win. In adversarial search, MIN has something to say

about it. MAX therefore must find a contingent strategy, which specifies MAX’s move inSTRATEGY

the initial state, then MAX’s moves in the states resulting from every possible response by

• The number on each leaf
node
⎻ the utility value of the

terminal state
⎻ It’s the payoff/reward

for the players

• High values: good for
MAX, bad for MIN

Typical Game Set Up

• Two players: MAX and MIN

• MAX moves first

• Then they take turns moving until the game is over

• The end-states have pay-off (utility function, or
objective function)

⎻ MAX wants to maximize the pay-off

⎻ MIN wants to minimize the pay-off

⎻ They have opposite goals
• Compete with each other

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 5

Typical Game Set Up

• Objective: to determine what is the best action for
each player at each state 𝑠?

• A decision-making problem
⎻ Formulate the problem as a search problem

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 6

Game as A Search Problem

• 𝑠0: the initial state
⎻ Specifies how the game is set up at the start

• Player(𝑠)
⎻ Defines which player has the move in the state

• Actions(𝑠)
⎻ Returns the set of legal moves in a state

• Results(𝑠, 𝑎): transition model
⎻ Defines the resulting state of taking action 𝑎 at state

𝑠

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 7

Game as A Search Problem

• Terminal-Test(𝑠): terminal test
⎻ True when the game is over, False otherwise

• Utility(𝑠): utility function
⎻ Defines the pay-off for a game that ends in terminal

state 𝑠

• The optimal strategy for a certain player
⎻ Actions leading to a terminal state that is as good as

possible for this player

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 8

Minimax Algorithm

• Let’s consider player MIN

• What action should MIN take?
⎻ The one that leads to a smaller pay-off

8 2 5 6

max

min2 5

Terminal states

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 9

Minimax Algorithm

• Let’s consider player MIN

• 2 and 5 are the best that MIN can get

8 2 5 6

max

min2 5

Terminal states

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 10

Minimax Algorithm

• Let’s consider player MAX

• What action should MAX take?
⎻ The one that leads to a larger pay-off

8 2 5 6

max

min2 5

5

Terminal states

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 11

Minimax Algorithm

• Question: why doesn’t MAX choose the left branch,
given that there’s a chance to get to the terminal
state “8”?

8 2 5 6

max

min

Terminal states

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 12

Minimax Algorithm

• Answer: We assume that MIN plays optimally
⎻ i.e. MIN is a rational agent

8 2 5 6

max

min2 5

5

Terminal states

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 13

Minimax Algorithm

• Question: What if MIN does not play optimally?

• Answer: Then that’s even better for MAX

8 2 5 6

max

min2 5

5

Terminal states

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 14

Minimax Value

• Minimax value of state 𝑠: minimax(𝑠)

• minimax(𝑠) values are computed recursively
⎻ Propagated from the leaf nodes to upper layers

8 2 5 6

max

min2 5

5

Terminal states

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 15

Minimax Value

• minimax(𝑠): it is the pay-off value that the players
will get when the game is over, assuming that both
players play optimally from state-𝑠 to the end of the
game

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 16

8 2 5 6

max

min2 5

5

Terminal states

Minimax Value

• 𝑠: current state

• 𝑠’: next state, obtained from 𝑠’=Result(𝑠, 𝑎), 𝑎 is any
possible action that can be taken at 𝑠

⎻ If 𝑠 is a terminal state, then minimax(𝑠)=Utility(𝑠)

⎻ If Player(𝑠) = MAX, then

 Minimax(𝑠) = max
𝑠′

(Minimax(𝑠’))

⎻ If Player(𝑠) = MIN, then

 Minimax(𝑠) = min
𝑠′

(Minimax(𝑠’))

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 17

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 18

… …

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 19

Single-Agent Trees

8

2 0 2 6 4 6… …

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 20

Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… …
Terminal States:

Value of a state:
The best achievable

outcome (utility)
from that state

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 21

Minimax Algorithm Example

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 22

The minimax value of each node: determined by passing values
recursively from terminal states to upper layers

Minimax Algorithm Example

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 23

The minimax value of each node: determined by passing values
recursively from terminal states to upper layers

Multiplayer Games

• Extend the minimax algorithm to multiplayer games
⎻ Three-player game

⎻ Players A, B, C

⎻ Minimax value: a vector (𝑣𝐴, 𝑣𝐵, 𝑣𝐶)

⎻ For terminal states, each element in this vector gives
the utility of the state from corresponding player’s
viewpoint
• e.g. (20, 5, 10) at a terminal state means player A’s payoff

is 20, player B’s payoff is 5, and player C’s payoff is 10.

⎻ Each player takes actions to maximize its own value

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 24

Multiplayer Games

The minimax value of each node is a 3-tuple

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 25

Alpha-Beta Pruning

• Evaluating the whole game tree is cumbersome

• Pruning: No need to evaluate values that cannot
change the maximum/minimum score player
MAX/MIN can get

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 26

• If we have found enough information to infer that
𝑚 > 𝑛, then we don’t need to evaluate the node with
value 𝑛, because we will never get to the node with
value 𝑛 in play.

Alpha-Beta Pruning

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 27

Assume 𝑚 and 𝑥 have been visited
If 𝑚 > 𝑥,
then 𝑦 and 𝑛 don’t need to be visited
That is, we don’t need to know
the exact values of 𝑦 and 𝑛

𝑥

≥ 𝑚

≤ 𝑥

𝑦

MAX

MIN

MAX

MIN

⋮

The General Case

• For each node, two values are assigned

[𝛼, 𝛽]

• 𝛼 = the lower bound of the minimax value for that
node

• 𝛽 = the upper bound of the minimax value for that
node

• The 𝛼-𝛽 pruning algorithm
⎻ Keeps updating the lower and/or upper bound of a

node, until no further inference is needed

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 28

𝛼-𝛽 Pruning Example

MAX knows that it can

at least get “3” by

playing this branch

MIN will choose “3”, because

it minimizes the utility

(which is good for MIN)

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 29

𝛼-𝛽 Pruning Example

MIN can certainly do

as good as 2, but

maybe better

(i.e., smaller)

MAX knows that the

new branch

will never be better

(bigger) than 2.

This branch can be

ignored.

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 30

𝛼-𝛽 Pruning Example

MIN will do at least as good as 14 in this branch

(which is very good for MAX!) so MAX will want

to explore this branch more.

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 31

𝛼-𝛽 Pruning Example

MIN will do at least as good as 5 in this branch

(which is still good for MAX) so MAX will want

to explore this branch more.

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 32

𝛼-𝛽 Pruning Example

Bummer (for MAX): MIN will be able

to play this last branch and get 2. This

is worse than 3, so MAX will play 3.

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 33

𝛼-𝛽 Pruning Example

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 34

𝛼-𝛽 Pruning Example

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 35

𝛼-𝛽 Pruning Example

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 36

𝛼-𝛽 Pruning Example

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 37

𝛼-𝛽 Pruning Example

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 38

𝛼-𝛽 Pruning Example

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 39

𝛼-𝛽 Pruning Example

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 40

𝛼-𝛽 Pruning Example

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 41

𝛼-𝛽 Pruning Example

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 42

𝛼-𝛽 Pruning Example

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 43

𝛼-𝛽 Pruning Example

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 44

𝛼-𝛽 Pruning Example

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 45

Properties of 𝛼-𝛽 Pruning

• Pruning does not affect the final result (the sequence
of actions is the same as that found without pruning).

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 46

• Backgammon
⎻ Each player rolls dice to determine the legal moves

Stochastic Games

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 47

• White: moves clockwise
toward 25

• Black: moves
counterclockwise toward 0

• One can start moving
checkers off the board only
when all his/her checkers
are in his/her home area

• Goal: move all one’s
checkers off the board

• Backgammon
⎻ Each player rolls dice to determine the legal moves

Stochastic Games

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 48

• White knows what his/her
own legal moves are

• White does not know what
Black is going to roll, and
does not know what Black’s
legal moves will be

• We cannot construct a
standard game tree

• Chance Nodes: Circles in this figure

Stochastic Games

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 49

• Branches leading
from each chance
node denote the
possible dice rolls

• Each branch is
labeled with the
roll and its
probability

• 36 ways to roll
two dice

• Only 21 distinct
rolls

• Chance Nodes: Circles in this figure

Stochastic Games

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 50

• The six doubles
(1-1 through 6-6):
each has a
probability of
1/36

• The other 15
distinct rolls each
has a 1/18
probability

• Expecti-minimax values
⎻ The minimax values for nodes in a game tree with

chance nodes

• For terminal nodes, MAX and MIN nodes: this value
is calculated in the same way as before

• For chance nodes: compute the expected value,
which is the sum of the value over all outcomes,
weighted by the probability of each chance action

Stochastic Games

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 51

• Calculate the expecti-minimax value

Expecti-minimax values

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 52

Example 1

• Calculate the expectiminimax value of the chance
node

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 53

5 78 24 -12

1/2
1/3

1/6

v = (1/2)× 8 + (1/3) ×24 + (1/6)× (-12) = 10

• In the tree below assume that the nodes D, …, I are
positions where a fair coin is flipped (so going to each
child has probability 0.5). What is the Expectiminimax
value at node A?

Example 2

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 54

• Answer: 15

Example 2

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 55

• Fill in the values of each of the nodes in the following Minimax
tree. The upward pointing trapezoids correspond to maximizer
nodes (layer 1 and 3), and the downward pointing trapezoids
correspond to minimizer nodes (layer 2). Each node has two
actions available, Left and Right.

Example 3: Standard Minimax

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 56

• Mark the sequence of
actions that correspond
to Minimax play.

• Fill in the values of each of the nodes in the following Minimax
tree. The upward pointing trapezoids correspond to maximizer
nodes (layer 1 and 3), and the downward pointing trapezoids
correspond to minimizer nodes (layer 2). Each node has two
actions available, Left and Right.

Example 3: Standard Minimax

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 57

• Mark the sequence of
actions that correspond
to Minimax play.

• Pacman (= maximizer) has mastered some dark magic. With
his dark magic skills Pacman can take control over his
opponent’s muscles while they execute their move - and in
doing so be fully in charge of the opponent’s move. But the
magic comes at a price: every time Pacman uses his magic, he
pays a price of 𝑐 - which is measured in the same units as the
values at the bottom of the tree.

• Note: For each of his opponent’s actions, Pacman has the
choice to either let his opponent act (optimally according to
minimax), or to take control over his opponent’s move at a cost
of 𝑐.

Example 4: Dark Magic

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 58

• (i) Dark Magic at Cost 𝑐 = 2

• Let Pacman have access to his magic at cost 𝑐 = 2. Is it
optimal for Pacman to use his dark magic? If so, mark in the
tree below where he will use it. Mark what the outcome of the
game will be and the sequence of actions that lead to that
outcome.

Example 4: Dark Magic

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 59

• (i) Dark Magic at Cost 𝑐 = 2

• Let Pacman have access to his magic at cost 𝑐 = 2. Is it
optimal for Pacman to use his dark magic? If so, mark in the
tree below where he will use it. Mark what the outcome of the
game will be and the sequence of actions that lead to that
outcome.

Example 4: Dark Magic

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 60

• (ii) Dark Magic at Cost 𝑐 = 5

• Let Pacman have access to his magic at cost 𝑐 = 5. Is it
optimal for Pacman to use his dark magic? If so, mark in the
tree below where he will use it. Mark what the outcome of the
game will be and the sequence of actions that lead to that
outcome.

Example 4: Dark Magic

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 61

• (ii) Dark Magic at Cost 𝑐 = 5

• Let Pacman have access to his magic at cost 𝑐 = 5. Is it
optimal for Pacman to use his dark magic? Mark in the tree
below where he will use it. Mark what the outcome of the
game will be and the sequence of actions that lead to that
outcome.

Example 4: Dark Magic

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 62

• You and your friend are planning for a trip. You want to
minimize the cost, but your friend wants to choose a higher-
cost trip to enjoy it. Finally, you decided to select the Coast,
your friend will select the city to travel to, and each city has 2
or 3 trip plans available at random with equal probability. The
prices are labeled on the leaf nodes and they are nonnegative.

Example 5:

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 63

• A. Fill in the values of all the nodes that do not depend on the
unknowns 𝑥 and 𝑦.

Example 5:

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 64

• B. What values of 𝑥 will make you select West Coast regardless
of the price of 𝑦?

Example 5:

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 65

• C. We know that 𝑦 is at most $1200. What values of 𝑥 will
result in a trip to Miami regardless of the exact price of 𝑦?

Example 5:

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 66

	Slide 1: Adversarial Search (Games)
	Slide 2: Adversarial Search - Games
	Slide 3: Tic-tac-toe
	Slide 4: Tic-tac-toe
	Slide 5: Typical Game Set Up
	Slide 6: Typical Game Set Up
	Slide 7: Game as A Search Problem
	Slide 8: Game as A Search Problem
	Slide 9: Minimax Algorithm
	Slide 10: Minimax Algorithm
	Slide 11: Minimax Algorithm
	Slide 12: Minimax Algorithm
	Slide 13: Minimax Algorithm
	Slide 14: Minimax Algorithm
	Slide 15: Minimax Value
	Slide 16: Minimax Value
	Slide 17: Minimax Value
	Slide 18: Adversarial Game Trees
	Slide 19: Minimax Values
	Slide 20: Single-Agent Trees
	Slide 21: Value of a State
	Slide 22: Minimax Algorithm Example
	Slide 23: Minimax Algorithm Example
	Slide 24: Multiplayer Games
	Slide 25: Multiplayer Games
	Slide 26: Alpha-Beta Pruning
	Slide 27: Alpha-Beta Pruning
	Slide 28: The General Case
	Slide 29: alpha-beta Pruning Example
	Slide 30: alpha-beta Pruning Example
	Slide 31: alpha-beta Pruning Example
	Slide 32: alpha-beta Pruning Example
	Slide 33: alpha-beta Pruning Example
	Slide 34: alpha-beta Pruning Example
	Slide 35: alpha-beta Pruning Example
	Slide 36: alpha-beta Pruning Example
	Slide 37: alpha-beta Pruning Example
	Slide 38: alpha-beta Pruning Example
	Slide 39: alpha-beta Pruning Example
	Slide 40: alpha-beta Pruning Example
	Slide 41: alpha-beta Pruning Example
	Slide 42: alpha-beta Pruning Example
	Slide 43: alpha-beta Pruning Example
	Slide 44: alpha-beta Pruning Example
	Slide 45: alpha-beta Pruning Example
	Slide 46: Properties of alpha-beta Pruning
	Slide 47: Stochastic Games
	Slide 48: Stochastic Games
	Slide 49: Stochastic Games
	Slide 50: Stochastic Games
	Slide 51: Stochastic Games
	Slide 52: Expecti-minimax values
	Slide 53: Example 1
	Slide 54: Example 2
	Slide 55: Example 2
	Slide 56: Example 3: Standard Minimax
	Slide 57: Example 3: Standard Minimax
	Slide 58: Example 4: Dark Magic
	Slide 59: Example 4: Dark Magic
	Slide 60: Example 4: Dark Magic
	Slide 61: Example 4: Dark Magic
	Slide 62: Example 4: Dark Magic
	Slide 63: Example 5:
	Slide 64: Example 5:
	Slide 65: Example 5:
	Slide 66: Example 5:

