
Markov Decision Processes

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Stochastic Environment

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Motivation of Markov Decision Processes

• Another way to solve the decision-making
problem for stochastic games

• Sometimes it’s difficult to use the Minimax
algorithm to determine actions, for example

▪ When the game tree is endless

▪ When the time spent to finish the game
(finish the task) also affects the payoff

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Example: Grid World

• A maze-like problem

▪ The agent lives in a grid

▪ Walls block the agent’s path

• Noisy movement: actions do not always go
as planned

▪ 80% of the time, the action North takes the
agent North
(if there is no wall there)

▪ 10% of the time, North takes the agent
West; 10% East

▪ If there is a wall in the direction the agent
would have been taken, the agent stays put

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Example: Grid World

• The agent receives rewards each time step

▪ Small “living” reward each step (can be
negative)

▪ Big rewards come at the end (good or bad)

• Goal: maximize sum of rewards by the end
of the game

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Grid World Actions

Deterministic Grid World Stochastic Grid World

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

The Objective

• In deterministic single-agent search problems,
we wanted an optimal plan, or a sequence of
actions, that takes the agent from the start to a
goal state

• For a Markov Decision Process, we want to
determine the best action for each state in the
state space

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Markov Decision Processes

• An MDP is defined by:

• A set of states s S

• A set of actions a A

• A transition function T(s, a, s’)

• Probability that taking action a from state s
leads to state s’, i.e., P(s’| s, a)

• Also called the model or the dynamics

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Markov Decision Processes

• Transition function T(s, a, s’)
• For example
• T(s=(1,1), a=North,s’=(1,2))=?
• T(s=(1,1), a=North,s’=(2,1))=?
• T(s=(1,1), a=North,s’=(1,1))=?

• T(s=(1,1), a=East,s’=(2,1))=?
• T(s=(1,1), a=East,s’=(1,2))=?
• T(s=(1,1), a=East,s’=(1,1))=?

• That is, for any possible combination (s,a,s’),
we need to define T(s,a,s’)

(1,1) (2,1)

(1,2)
𝑦

𝑥

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Markov Decision Processes

• Example: when the agent takes an action

• 80% of time he lands in the desired square;

• 20% of time he lands in the square in an
orthogonal direction of the desired
direction.

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Markov Decision Processes

• What are the following transition
probabilities? Let the location be (x,y)

• T(s,North,s’), when s= (1,1), s’=(2,1)
• Answer: 0.1

• T(s,East,s’), when s=(1,1), s’=(2,1)
• Answer: 0.8

• T(s,East,s’), when s=(2,1), s’=(3,1)
• Answer: 0.8
• Where else can the agent land?
• Answer: stay at (2,1)

𝑦

𝑥

(1,1) (2,1)

(1,2)

(3,1)

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Markov Decision Processes

• σ𝑠′ 𝑇 𝑠, 𝑎, 𝑠′ = 1

• For example
• σ𝑠′ 𝑇 (1,1), 𝑁𝑜𝑟𝑡ℎ, 𝑠′

= 𝑇 (1,1), 𝑁𝑜𝑟𝑡ℎ, (1,2)
+ 𝑇 (1,1), 𝑁𝑜𝑟𝑡ℎ, (2,1)
+ 𝑇 (1,1), 𝑁𝑜𝑟𝑡ℎ, (1,1) = 0.8 + 0.1 + 0.1
= 1

• σ𝑠′ 𝑇 (3,1), 𝑁𝑜𝑟𝑡ℎ, 𝑠′

= 𝑇 (3,1), 𝑁𝑜𝑟𝑡ℎ, (3,2)
+ 𝑇 (3,1), 𝑁𝑜𝑟𝑡ℎ, (2,1)
+ 𝑇 (3,1), 𝑁𝑜𝑟𝑡ℎ, (4,1) = 0.8 + 0.1 + 0.1
= 1

𝑠

𝑎

𝑇 𝑠, 𝑎, 𝑠1
′ 𝑇 𝑠, 𝑎, 𝑠3

′

𝑇 𝑠, 𝑎, 𝑠2
′

𝑠2
′ 𝑠3

′𝑠1
′

(1,1) (2,1)

(1,2)

(3,1)

(4,1)

(3,2)
𝑦

𝑥

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Markov Decision Processes

• An MDP is defined by:

• A reward function
• R(s,a,s’)
• R(s,a)
• R(s)

• A start state

• Maybe a terminal state

• MDPs are non-deterministic search problems

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Markov Decision Processes

• Example:

• Assume the game is over if the agent enters
(4,3) or (4,2).

• Assume a reward of +1 is gained when the
agent enters (4,3); a reward of -1 is gained
when the agent enters (4,2); for any other
state transitions the reward is zero.

• What are the values of the following
rewards?
• When s=(3,3), a=East, s’=(4,3), R(s,a,s’) =
• When s=(3,2), a=East, s’=(4,2), R(s,a,s’) =
• When s=(4,1), a=North, s’=(4,2), R(s,a,s’) =
• When s=(4,1), a=North, s’=(3,1), R(s,a,s’) =

𝑦

𝑥

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Markov Decision Processes

• Example:
• Assume R(s,a,s’) is defined the same way as

in the previous slide
• Assume the agent is in (3,2)
• He goes North
• What’s the expected reward?

• Answer: the reward expression is
• R((3,2),North,s’)
• if s’ = (3,3), then R = 0. What’s the prob. of

this situation? 0.8
• if s’ = (4,2), then R = -1. What’s the prob. of

this situation? 0.1
• E[R] = 0.8*0 + 0.1*(-1)+0.1*0 = -0.1

𝑦

𝑥

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Markov Decision Processes

• Example:

• If a reward of +1 is gained when the
agent is in (4,3), and a reward of -1 is
gained when the agent is in (4,2), and
the reward is zero when the agent is in
any other possible grid, then how to
represent this kind of rewards?

• R(s) = +1, when s = (4,3)
• R(s) = -1, when s = (4,2)
• R(s) = 0, for any other possible s

𝑦

𝑥

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Markov Decision Processes

• Watch the video demo in the next slide.

• Think about how the reward function is
defined in the video.

• R(s,a)

• R(s=(4,3), a=EXIT) = 1

• R(s=(4,2), a=EXIT) = -1

• R(s,a) = -0.1, for any other valid (s,a)
• This is the living reward

𝑦

𝑥

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Video Demo of Gridworld

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

What is Markov about MDPs?

• “Markov” generally means that given the present state,
the future and the past are independent

• For Markov decision processes, “Markov” means action
outcomes depend only on the current state

Andrey Markov
(1856-1922)

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Policies

• In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

• For MDPs, we want an optimal policy *: S → A

• A policy : a mapping from states to actions

• A policy gives an action for each state

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Example: Racing

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Example: Racing

• A robot car wants to travel far, quickly

• Three states: Cool, Warm, Overheated

• Two actions: Slow, Fast

• The state transition diagram is given

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Racing Search Tree

Can you label the branches with the action a, transition probability T(s,a,s’), and reward R(s,a,s’)?

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

MDP Search Trees

• Q-state: (s,a)

a

s

s’

s, a

(s,a,s’) is called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-state

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

MDP Search Trees

• Q-state: (s,a)

a=South

s=(2,2)

s’=(2,1)

s, a (s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a):

transition probability

R(s,a,s’): (immediate) reward

s is a state

(s, a) is a q-state

s’=(1,2)

(2,1)

(3,2)(1,2)
(2,2)

s’=(3,2)

T(s,a,s’)=0.1 T(s,a,s’)=0.1

T(s,a,s’)=0.8

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Reward Sequences

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Reward Sequences

• What preferences should an agent have over reward sequences?

• More or less?

• Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Discounting

• It’s reasonable to let the agent take actions to maximize the sum of rewards

• It’s also reasonable to prefer rewards now to rewards later

• One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Discounting

• How to discount?
• Each time we descend a level,

we multiply in the discount
once

• Why discount?
• Sooner rewards probably have

higher utility than later rewards

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Solving MDPs

• How to figure out the optimal
policy ∗ for the agent?

• That is, the best action at each
state:

 ∗(𝑠) ∀𝑠 ∈ 𝑆

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Optimal Quantities

• The value (utility) of a state s:
𝑉∗ 𝑠 = expected value/utility starting in 𝑠 and

acting optimally

• The value (utility) of a q-state (s,a):
𝑄∗ 𝑠, 𝑎 = expected value/utility starting out

having taken action 𝑎 from state 𝑠 and
(thereafter) acting optimally

• The optimal policy:
∗(𝑠) = optimal action at state 𝑠

a

𝑠

𝑠′

𝑠, 𝑎

(𝑠, 𝑎, 𝑠′) is a
transition𝑠, 𝑎, 𝑠′

𝑠 is a state

(𝑠, 𝑎) is a q-state

𝑉∗ 𝑠

𝑉∗ 𝑠′

𝑄∗ 𝑠, 𝑎

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

• Values of states

• Q-state value

• Recursive definition of value:

• Bellman Equation

Values of States

a

𝑠

𝑠′

𝑠, 𝑎

(𝑠, 𝑎, 𝑠′) is a
transition𝑠, 𝑎, 𝑠′

𝑠 is a state

(𝑠, 𝑎) is a q-state

𝑉∗ 𝑠

𝑉∗ 𝑠′

𝑄∗ 𝑠, 𝑎

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

• 𝑉∗ 𝑠 = max
𝑎

σ𝑠′ 𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

Bellman Equation

⋯

max
𝑎′′

𝑠′′′

𝑇 𝑠′′, 𝑎′′, 𝑠′′′ [𝑅 𝑠′′, 𝑎′′, 𝑠′′′ + 𝛾𝑉∗ 𝑠′′′]

max
𝑎′

𝑠′′

𝑇 𝑠′, 𝑎′, 𝑠′′ 𝑅 𝑠′, 𝑎′, 𝑠′′ + 𝛾𝑉∗ 𝑠′′

a

𝑉∗ 𝑠

s,a,s’

(s, a)

a’

(s’, a’)

s’,a’,s”

𝑉∗ 𝑠′

s”,a”,s’’’

𝑉∗ 𝑠′′

𝑉∗ 𝑠′′′

a”
(s”, a”)

𝑠

𝑠′

𝑠′′

𝑠′′′

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

• 𝑉∗ 𝑠 = max
𝑎

σ𝑠′ 𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

• To simplify the problem, let’s assume the actions are fixed, and no
randomness:

 𝑉∗ 𝑠 = 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

 𝑅 𝑠′, 𝑎′, 𝑠′′ + 𝛾𝑉∗ 𝑠′′

 𝑅 𝑠′′, 𝑎′′, 𝑠′′′ + 𝛾𝑉∗ 𝑠′′′

 𝑉∗ 𝑠 = 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑅 𝑠′, 𝑎′, 𝑠′′ + 𝛾2𝑅 𝑠′′, 𝑎′′, 𝑠′′′ + ⋯

 𝑉∗ 𝑠 is the sum of discounted rewards.

Bellman Equation

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

• When there is no randomness, and the actions are fixed:

 𝑉∗ 𝑠 is the sum of discounted rewards.

• In general, there is randomness, and the agent needs to consider multiple

 action choices, hence

𝑉∗ 𝑠 = max
𝑎

𝑠′

𝑇(𝑠, 𝑎, 𝑠′) × 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗(𝑠′)

 𝑉∗ 𝑠 = Max (Expectation of (the sum of discounted rewards))

• Recall: V*(s) = expected value/utility starting in s and acting optimally

Bellman Equation

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

How to calculate 𝑉∗ 𝑠 ?

• Recursive definition of value:

• Bellman Equation

𝑉∗ 𝑠1 = 𝑓1 𝑉∗ 𝑠1 , 𝑉∗ 𝑠2 , … , 𝑉∗ 𝑠𝑁

𝑉∗ 𝑠2 = 𝑓2 𝑉∗ 𝑠1 , 𝑉∗ 𝑠2 , … , 𝑉∗ 𝑠𝑁

⋮

𝑉∗ 𝑠𝑁 = 𝑓𝑁 𝑉∗ 𝑠1 , 𝑉∗ 𝑠2 , … , 𝑉∗ 𝑠𝑁
Assume there are 𝑁 states, then
we have 𝑁 unknowns and 𝑁 nonlinear equations

a

s

s, a

s,a,s’

s’

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Linear Equation

• Two unknowns 𝑥 and 𝑦

• Two equations

• How to solve for 𝑥 and 𝑦?

 𝑥 =
𝑐1−𝑏1𝑦

𝑎1
 … (1)

 𝑐2 = 𝑎2
𝑐1−𝑏1𝑦

𝑎1
+ 𝑏2𝑦

 ⇒ Solve for 𝑦, then plug 𝑦 into (1) to solve for 𝑥

𝑐1 = 𝑎1𝑥 + 𝑏1𝑦
𝑐2 = 𝑎2𝑥 + 𝑏2𝑦

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Value Iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Value Iteration

• Step 1: Initialize V0(s) = 0, for 𝑠 = 𝑠1, 𝑠2, 𝑠3, …

• Step 2: k=1 (1st iteration)

 Update V1(s), for 𝑠 = 𝑠1, 𝑠2, 𝑠3, …,

 using V0(s) = 0, 𝑠 = 𝑠1, 𝑠2, 𝑠3, …

 𝑉1 𝑠 ← max
𝑎

σ𝑠′ 𝑇(𝑠, 𝑎, 𝑠′) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉0(𝑠′)

• Step 3: k=2 (2nd iteration)

 Update V2(s), for 𝑠 = 𝑠1, 𝑠2, 𝑠3, …,

 using V1(s), 𝑠 = 𝑠1, 𝑠2, 𝑠3, …

 𝑉2 𝑠 ← max
𝑎

σ𝑠′ 𝑇(𝑠, 𝑎, 𝑠′) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉1(𝑠′)

• Keep running the iterations till the values Vk(s) converge.

a

Vk+1(s)

s, a

s,a,s’
Vk(s’)

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Value Iteration

• Start with V0(s) = 0

• Given vector of Vk(s) values, do one ply of expectimax from each state:

• Bellman Update

• Repeat until convergence

• Complexity of each iteration: 𝑂(𝑆 2 × 𝐴)
• 𝑆 : The cardinality of the set 𝑆, i.e. the number of elements
 in the set 𝑆

a

Vk+1(s)

s, a

s,a,s’
Vk(s’)

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Example: Value Iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

• 𝑉1 𝑐𝑜𝑜𝑙 :

• 1. a=slow
• 𝑇 𝑠 = 𝑐𝑜𝑜𝑙, 𝑎 = 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 = 1

 𝑅 𝑐𝑜𝑜𝑙, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 = 1

• 𝑉0 𝑠′ = 𝑐𝑜𝑜𝑙 = 0

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑐𝑜𝑜𝑙, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 × 𝑅 𝑐𝑜𝑜𝑙, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 + 𝛾 × 𝑉0 𝑠′ = 𝑐𝑜𝑜𝑙

 = 1 × 1 + 1 × 0 = 1

𝑉0 𝑐𝑜𝑜𝑙 = 0, 𝑉0 𝑤𝑎𝑟𝑚 = 0, 𝑉0 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

• 𝑉1 𝑐𝑜𝑜𝑙 :

• 2. a=fast
• 𝑇 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠’ = 𝑐𝑜𝑜𝑙 = 0.5

 𝑅 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑐𝑜𝑜𝑙 = 2

• 𝑇 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠’ = 𝑤𝑎𝑟𝑚 = 0.5

 𝑅 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑤𝑎𝑟𝑚 = 2

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠’ = 𝑐𝑜𝑜𝑙 × 𝑅(𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑐𝑜𝑜𝑙) + 𝛾 × 𝑉0 𝑠′ = 𝑐𝑜𝑜𝑙

+ 𝑇 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑤𝑎𝑟𝑚 × 𝑅 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑤𝑎𝑟𝑚 + 𝛾 × 𝑉0 𝑠′ = 𝑤𝑎𝑟𝑚 = 2

Hence, 𝑉1 𝑐𝑜𝑜𝑙 = 2

𝑉0 𝑐𝑜𝑜𝑙 = 0, 𝑉0 𝑤𝑎𝑟𝑚 = 0, 𝑉0 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

• 𝑉1 𝑤𝑎𝑟𝑚 :

• 1. a=slow

 𝑇 𝑠 = 𝑤𝑎𝑟𝑚, 𝑎 = 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑐𝑜𝑜𝑙 = 0.5
 𝑅 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 = 1

 𝑇 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑤𝑎𝑟𝑚 = 0.5

 𝑅 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑤𝑎𝑟𝑚 = 1

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑐𝑜𝑜𝑙 × 𝑅(𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙) + 𝛾 × 𝑉0 𝑠′ = 𝑐𝑜𝑜𝑙

+ 𝑇 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑤𝑎𝑟𝑚 × 𝑅 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑤𝑎𝑟𝑚 + 𝛾 × 𝑉0 𝑠′ = 𝑤𝑎𝑟𝑚 = 1

𝑉0 𝑐𝑜𝑜𝑙 = 0, 𝑉0 𝑤𝑎𝑟𝑚 = 0, 𝑉0 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

• 𝑉1 𝑤𝑎𝑟𝑚 :

• 2. a=fast
• 𝑇 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 1

 𝑅 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = −10

• 𝑉0 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 × [
]

𝑅 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑
+ 𝛾 × 𝑉0 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑

 = 1 × −10 + 1 × 0 = −10

Hence, 𝑉1 𝑤𝑎𝑟𝑚 = 1

𝑉0 𝑐𝑜𝑜𝑙 = 0, 𝑉0 𝑤𝑎𝑟𝑚 = 0, 𝑉0 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

• 𝑉1 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 :

• Overheated is the end state
• No more state transition (no 𝑠’)

• No 𝑇(𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑, 𝑎, 𝑠’), no 𝑅(𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑, 𝑎, 𝑠’)

Hence, 𝑉1 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

𝑉0 𝑐𝑜𝑜𝑙 = 0, 𝑉0 𝑤𝑎𝑟𝑚 = 0, 𝑉0 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Example: Value Iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

• 𝑉2 𝑐𝑜𝑜𝑙 :

• 1. a=slow
• 𝑇 𝑐𝑜𝑜𝑙, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 = 1

 𝑅 𝑐𝑜𝑜𝑙, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 = 1

• 𝑉1 𝑠′ = 𝑐𝑜𝑜𝑙 = 2

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑐𝑜𝑜𝑙, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 × 𝑅 𝑐𝑜𝑜𝑙, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 + 𝛾 × 𝑉1 𝑠′ = 𝑐𝑜𝑜𝑙

 = 1 × 1 + 1 × 2 = 3

𝑉1 𝑐𝑜𝑜𝑙 = 2, 𝑉1 𝑤𝑎𝑟𝑚 = 1, 𝑉1 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

• 𝑉2 𝑐𝑜𝑜𝑙 :

• 2. a=fast
• 𝑇(𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠’ = 𝑐𝑜𝑜𝑙) = 0.5

𝑅 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑐𝑜𝑜𝑙 = 2

• 𝑇 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠’ = 𝑤𝑎𝑟𝑚 = 0.5
 𝑅 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑤𝑎𝑟𝑚 = 2

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠’ = 𝑐𝑜𝑜𝑙 × 𝑅(𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑐𝑜𝑜𝑙) + 𝛾 × 𝑉1 𝑠′ = 𝑐𝑜𝑜𝑙
+ 𝑇 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑤𝑎𝑟𝑚 × 𝑅 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑤𝑎𝑟𝑚 + 𝛾 × 𝑉1 𝑠′ = 𝑤𝑎𝑟𝑚
= 0.5 × 2 + 1 × 2 + 0.5 × 2 + 1 × 1 = 2 + 1.5 = 3.5

Hence, 𝑉2 𝑐𝑜𝑜𝑙 = 3.5

𝑉1 𝑐𝑜𝑜𝑙 = 2, 𝑉1 𝑤𝑎𝑟𝑚 = 1, 𝑉1 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

• 𝑉2 𝑤𝑎𝑟𝑚 :

• 1. a=slow
• 𝑇(𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑐𝑜𝑜𝑙) = 0.5

𝑅 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 = 1

• 𝑇(𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑤𝑎𝑟𝑚) = 0.5
𝑅 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑤𝑎𝑟𝑚 = 1

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑐𝑜𝑜𝑙 × 𝑅(𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙) + 𝛾 × 𝑉1 𝑠′ = 𝑐𝑜𝑜𝑙
+ 𝑇 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑤𝑎𝑟𝑚 × 𝑅 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑤𝑎𝑟𝑚 + 𝛾 × 𝑉1 𝑠′ = 𝑤𝑎𝑟𝑚

 = 0.5 × 1 + 1 × 2 + 0.5 × 1 + 1 × 1 = 1.5 + 1 = 2.5

𝑉1 𝑐𝑜𝑜𝑙 = 2, 𝑉1 𝑤𝑎𝑟𝑚 = 1, 𝑉1 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

• 𝑉2 𝑤𝑎𝑟𝑚 :

• 2. a=fast
• 𝑇 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 1

 𝑅 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = −10

• 𝑉1 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 × [
]

𝑅 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 + 𝛾
× 𝑉1 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑

 = 1 × −10 + 1 × 0 = −10

Hence, 𝑉2 𝑤𝑎𝑟𝑚 = 2.5

𝑉1 𝑐𝑜𝑜𝑙 = 2, 𝑉1 𝑤𝑎𝑟𝑚 = 1, 𝑉1 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

• 𝑉2 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

𝑉1 𝑐𝑜𝑜𝑙 = 2, 𝑉1 𝑤𝑎𝑟𝑚 = 1, 𝑉1 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Example: Value Iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Convergence of Value Iteration

• Theorem: will converge to unique optimal values

• Stopping Criterion

• Let the discount factor be 𝛾

• If we want to achieve: max
𝑠

𝑉𝑘+1(𝑠) − 𝑉∗(𝑠) < 𝜖,

 then we need to run the iterations until

max
𝑠

𝑉𝑘+1(𝑠) − 𝑉𝑘(𝑠) < 𝜖(1 − 𝛾)/𝛾

.
These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Policy Extraction

• Assume we already calculated the optimal values V*(s)

• How to figure out the best action at state s?
• It’s not obvious!

• We need to do a mini-expectimax (one step look-ahead)

• 𝜋∗ 𝑠 = arg max
𝑎

𝑄(𝑠, 𝑎)

 𝜋∗ 𝑠 = arg max
𝑎

σ𝑠′ 𝑇(𝑠, 𝑎, 𝑠′) × 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗(𝑠′)

• This is called policy extraction
• It gets the actions implied by the values

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Computing Actions from Q-Values

• Let’s imagine we have the optimal q-values:

• How to figure out the best action at state s?

• Completely trivial to decide!

• Important lesson: actions are easier to select from q-values than values!

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Policy Evaluation

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Fixed Policies

• When no policy is told: Expectimax trees max over all actions to compute the
optimal values

• When a fixed policy is told: the tree would be simpler - only one action per
state

a

s

s, a

s,a,s’

s’

(s)

s

s, (s)

s, (s),s’

s’

When no policy is told:
Do the optimal action

When a policy is told:
Do what says to do

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Utilities for a Fixed Policy

• Define the value/utility of a state s, under a fixed policy :

V(s) = expected total discounted rewards starting in s and
following

• Recursive relation

(s)

s

s, (s)

s, (s),s’

s’

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Policy Evaluation

• How do we calculate the values 𝑉(𝑠) for a fixed policy ?

• Idea 1: Turn recursive Bellman equations into updates
 (like value iteration)

• Complexity: 𝑂(𝑆 2) per iteration

(s)

s

s, (s)

s, (s),s’

s’

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

Policy Evaluation

• How do we calculate the values 𝑉(𝑠) for a fixed policy ?

• Idea 2: Without the maxes, the Bellman equations are just

 a linear system
• Solve with Python (or your favorite linear system solver)

𝑉𝜋 𝑠1 = 𝑓1 𝑉𝜋 𝑠1 , 𝑉𝜋 𝑠2 , … , 𝑉𝜋 𝑠𝑁

𝑉𝜋 𝑠2 = 𝑓2 𝑉𝜋 𝑠1 , 𝑉𝜋 𝑠2 , … , 𝑉𝜋 𝑠𝑁

⋮

𝑉𝜋 𝑠𝑁 = 𝑓𝑁 𝑉𝜋 𝑠1 , 𝑉𝜋 𝑠2 , … , 𝑉𝜋 𝑠𝑁
Assume there are 𝑁 states, then
we have 𝑁 unknowns and 𝑁 linear equations

(s)

s

s, (s)

s, (s),s’

s’

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.

	Slide 1
	Slide 2: Stochastic Environment
	Slide 3: Motivation of Markov Decision Processes
	Slide 4: Example: Grid World
	Slide 5: Example: Grid World
	Slide 6: Grid World Actions
	Slide 7: The Objective
	Slide 8: Markov Decision Processes
	Slide 9: Markov Decision Processes
	Slide 10: Markov Decision Processes
	Slide 11: Markov Decision Processes
	Slide 12: Markov Decision Processes
	Slide 13: Markov Decision Processes
	Slide 14: Markov Decision Processes
	Slide 15: Markov Decision Processes
	Slide 16: Markov Decision Processes
	Slide 17: Markov Decision Processes
	Slide 18: Video Demo of Gridworld
	Slide 19: What is Markov about MDPs?
	Slide 20: Policies
	Slide 21: Example: Racing
	Slide 22: Example: Racing
	Slide 23: Racing Search Tree
	Slide 24: MDP Search Trees
	Slide 25: MDP Search Trees
	Slide 26: Reward Sequences
	Slide 27: Reward Sequences
	Slide 28: Discounting
	Slide 29: Discounting
	Slide 30: Solving MDPs
	Slide 31: Optimal Quantities
	Slide 32: Values of States
	Slide 33: Bellman Equation
	Slide 34: Bellman Equation
	Slide 35: Bellman Equation
	Slide 36: How to calculate cap V to the asterisk operator , open paren s , close paren ?
	Slide 37: Linear Equation
	Slide 38: Value Iteration
	Slide 39: Value Iteration
	Slide 40: Value Iteration
	Slide 41: Example: Value Iteration
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Example: Value Iteration
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Example: Value Iteration
	Slide 54: Convergence of Value Iteration
	Slide 55: Policy Extraction
	Slide 56: Computing Actions from Q-Values
	Slide 57: Policy Evaluation
	Slide 58: Fixed Policies
	Slide 59: Utilities for a Fixed Policy
	Slide 60: Policy Evaluation
	Slide 61: Policy Evaluation

