Markov Decision Processes

Stochastic Environment

Motivation of Markov Decision Processes

- Another way to solve the decision-making problem for stochastic games
- Sometimes it's difficult to use the Minimax algorithm to determine actions, for example
- When the game tree is endless
- When the time spent to finish the game
 (finish the task) also affects the payoff

Example: Grid World

- A maze-like problem
- The agent lives in a grid
- Walls block the agent's path
- Noisy movement: actions do not always go as planned
- 80% of the time, the action North takes the agent North
(if there is no wall there)

- 10% of the time, North takes the agent West; 10\% East
- If there is a wall in the direction the agent would have been taken, the agent stays put

Example: Grid World

- The agent receives rewards each time step
- Small "living" reward each step (can be negative)
- Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards by the end of the game

Grid World Actions

Deterministic Grid World

The Objective

- In deterministic single-agent search problems, we wanted an optimal plan, or a sequence of actions, that takes the agent from the start to a goal state
- For a Markov Decision Process, we want to determine the best action for each state in the
 state space

Markov Decision Processes

- An MDP is defined by:

- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function $T\left(s, a, s^{\prime}\right)$
- Probability that taking action a from state s leads to state s', i.e., $P\left(s^{\prime} \mid s, a\right)$

- Also called the model or the dynamics

Markov Decision Processes

- Transition function $T\left(s, a, s^{\prime}\right)$
- For example
- $T\left(s=(1,1), a=\right.$ North,$\left.s^{\prime}=(1,2)\right)=$?
- $T\left(s=(1,1), a=\right.$ North,$\left.s^{\prime}=(2,1)\right)=$?
- $T\left(s=(1,1), a=\right.$ North,$\left.s^{\prime}=(1,1)\right)=$?
- $T\left(s=(1,1), a=E a s t, s^{\prime}=(2,1)\right)=$?
- $T\left(s=(1,1), a=E a s t, s^{\prime}=(1,2)\right)=$?
- $T\left(s=(1,1), a=E a s t, s^{\prime}=(1,1)\right)=$?

- That is, for any possible combination (s, a, s^{\prime}), we need to define $T\left(s, a, s^{\prime}\right)$

Markov Decision Processes

- Example: when the agent takes an action
- 80% of time he lands in the desired square;
- 20% of time he lands in the square in an orthogonal direction of the desired direction.

Markov Decision Processes

- What are the following transition probabilities? Let the location be (x, y)
- $T\left(s\right.$, North,$\left.s^{\prime}\right)$, when $s=(1,1), s^{\prime}=(2,1)$
- Answer: 0.1
- $T\left(s, E a s t, s^{\prime}\right)$, when $s=(1,1), s^{\prime}=(2,1)$
- Answer: 0.8
- $T\left(s, E a s t, s^{\prime}\right)$, when $s=(2,1), s^{\prime}=(3,1)$
- Answer: 0.8

- Where else can the agent land?
- Answer: stay at $(2,1)$

Markov Decision Processes

- $\quad \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)=1$
- For example
- $\sum_{s \prime} T\left((1,1)\right.$, North, $\left.s^{\prime}\right)$
$=T((1,1)$, North, $(1,2))$
$+T((1,1)$, North, $(2,1))$
$+T((1,1), N$ orth,$(1,1))=0.8+0.1+0.1$
$=1$
- $\sum_{s \prime} T\left((3,1)\right.$, North, $\left.s^{\prime}\right)$

$$
\begin{aligned}
& =T((3,1), N o r t h,(3,2)) \\
& +T((3,1), N \text { North, }(2,1)) \\
& +T((3,1), N \text { orth },(4,1))=0.8+0.1+0.1 \\
& =1
\end{aligned}
$$

Markov Decision Processes

- An MDP is defined by:
- A reward function
- $R\left(s, a, s^{\prime}\right)$
- $R(s, a)$
- $R(s)$
- A start state
- Maybe a terminal state

- MDPs are non-deterministic search problems

Markov Decision Processes

- Example:
- Assume the game is over if the agent enters $(4,3)$ or $(4,2)$.
- Assume a reward of +1 is gained when the agent enters (4,3); a reward of -1 is gained when the agent enters (4,2); for any other state transitions the reward is zero.
- What are the values of the following rewards?
- When $s=(3,3), a=E a s t, s^{\prime}=(4,3), R\left(s, a, s^{\prime}\right)=$

- When $s=(3,2), a=E a s t, s^{\prime}=(4,2), R\left(s, a, s^{\prime}\right)=$
- When $s=(4,1), a=$ North, $s^{\prime}=(4,2), R\left(s, a, s^{\prime}\right)=$
- When $s=(4,1), a=$ North, $s^{\prime}=(3,1), R\left(s, a, s^{\prime}\right)=$

Markov Decision Processes

- Example:
- Assume $R\left(s, a, s^{\prime}\right)$ is defined the same way as in the previous slide
- Assume the agent is in $(3,2)$
- He goes North
- What's the expected reward?
- Answer: the reward expression is
- R((3,2),North, $\left.s^{\prime}\right)$
- if $s^{\prime}=(3,3)$, then $R=0$. What's the prob. of this situation? 0.8

- if $s^{\prime}=(4,2)$, then $R=-1$. What's the prob. of this situation? 0.1
- $\mathrm{E}[\mathrm{R}]=0.8^{*} 0+0.1^{*}(-1)+0.1^{*} 0=-0.1$

Markov Decision Processes

- Example:
- If a reward of +1 is gained when the agent is in $(4,3)$, and a reward of -1 is gained when the agent is in $(4,2)$, and the reward is zero when the agent is in any other possible grid, then how to represent this kind of rewards?
- $R(s)=+1$, when $s=(4,3)$
- $R(s)=-1$, when $s=(4,2)$
- $R(s)=0$, for any other possible s

Markov Decision Processes

- Watch the video demo in the next slide.
- Think about how the reward function is defined in the video.
- $R(s, a)$
- $R(s=(4,3), a=E X I T)=1$
- $R(s=(4,2), a=E X I T)=-1$

- This is the living reward
- $R(s, a)=-0.1$, for any other valid (s, a)

Video Demo of Gridworld

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$
\begin{aligned}
P\left(S_{t+1}\right. & \left.=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}, S_{t-1}=s_{t-1}, A_{t-1}, \ldots S_{0}=s_{0}\right) \\
& =P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}\right)
\end{aligned}
$$

Andrey Markov (1856-1922)

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^{*}: S \rightarrow \mathrm{~A}$

- A policy π : a mapping from states to actions
- A policy π gives an action for each state

Example: Racing

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- The state transition diagram is given

Overheated

Racing Search Tree

Can you label the branches with the action a, transition probability $T\left(s, a, s^{\prime}\right)$, and reward $R\left(s, a, s^{\prime}\right)$?

MDP Search Trees

- \mathbf{Q}-state: (s, a)

MDP Search Trees

- Q-state: (s, a)

Reward Sequences

Reward Sequences

- What preferences should an agent have over reward sequences?
- More or less?

$$
[1,2,2] \text { or }[2,3,4]
$$

- Now or later?

$$
[0,0,1] \quad \text { or } \quad[1,0,0]
$$

Discounting

- It's reasonable to let the agent take actions to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

- How to discount?
- Each time we descend a level, we multiply in the discount once
- Why discount?
- Sooner rewards probably have higher utility than later rewards

Solving MDPs

- How to figure out the optimal policy π^{*} for the agent?
- That is, the best action at each state:
$\pi^{*}(s) \forall s \in S$

Optimal Quantities

- The value (utility) of a state s:
$V^{*}(s)=$ expected value/utility starting in s and acting optimally
- The value (utility) of a q-state (s, a): $Q^{*}(s, a)=$ expected value/utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
$\pi^{*}(s)=$ optimal action at state s

Values of States

- Values of states

$$
V^{*}(s)=\max _{a} Q^{*}(s, a)
$$

- \mathbf{Q}-state value

$$
Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- Recursive definition of value:
- Bellman Equation
$V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]$

Bellman Equation

- $V^{*}(s)=\max \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]$

Bellman Equation

- $V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]$
- To simplify the problem, let's assume the actions are fixed, and no randomness:

$$
\begin{aligned}
& V^{*}(s)=R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right) \\
& \boldsymbol{\uparrow} \\
& R\left(s^{\prime}, a^{\prime}, s^{\prime \prime}\right)+\gamma V^{*}\left(s^{\prime \prime}\right) \\
& R\left(s^{\prime \prime}, a^{\prime \prime}, s^{\prime \prime \prime}\right)+\gamma V^{*}\left(s^{\prime \prime \prime}\right)
\end{aligned}
$$

$$
V^{*}(s)=R\left(s, a, s^{\prime}\right)+\gamma R\left(s^{\prime}, a^{\prime}, s^{\prime \prime}\right)+\gamma^{2} R\left(s^{\prime \prime}, a^{\prime \prime}, s^{\prime \prime \prime}\right)+\cdots
$$

$V^{*}(s)$ is the sum of discounted rewards.

Bellman Equation

- When there is no randomness, and the actions are fixed: $V^{*}(s)$ is the sum of discounted rewards.
- In general, there is randomness, and the agent needs to consider multiple action choices, hence

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) \times\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

$$
V^{*}(s)=\operatorname{Max}(\text { Expectation of (the sum of discounted rewards)) }
$$

- Recall: $\mathbf{V}^{*}(\mathrm{~s})=$ expected value/utility starting in s and acting optimally

How to calculate $V^{*}(s)$?

- Recursive definition of value:

- Bellman Equation

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

$$
\begin{aligned}
& V^{*}\left(s_{1}\right)=f_{1}\left(V^{*}\left(s_{1}\right), V^{*}\left(s_{2}\right), \ldots, V^{*}\left(s_{N}\right)\right) \\
& V^{*}\left(s_{2}\right)=f_{2}\left(V^{*}\left(s_{1}\right), V^{*}\left(s_{2}\right), \ldots, V^{*}\left(s_{N}\right)\right)
\end{aligned}
$$

$$
\vdots
$$

$$
V^{*}\left(s_{N}\right)=f_{N}\left(V^{*}\left(s_{1}\right), V^{*}\left(s_{2}\right), \ldots, V^{*}\left(s_{N}\right)\right)
$$

Assume there are N states, then we have N unknowns and N nonlinear equations

Linear Equation

- Two unknowns x and y
- Two equations

$$
\begin{aligned}
& c_{1}=a_{1} x+b_{1} y \\
& c_{2}=a_{2} x+b_{2} y
\end{aligned}
$$

- How to solve for x and y ?

$$
\begin{aligned}
& x=\frac{c_{1}-b_{1} y}{a_{1}} \\
& c_{2}=a_{2} \frac{c_{1}-b_{1} y}{a_{1}}+b_{2} y
\end{aligned}
$$

\Rightarrow Solve for y, then plug y into (1) to solve for x

Overheated
Assume no discount!

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

Value Iteration

- \quad Step 1: Initialize $\mathrm{V}_{0}(\mathrm{~s})=0$, for $s=s_{1}, s_{2}, s_{3}, \ldots$
- Step 2: $\mathrm{k}=1$ ($1^{\text {st }}$ iteration)

$$
\begin{aligned}
& \text { Update } \mathrm{V}_{1}(\mathrm{~s}) \text {, for } s=s_{1}, s_{2}, s_{3}, \ldots \\
& \text { using } \mathrm{V}_{0}(\mathrm{~s})=0, s=s_{1}, s_{2}, s_{3}, \ldots \\
& V_{1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{0}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- Step 3: $k=2$ (2 ${ }^{\text {nd }}$ iteration)

$$
\begin{aligned}
& \text { Update } \mathrm{V}_{2}(\mathrm{~s}) \text {, for } s=s_{1}, s_{2}, s_{3}, \ldots \\
& \text { using } \mathrm{V}_{1}(\mathrm{~s}), s=s_{1}, s_{2}, s_{3}, \ldots \\
& V_{2}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{1}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- Keep running the iterations till the values $\mathrm{V}_{\mathrm{k}}(\mathrm{s})$ converge.

Value Iteration

- Start with $\mathrm{V}_{0}(\mathrm{~s})=0$
- Given vector of $\mathrm{V}_{\mathrm{k}}(\mathrm{s})$ values, do one ply of expectimax from each state:

$$
\begin{aligned}
& \text { Bellman Update } \\
& V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- Repeat until convergence
- Complexity of each iteration: $O\left(|S|^{2} \times|A|\right)$
- $|S|$: The cardinality of the set S, i.e. the number of elements in the set S

Example: Value Iteration

Assume no discount!

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

$$
V_{0}(\text { cool })=0, V_{0}(\text { warm })=0, V_{0}(\text { overheated })=0
$$

- $V_{1}(\mathrm{cool})$:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- 1. a=slow
- $T\left(s=\right.$ cool,$a=$ slow, $\left.s^{\prime}=\operatorname{cool}\right)=1$

$$
R\left(\text { cool }, \text { slow }, s^{\prime}=\operatorname{cool}\right)=1
$$

- $V_{0}\left(s^{\prime}=\operatorname{cool}\right)=0$
- Result $=T\left(\right.$ cool, slow, $\left.s^{\prime}=\operatorname{cool}\right) \times\left[R\left(\operatorname{cool}\right.\right.$, slow,$\left.\left.s^{\prime}=\operatorname{cool}\right)+\gamma \times V_{0}\left(s^{\prime}=\operatorname{cool}\right)\right]$ $=1 \times[1+1 \times 0]=1$

$$
V_{0}(\text { cool })=0, V_{0}(\text { warm })=0, V_{0}(\text { overheated })=0
$$

- $V_{1}(\mathrm{cool}):$
$V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]$
- 2. a=fast
- $T\left(\right.$ cool, fast,$\left.s^{\prime}=\operatorname{cool}\right)=0.5$ $R\left(\right.$ cool, fast,$\left.s^{\prime}=\operatorname{cool}\right)=2$

- $T\left(\right.$ cool, fast,$s^{\prime}=$ warm $)=0.5$ $R\left(\right.$ cool, fast,$s^{\prime}=$ warm $)=2$
- Result $=T\left(\right.$ cool, fast,$\left.s^{\prime}=\operatorname{cool}\right) \times\left[R\left(\right.\right.$ cool,fast,$\left.\left.s^{\prime}=\operatorname{cool}\right)+\gamma \times V_{0}\left(s^{\prime}=\operatorname{cool}\right)\right]$
$+T\left(\right.$ cool, fast,$s^{\prime}=$ warm $) \times\left[R\left(\right.\right.$ cool, fast,$s^{\prime}=$ warm $)+\gamma \times V_{0}\left(s^{\prime}=\right.$ warm $\left.)\right]=2$

Hence, $V_{1}(\operatorname{cool})=2$

$$
V_{0}(\text { cool })=0, V_{0}(\text { warm })=0, V_{0}(\text { overheated })=0
$$

- $V_{1}($ warm $):$

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- 1. a=slow

$$
\begin{aligned}
& T\left(s=\text { warm, } a=\text { slow }, s^{\prime}=\text { cool }\right)=0.5 \\
& \quad R\left(\text { warm, slow, } s^{\prime}=\text { cool }\right)=1 \\
& T\left(\text { warm, slow, } s^{\prime}=\text { warm }\right)=0.5 \\
& R\left(\text { warm }, \text { slow, } s^{\prime}=\text { warm }\right)=1
\end{aligned}
$$

- Result $=T\left(\right.$ warm, slow, $\left.s^{\prime}=\operatorname{cool}\right) \times\left[R\left(\right.\right.$ warm,slow,$\left.\left.s^{\prime}=\operatorname{cool}\right)+\gamma \times V_{0}\left(s^{\prime}=\operatorname{cool}\right)\right]$ $+T\left(\right.$ warm, slow,$s^{\prime}=$ warm $) \times\left[R\left(\right.\right.$ warm, slow,$s^{\prime}=$ warm $)+\gamma \times V_{0}\left(s^{\prime}=\right.$ warm $\left.)\right]=1$

$$
V_{0}(\text { cool })=0, V_{0}(\text { warm })=0, V_{0}(\text { overheated })=0
$$

- $V_{1}($ warm $):$
$V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]$
- 2. a=fast
- $T\left(\right.$ warm, fast,$s^{\prime}=$ overheated $)=1$

$R\left(\right.$ warm, fast, $s^{\prime}=$ overheated $)=-10$
- $V_{0}\left(s^{\prime}=\right.$ overheated $)=0$
- Result $=T\left(\right.$ warm, fast,$s^{\prime}=$ overheated $) \times\left[R\left(\right.\right.$ warm, fast,$s^{\prime}=$ overheated $)$ $+\gamma \times V_{0}\left(s^{\prime}=\right.$ overheated $\left.)\right]$

$$
=1 \times[-10+1 \times 0]=-10
$$

Hence, $V_{1}($ warm $)=1$

$$
V_{0}(\text { cool })=0, V_{0}(\text { warm })=0, V_{0}(\text { overheated })=0
$$

- V_{1} (overheated):

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- Overheated is the end state

- No more state transition (no s')
- No T (overheated, a, s^{\prime}), no R (overheated, a, s^{\prime})

Hence, $V_{1}($ overheated $)=0$

Example: Value Iteration

Assume no discount!

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

$$
V_{1}(\operatorname{cool})=2, V_{1}(\text { warm })=1, V_{1}(\text { overheated })=0
$$

- $V_{2}(\mathrm{cool}):$

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- 1. $a=$ slow

- $T\left(\right.$ cool, slow,$s^{\prime}=$ cool $)=1$

$$
R\left(\text { cool }, \text { slow }, s^{\prime}=\operatorname{cool}\right)=1
$$

- $V_{1}\left(s^{\prime}=\operatorname{cool}\right)=2$
- Result $=T\left(\right.$ cool, slow, $\left.s^{\prime}=\operatorname{cool}\right) \times\left[R\left(\right.\right.$ cool,slow,$\left.\left.s^{\prime}=\operatorname{cool}\right)+\gamma \times V_{1}\left(s^{\prime}=\operatorname{cool}\right)\right]$ $=1 \times[1+1 \times 2]=3$

$$
V_{1}(\text { cool })=2, V_{1}(\text { warm })=1, V_{1}(\text { overheated })=0
$$

- $V_{2}(\mathrm{cool}):$
$V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]$

- 2. a=fast

- $T\left(\right.$ cool, fast,$\left.s^{\prime}=\operatorname{cool}\right)=0.5$
$R\left(\right.$ cool, fast,$\left.s^{\prime}=\operatorname{cool}\right)=2$

- $T\left(\right.$ cool, fast,$s^{\prime}=$ warm $)=0.5$ $R\left(\right.$ cool, fast,$s^{\prime}=$ warm $)=2$
- Result $=T\left(\right.$ cool, fast,$\left.s^{\prime}=\operatorname{cool}\right) \times\left[R\left(c o o l, f a s t, s^{\prime}=\operatorname{cool}\right)+\gamma \times V_{1}\left(s^{\prime}=\operatorname{cool}\right)\right]$ $+T\left(\right.$ cool, fast, $s^{\prime}=$ warm $) \times\left[R\left(\right.\right.$ cool, fast,$s^{\prime}=$ warm $)+\gamma \times V_{1}\left(s^{\prime}=\right.$ warm $\left.)\right]$ $=0.5 \times[2+1 \times 2]+0.5 \times[2+1 \times 1]=2+1.5=3.5$

Hence, $V_{2}(\operatorname{cool})=3.5$

$$
V_{1}(\operatorname{cool})=2, V_{1}(\text { warm })=1, V_{1}(\text { overheated })=0
$$

- $V_{2}($ warm $):$
$V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]$
- 1. a=slow
- $T\left(\right.$ warm, slow,$\left.s^{\prime}=\operatorname{cool}\right)=0.5$

$$
R\left(\text { warm }, \text { slow }, s^{\prime}=\text { cool }\right)=1
$$

- $T\left(\right.$ warm, slow, $s^{\prime}=$ warm $)=0.5$

$$
R\left(\text { warm }, \text { slow, } s^{\prime}=\text { warm }\right)=1
$$

- Result $=T\left(\right.$ warm, slow, $s^{\prime}=$ cool $) \times\left[R\left(w a r m, s l o w, s^{\prime}=\operatorname{cool}\right)+\gamma \times V_{1}\left(s^{\prime}=\right.\right.$ cool $\left.)\right]$
$+T\left(\right.$ warm, slow, $s^{\prime}=$ warm $) \times\left[R\left(\right.\right.$ warm, slow, $s^{\prime}=$ warm $)+\gamma \times V_{1}\left(s^{\prime}=\right.$ warm $\left.)\right]$
$=0.5 \times[1+1 \times 2]+0.5 \times[1+1 \times 1]=1.5+1=2.5$

$$
V_{1}(\text { cool })=2, V_{1}(\text { warm })=1, V_{1}(\text { overheated })=0
$$

- $V_{2}($ warm $):$
$V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]$
- 2. a=fast
- $T\left(\right.$ warm, fast,$s^{\prime}=$ overheated $)=1$

$$
R\left(\text { warm }, \text { fast }, s^{\prime}=\text { overheated }\right)=-10
$$

- $V_{1}\left(s^{\prime}=\right.$ overheated $)=0$
- Result $=T\left(\right.$ warm, fast,$s^{\prime}=$ overheated $) \times\left[R\left(\right.\right.$ warm, fast,$s^{\prime}=$ overheated $)+\gamma$ $\times V_{1}\left(s^{\prime}=\right.$ overheated $\left.)\right]$

$$
=1 \times[-10+1 \times 0]=-10
$$

Hence, $V_{2}($ warm $)=2.5$

$$
V_{1}(\text { cool })=2, V_{1}(\text { warm })=1, V_{1}(\text { overheated })=0
$$

- $V_{2}($ overheated $)=0$

Example: Value Iteration

Assume no discount!

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

Convergence of Value Iteration

- Theorem: will converge to unique optimal values
- Stopping Criterion
- Let the discount factor be γ
- If we want to achieve: $\max _{s}\left|V_{k+1}(s)-V^{*}(s)\right|<\epsilon$, then we need to run the iterations until

$$
\max _{s}\left|V_{k+1}(s)-V_{k}(s)\right|<\epsilon(1-\gamma) / \gamma
$$

Policy Extraction

- Assume we already calculated the optimal values $\mathrm{V}^{*}(\mathrm{~s})$
- How to figure out the best action at state s?
- It's not obvious!
- We need to do a mini-expectimax (one step look-ahead)

- $\pi^{*}(s)=\arg \max _{a} Q(s, a)$
$\pi^{*}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) \times\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]$
- This is called policy extraction
- It gets the actions implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:

$$
Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- How to figure out the best action at state s?
- Completely trivial to decide!

$$
\pi^{*}(s)=\arg \max _{a} Q^{*}(s, a)
$$

- Important lesson: actions are easier to select from q-values than values!

Policy Evaluation

Fixed Policies

When no policy is told:
Do the optimal action

When a policy π is told:
Do what π says to do

- When no policy is told: Expectimax trees max over all actions to compute the optimal values
- When a fixed policy π is told: the tree would be simpler - only one action per state

Utilities for a Fixed Policy

- Define the value/utility of a state s, under a fixed policy π : $V^{\pi}(s)=$ expected total discounted rewards starting in s and following π
- Recursive relation

$$
V^{\pi}(s)=\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right]
$$

Policy Evaluation

- How do we calculate the values $V^{\pi}(s)$ for a fixed policy π ?

$$
V^{\pi}(s)=\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right]
$$

- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$
\begin{aligned}
& V_{0}^{\pi}(s)=0 \\
& V_{k+1}^{\pi}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- Complexity: $O\left(|S|^{2}\right)$ per iteration

Policy Evaluation

- How do we calculate the values $V^{\pi}(s)$ for a fixed policy π ?

$$
V^{\pi}(s)=\sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right]
$$

- Idea 2: Without the maxes, the Bellman equations are just a linear system
- Solve with Python (or your favorite linear system solver)

$$
\begin{aligned}
& V^{\pi}\left(s_{1}\right)=f_{1}\left(V^{\pi}\left(s_{1}\right), V^{\pi}\left(s_{2}\right), \ldots, V^{\pi}\left(s_{N}\right)\right) \\
& V^{\pi}\left(s_{2}\right)=f_{2}\left(V^{\pi}\left(s_{1}\right), V^{\pi}\left(s_{2}\right), \ldots, V^{\pi}\left(s_{N}\right)\right)
\end{aligned}
$$

$$
V^{\pi}\left(s_{N}\right)=f_{N}\left(V^{\pi}\left(s_{1}\right), V^{\pi}\left(s_{2}\right), \ldots, V^{\pi}\left(s_{N}\right)\right)
$$

Assume there are N states, then we have N unknowns and N linear equations

