
Markov Decision Processes
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Stochastic Environment
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Motivation of Markov Decision Processes

• Another way to solve the decision-making 
problem for stochastic games

• Sometimes it’s difficult to use the Minimax 
algorithm to determine actions, for example

▪ When the game tree is endless

▪ When the time spent to finish the game 
(finish the task) also affects the payoff

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Example: Grid World

• A maze-like problem

▪ The agent lives in a grid

▪ Walls block the agent’s path

• Noisy movement: actions do not always go 
as planned

▪ 80% of the time, the action North takes the 
agent North 
(if there is no wall there)

▪ 10% of the time, North takes the agent 
West; 10% East

▪ If there is a wall in the direction the agent 
would have been taken, the agent stays put

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Example: Grid World

• The agent receives rewards each time step

▪ Small “living” reward each step (can be 
negative)

▪ Big rewards come at the end (good or bad)

• Goal: maximize sum of rewards by the end 
of the game

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Grid World Actions

Deterministic Grid World Stochastic Grid World

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



The Objective 

• In deterministic single-agent search problems, 
we wanted an optimal plan, or a sequence of 
actions, that takes the agent from the start to a 
goal state

• For a Markov Decision Process, we want to 
determine the best action for each state in the 
state space

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Markov Decision Processes

• An MDP is defined by:

• A set of states s  S

• A set of actions a  A

• A transition function T(s, a, s’)

• Probability that taking action a from state s 
leads to state s’, i.e., P(s’| s, a)

• Also called the model or the dynamics

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Markov Decision Processes

• Transition function T(s, a, s’)
• For example 
• T(s=(1,1), a=North,s’=(1,2))=?
• T(s=(1,1), a=North,s’=(2,1))=?
• T(s=(1,1), a=North,s’=(1,1))=?

• T(s=(1,1), a=East,s’=(2,1))=?
• T(s=(1,1), a=East,s’=(1,2))=?
• T(s=(1,1), a=East,s’=(1,1))=?

• That is, for any possible combination (s,a,s’), 
we need to define T(s,a,s’)

(1,1) (2,1)

(1,2)
𝑦

𝑥
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Markov Decision Processes

• Example: when the agent takes an action

• 80% of time he lands in the desired square; 

• 20% of time he lands in the square in an 
orthogonal direction of the desired 
direction.
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Markov Decision Processes

• What are the following transition 
probabilities? Let the location be (x,y)

• T(s,North,s’), when s= (1,1), s’=(2,1)
• Answer: 0.1

• T(s,East,s’), when s=(1,1), s’=(2,1)
• Answer: 0.8

• T(s,East,s’), when s=(2,1), s’=(3,1)
• Answer: 0.8
• Where else can the agent land?
• Answer: stay at (2,1)
     

𝑦

𝑥

(1,1) (2,1)

(1,2)

(3,1)
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Markov Decision Processes

• σ𝑠′ 𝑇 𝑠, 𝑎, 𝑠′ = 1

• For example
• σ𝑠′ 𝑇 (1,1), 𝑁𝑜𝑟𝑡ℎ, 𝑠′

= 𝑇 (1,1), 𝑁𝑜𝑟𝑡ℎ, (1,2)
+ 𝑇 (1,1), 𝑁𝑜𝑟𝑡ℎ, (2,1)
+ 𝑇 (1,1), 𝑁𝑜𝑟𝑡ℎ, (1,1) = 0.8 + 0.1 + 0.1
= 1

• σ𝑠′ 𝑇 (3,1), 𝑁𝑜𝑟𝑡ℎ, 𝑠′

= 𝑇 (3,1), 𝑁𝑜𝑟𝑡ℎ, (3,2)
+ 𝑇 (3,1), 𝑁𝑜𝑟𝑡ℎ, (2,1)
+ 𝑇 (3,1), 𝑁𝑜𝑟𝑡ℎ, (4,1) = 0.8 + 0.1 + 0.1
= 1

𝑠

𝑎

𝑇 𝑠, 𝑎, 𝑠1
′ 𝑇 𝑠, 𝑎, 𝑠3

′

𝑇 𝑠, 𝑎, 𝑠2
′

𝑠2
′ 𝑠3

′𝑠1
′

(1,1) (2,1)

(1,2)

(3,1)

(4,1)

(3,2)
𝑦

𝑥
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Markov Decision Processes

• An MDP is defined by:

• A reward function
• R(s,a,s’)
• R(s,a)
• R(s)

• A start state

• Maybe a terminal state

• MDPs are non-deterministic search problems
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Markov Decision Processes

• Example:

• Assume the game is over if the agent enters 
(4,3) or (4,2).

• Assume a reward of +1 is gained when the 
agent enters (4,3); a reward of -1 is gained 
when the agent enters (4,2); for any other 
state transitions the reward is zero.

• What are the values of the following 
rewards?
• When s=(3,3), a=East, s’=(4,3), R(s,a,s’) = 
• When s=(3,2), a=East, s’=(4,2), R(s,a,s’) = 
• When s=(4,1), a=North, s’=(4,2), R(s,a,s’) = 
• When s=(4,1), a=North, s’=(3,1), R(s,a,s’) = 

𝑦

𝑥
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Markov Decision Processes

• Example:
• Assume R(s,a,s’) is defined the same way as 

in the previous slide
• Assume the agent is in (3,2)
• He goes North
• What’s the expected reward?

• Answer: the reward expression is
• R((3,2),North,s’)
• if s’ = (3,3), then R = 0. What’s the prob. of 

this situation? 0.8
• if s’ = (4,2), then R = -1. What’s the prob. of 

this situation? 0.1
• E[R] = 0.8*0 + 0.1*(-1)+0.1*0 = -0.1

     

𝑦

𝑥
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Markov Decision Processes

• Example:

• If a reward of +1 is gained when the 
agent is in (4,3), and a reward of -1 is 
gained when the agent is in (4,2), and 
the reward is zero when the agent is in 
any other possible grid, then how to 
represent this kind of rewards?

• R(s) = +1, when s = (4,3)
• R(s) = -1, when s = (4,2)
• R(s) = 0, for any other possible s

𝑦

𝑥
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Markov Decision Processes

• Watch the video demo in the next slide. 

• Think about how the reward function is 
defined in the video.

• R(s,a)

• R(s=(4,3), a=EXIT) = 1

• R(s=(4,2), a=EXIT) = -1

• R(s,a) = -0.1, for any other valid (s,a)
• This is the living reward

𝑦

𝑥
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Video Demo of Gridworld

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



What is Markov about MDPs?

• “Markov” generally means that given the present state, 
the future and the past are independent

• For Markov decision processes, “Markov” means action 
outcomes depend only on the current state

Andrey Markov 
(1856-1922)
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Policies

• In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal

• For MDPs, we want an optimal policy *: S → A

• A policy : a mapping from states to actions

• A policy  gives an action for each state

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Example: Racing

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Example: Racing

• A robot car wants to travel far, quickly

• Three states: Cool, Warm, Overheated

• Two actions: Slow, Fast

• The state transition diagram is given

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

+1 

+1 

+1 

+2 

+2 

-10
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Racing Search Tree

Can you label the branches with the action a, transition probability T(s,a,s’), and reward R(s,a,s’)?

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



MDP Search Trees

• Q-state: (s,a)

a

s

s’

s, a

(s,a,s’) is called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-state
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MDP Search Trees

• Q-state: (s,a)

a=South

s=(2,2)

s’=(2,1)

s, a (s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a): 

transition probability

R(s,a,s’): (immediate) reward

s is a state

(s, a) is a q-state

s’=(1,2)

(2,1)

(3,2)(1,2)
(2,2)

s’=(3,2)

T(s,a,s’)=0.1 T(s,a,s’)=0.1

T(s,a,s’)=0.8
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Reward Sequences
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Reward Sequences

• What preferences should an agent have over reward sequences?

• More or less?

• Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Discounting

• It’s reasonable to let the agent take actions to maximize the sum of rewards

• It’s also reasonable to prefer rewards now to rewards later

• One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps
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Discounting

• How to discount?
• Each time we descend a level, 

we multiply in the discount 
once

• Why discount?
• Sooner rewards probably have 

higher utility than later rewards
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Solving MDPs

• How to figure out the optimal 
policy ∗ for the agent?

• That is, the best action at each 
state: 

     ∗(𝑠) ∀𝑠 ∈ 𝑆

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Optimal Quantities

• The value (utility) of a state s:
𝑉∗ 𝑠  = expected value/utility starting in 𝑠 and 

acting optimally

• The value (utility) of a q-state (s,a):
𝑄∗ 𝑠, 𝑎  = expected value/utility starting out 

having taken action 𝑎 from state 𝑠 and 
(thereafter) acting optimally

• The optimal policy:
∗(𝑠) = optimal action at state 𝑠

a

𝑠

𝑠′

𝑠, 𝑎

(𝑠, 𝑎, 𝑠′) is a 
transition𝑠, 𝑎, 𝑠′

𝑠 is a state

(𝑠, 𝑎) is a q-state

𝑉∗ 𝑠

𝑉∗ 𝑠′

𝑄∗ 𝑠, 𝑎
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• Values of states

• Q-state value

• Recursive definition of value:

• Bellman Equation

Values of States

a

𝑠

𝑠′

𝑠, 𝑎

(𝑠, 𝑎, 𝑠′) is a 
transition𝑠, 𝑎, 𝑠′

𝑠 is a state

(𝑠, 𝑎) is a q-state

𝑉∗ 𝑠

𝑉∗ 𝑠′

𝑄∗ 𝑠, 𝑎
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• 𝑉∗ 𝑠 = max
𝑎

σ𝑠′ 𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

           

                     
    
     

                                                                             

Bellman Equation

⋯

max
𝑎′′



𝑠′′′

𝑇 𝑠′′, 𝑎′′, 𝑠′′′ [𝑅 𝑠′′, 𝑎′′, 𝑠′′′ + 𝛾𝑉∗ 𝑠′′′ ]

max
𝑎′



𝑠′′

𝑇 𝑠′, 𝑎′, 𝑠′′ 𝑅 𝑠′, 𝑎′, 𝑠′′ + 𝛾𝑉∗ 𝑠′′

a

𝑉∗ 𝑠

s,a,s’

(s, a)

a’

(s’, a’)

s’,a’,s”

𝑉∗ 𝑠′

s”,a”,s’’’

𝑉∗ 𝑠′′

𝑉∗ 𝑠′′′

a”
(s”, a”)

𝑠

𝑠′

𝑠′′

𝑠′′′
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• 𝑉∗ 𝑠 = max
𝑎

σ𝑠′ 𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

• To simplify the problem, let’s assume the actions are fixed, and no 
randomness:

     𝑉∗ 𝑠 = 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

                                

                             𝑅 𝑠′, 𝑎′, 𝑠′′ + 𝛾𝑉∗ 𝑠′′

                                                     𝑅 𝑠′′, 𝑎′′, 𝑠′′′ + 𝛾𝑉∗ 𝑠′′′

    𝑉∗ 𝑠 = 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑅 𝑠′, 𝑎′, 𝑠′′ + 𝛾2𝑅 𝑠′′, 𝑎′′, 𝑠′′′ + ⋯

   𝑉∗ 𝑠  is the sum of discounted rewards.

           

Bellman Equation
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• When there is no randomness, and the actions are fixed:

     𝑉∗ 𝑠  is the sum of discounted rewards.

• In general, there is randomness, and the agent needs to consider multiple 

      action choices, hence

𝑉∗ 𝑠 = max
𝑎



𝑠′

𝑇(𝑠, 𝑎, 𝑠′) × 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗(𝑠′)

               

            𝑉∗ 𝑠  = Max (Expectation of (the sum of discounted rewards))

• Recall: V*(s) = expected value/utility starting in s and acting optimally

Bellman Equation

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



How to calculate 𝑉∗ 𝑠 ?

• Recursive definition of value:

• Bellman Equation

𝑉∗ 𝑠1 = 𝑓1 𝑉∗ 𝑠1 , 𝑉∗ 𝑠2 , … , 𝑉∗ 𝑠𝑁

𝑉∗ 𝑠2 = 𝑓2 𝑉∗ 𝑠1 , 𝑉∗ 𝑠2 , … , 𝑉∗ 𝑠𝑁

⋮

𝑉∗ 𝑠𝑁 = 𝑓𝑁 𝑉∗ 𝑠1 , 𝑉∗ 𝑠2 , … , 𝑉∗ 𝑠𝑁
Assume there are 𝑁 states, then
we have 𝑁 unknowns and 𝑁 nonlinear equations

a

s

s, a

s,a,s’

s’
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Linear Equation

• Two unknowns 𝑥 and 𝑦

• Two equations

• How to solve for 𝑥 and 𝑦?

     𝑥 =
𝑐1−𝑏1𝑦 

𝑎1
     … (1)

     𝑐2 = 𝑎2
𝑐1−𝑏1𝑦 

𝑎1
+ 𝑏2𝑦

    ⇒ Solve for 𝑦, then plug 𝑦 into (1) to solve for 𝑥

𝑐1 = 𝑎1𝑥 + 𝑏1𝑦
𝑐2 = 𝑎2𝑥 + 𝑏2𝑦

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Value Iteration

0             0             0

2             1             0

3.5          2.5          0

Assume no discount!
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Value Iteration

• Step 1: Initialize V0(s) = 0, for 𝑠 = 𝑠1, 𝑠2, 𝑠3, …

• Step 2: k=1 (1st iteration)

                   Update V1(s), for 𝑠 = 𝑠1, 𝑠2, 𝑠3, …,

                   using V0(s) = 0, 𝑠 = 𝑠1, 𝑠2, 𝑠3, …

                   𝑉1 𝑠 ← max
𝑎

σ𝑠′ 𝑇(𝑠, 𝑎, 𝑠′) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉0(𝑠′)

• Step 3: k=2 (2nd iteration)

                   Update V2(s), for 𝑠 = 𝑠1, 𝑠2, 𝑠3, …,

                   using V1(s), 𝑠 = 𝑠1, 𝑠2, 𝑠3, …

                   𝑉2 𝑠 ← max
𝑎

σ𝑠′ 𝑇(𝑠, 𝑎, 𝑠′) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉1(𝑠′)

• Keep running the iterations till the values Vk(s) converge.

a

Vk+1(s)

s, a

s,a,s’
Vk(s’)
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Value Iteration

• Start with V0(s) = 0

• Given vector of Vk(s) values, do one ply of expectimax from each state:

• Bellman Update

• Repeat until convergence

• Complexity of each iteration: 𝑂( 𝑆 2 × 𝐴 )
• 𝑆 : The cardinality of the set 𝑆, i.e. the number of elements 
     in the set 𝑆

a

Vk+1(s)

s, a

s,a,s’
Vk(s’)
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Example: Value Iteration

0             0             0

2             1             0

3.5          2.5          0

Assume no discount!
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• 𝑉1 𝑐𝑜𝑜𝑙 :

• 1. a=slow
• 𝑇 𝑠 = 𝑐𝑜𝑜𝑙, 𝑎 = 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 = 1

       𝑅 𝑐𝑜𝑜𝑙, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 = 1

• 𝑉0 𝑠′ = 𝑐𝑜𝑜𝑙 = 0

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑐𝑜𝑜𝑙, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 × 𝑅 𝑐𝑜𝑜𝑙, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 + 𝛾 × 𝑉0 𝑠′ = 𝑐𝑜𝑜𝑙

    = 1 × 1 + 1 × 0 = 1 

𝑉0 𝑐𝑜𝑜𝑙 = 0,  𝑉0 𝑤𝑎𝑟𝑚 = 0,   𝑉0 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0 
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• 𝑉1 𝑐𝑜𝑜𝑙 :

• 2. a=fast
• 𝑇 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠’ = 𝑐𝑜𝑜𝑙 = 0.5

    𝑅 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑐𝑜𝑜𝑙 = 2

• 𝑇 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠’ = 𝑤𝑎𝑟𝑚 = 0.5

    𝑅 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑤𝑎𝑟𝑚 = 2

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠’ = 𝑐𝑜𝑜𝑙 × 𝑅(𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑐𝑜𝑜𝑙) + 𝛾 × 𝑉0 𝑠′ = 𝑐𝑜𝑜𝑙

+ 𝑇 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑤𝑎𝑟𝑚 × 𝑅 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑤𝑎𝑟𝑚 + 𝛾 × 𝑉0 𝑠′ = 𝑤𝑎𝑟𝑚 = 2 

Hence, 𝑉1 𝑐𝑜𝑜𝑙 = 2

𝑉0 𝑐𝑜𝑜𝑙 = 0,  𝑉0 𝑤𝑎𝑟𝑚 = 0,   𝑉0 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0 

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



• 𝑉1 𝑤𝑎𝑟𝑚 :

• 1. a=slow

     𝑇 𝑠 = 𝑤𝑎𝑟𝑚, 𝑎 = 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑐𝑜𝑜𝑙 = 0.5
    𝑅 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 = 1

    𝑇 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑤𝑎𝑟𝑚 = 0.5

   𝑅 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑤𝑎𝑟𝑚 = 1

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑐𝑜𝑜𝑙 × 𝑅(𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙) + 𝛾 × 𝑉0 𝑠′ = 𝑐𝑜𝑜𝑙

+ 𝑇 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑤𝑎𝑟𝑚 × 𝑅 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑤𝑎𝑟𝑚 + 𝛾 × 𝑉0 𝑠′ = 𝑤𝑎𝑟𝑚 = 1 

𝑉0 𝑐𝑜𝑜𝑙 = 0,  𝑉0 𝑤𝑎𝑟𝑚 = 0,   𝑉0 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0 

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



• 𝑉1 𝑤𝑎𝑟𝑚 :

• 2. a=fast
• 𝑇 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 1

       𝑅 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = −10

• 𝑉0 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 × [
]

𝑅 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑
+ 𝛾 × 𝑉0 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑

    = 1 × −10 + 1 × 0 = −10 

Hence, 𝑉1 𝑤𝑎𝑟𝑚 = 1

𝑉0 𝑐𝑜𝑜𝑙 = 0,  𝑉0 𝑤𝑎𝑟𝑚 = 0,   𝑉0 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0 

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



• 𝑉1 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 :

• Overheated is the end state
• No more state transition (no 𝑠’)

• No 𝑇(𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑, 𝑎, 𝑠’), no 𝑅(𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑, 𝑎, 𝑠’)

Hence, 𝑉1 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

𝑉0 𝑐𝑜𝑜𝑙 = 0,  𝑉0 𝑤𝑎𝑟𝑚 = 0,   𝑉0 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0 

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Example: Value Iteration

0             0             0

2             1             0

3.5          2.5          0

Assume no discount!

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



• 𝑉2 𝑐𝑜𝑜𝑙 :

• 1. a=slow
• 𝑇 𝑐𝑜𝑜𝑙, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 = 1

       𝑅 𝑐𝑜𝑜𝑙, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 = 1

• 𝑉1 𝑠′ = 𝑐𝑜𝑜𝑙 = 2

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑐𝑜𝑜𝑙, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 × 𝑅 𝑐𝑜𝑜𝑙, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 + 𝛾 × 𝑉1 𝑠′ = 𝑐𝑜𝑜𝑙

    = 1 × 1 + 1 × 2 = 3 

𝑉1 𝑐𝑜𝑜𝑙 = 2,  𝑉1 𝑤𝑎𝑟𝑚 = 1,   𝑉1 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0 

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



• 𝑉2 𝑐𝑜𝑜𝑙 :

• 2. a=fast
• 𝑇(𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠’ = 𝑐𝑜𝑜𝑙) = 0.5

𝑅 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑐𝑜𝑜𝑙 = 2

• 𝑇 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠’ = 𝑤𝑎𝑟𝑚 = 0.5
     𝑅 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑤𝑎𝑟𝑚 = 2

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠’ = 𝑐𝑜𝑜𝑙 × 𝑅(𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑐𝑜𝑜𝑙) + 𝛾 × 𝑉1 𝑠′ = 𝑐𝑜𝑜𝑙
+ 𝑇 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑤𝑎𝑟𝑚 × 𝑅 𝑐𝑜𝑜𝑙, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑤𝑎𝑟𝑚 + 𝛾 × 𝑉1 𝑠′ = 𝑤𝑎𝑟𝑚
= 0.5 × 2 + 1 × 2 + 0.5 × 2 + 1 × 1 = 2 + 1.5 = 3.5

Hence, 𝑉2 𝑐𝑜𝑜𝑙 = 3.5

𝑉1 𝑐𝑜𝑜𝑙 = 2,  𝑉1 𝑤𝑎𝑟𝑚 = 1,   𝑉1 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0 

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



• 𝑉2 𝑤𝑎𝑟𝑚 :

• 1. a=slow
• 𝑇(𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑐𝑜𝑜𝑙) = 0.5

𝑅 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙 = 1

• 𝑇(𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑤𝑎𝑟𝑚) = 0.5
𝑅 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑤𝑎𝑟𝑚 = 1

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠’ = 𝑐𝑜𝑜𝑙 × 𝑅(𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑐𝑜𝑜𝑙) + 𝛾 × 𝑉1 𝑠′ = 𝑐𝑜𝑜𝑙
+ 𝑇 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑤𝑎𝑟𝑚 × 𝑅 𝑤𝑎𝑟𝑚, 𝑠𝑙𝑜𝑤, 𝑠′ = 𝑤𝑎𝑟𝑚 + 𝛾 × 𝑉1 𝑠′ = 𝑤𝑎𝑟𝑚

    = 0.5 × 1 + 1 × 2 + 0.5 × 1 + 1 × 1 = 1.5 + 1 = 2.5

𝑉1 𝑐𝑜𝑜𝑙 = 2,  𝑉1 𝑤𝑎𝑟𝑚 = 1,   𝑉1 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0 

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



• 𝑉2 𝑤𝑎𝑟𝑚 :

• 2. a=fast
• 𝑇 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 1

      𝑅 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = −10

• 𝑉1 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

• 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 × [
]

𝑅 𝑤𝑎𝑟𝑚, 𝑓𝑎𝑠𝑡, 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 + 𝛾
× 𝑉1 𝑠′ = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑

    = 1 × −10 + 1 × 0 = −10 

Hence, 𝑉2 𝑤𝑎𝑟𝑚 = 2.5

𝑉1 𝑐𝑜𝑜𝑙 = 2,  𝑉1 𝑤𝑎𝑟𝑚 = 1,   𝑉1 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0 

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



• 𝑉2 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0

𝑉1 𝑐𝑜𝑜𝑙 = 2,  𝑉1 𝑤𝑎𝑟𝑚 = 1,   𝑉1 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑑 = 0 

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Example: Value Iteration

0             0             0

2             1             0

3.5          2.5          0

Assume no discount!

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Convergence of Value Iteration

• Theorem: will converge to unique optimal values

• Stopping Criterion

• Let the discount factor be 𝛾

• If we want to achieve: max
𝑠

𝑉𝑘+1(𝑠) − 𝑉∗(𝑠) < 𝜖, 

      then we need to run the iterations until

max
𝑠

𝑉𝑘+1(𝑠) − 𝑉𝑘(𝑠) < 𝜖(1 − 𝛾)/𝛾

.
These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Policy Extraction

• Assume we already calculated the optimal values V*(s)

• How to figure out the best action at state s?
• It’s not obvious!

• We need to do a mini-expectimax (one step look-ahead)

• 𝜋∗ 𝑠 = arg max
𝑎

𝑄(𝑠, 𝑎)

 

     𝜋∗ 𝑠 = arg max
𝑎

σ𝑠′ 𝑇(𝑠, 𝑎, 𝑠′) × 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗(𝑠′)

• This is called policy extraction
• It gets the actions implied by the values

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Computing Actions from Q-Values

• Let’s imagine we have the optimal q-values:

• How to figure out the best action at state s? 

• Completely trivial to decide!

• Important lesson: actions are easier to select from q-values than values!

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Policy Evaluation

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Fixed Policies

• When no policy is told: Expectimax trees max over all actions to compute the 
optimal values

• When a fixed policy  is told: the tree would be simpler - only one action per 
state

a

s

s, a

s,a,s’

s’

(s)

s

s, (s)

s, (s),s’

s’

When no policy is told:
Do the optimal action

When a policy  is told:
Do what  says to do

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Utilities for a Fixed Policy

• Define the value/utility of a state s, under a fixed policy :

V(s) = expected total discounted rewards starting in s and 
following 

• Recursive relation

(s)

s

s, (s)

s, (s),s’

s’

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Policy Evaluation

• How do we calculate the values 𝑉(𝑠) for a fixed policy ?

• Idea 1: Turn recursive Bellman equations into updates
 (like value iteration)

• Complexity: 𝑂( 𝑆 2) per iteration

(s)

s

s, (s)

s, (s),s’

s’

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.



Policy Evaluation

• How do we calculate the values 𝑉(𝑠) for a fixed policy ?

• Idea 2: Without the maxes, the Bellman equations are just 

                   a linear system
• Solve with Python (or your favorite linear system solver)

𝑉𝜋 𝑠1 = 𝑓1 𝑉𝜋 𝑠1 , 𝑉𝜋 𝑠2 , … , 𝑉𝜋 𝑠𝑁

𝑉𝜋 𝑠2 = 𝑓2 𝑉𝜋 𝑠1 , 𝑉𝜋 𝑠2 , … , 𝑉𝜋 𝑠𝑁

⋮

𝑉𝜋 𝑠𝑁 = 𝑓𝑁 𝑉𝜋 𝑠1 , 𝑉𝜋 𝑠2 , … , 𝑉𝜋 𝑠𝑁
Assume there are 𝑁 states, then
we have 𝑁 unknowns and 𝑁 linear equations

(s)

s

s, (s)

s, (s),s’

s’

These slides were adapted from the MDP lecture slides of cs188 developed at UC Berkeley, http://ai.berkeley.edu.
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