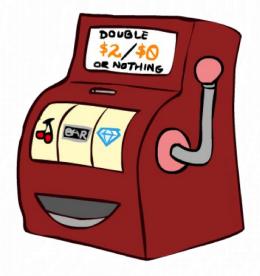
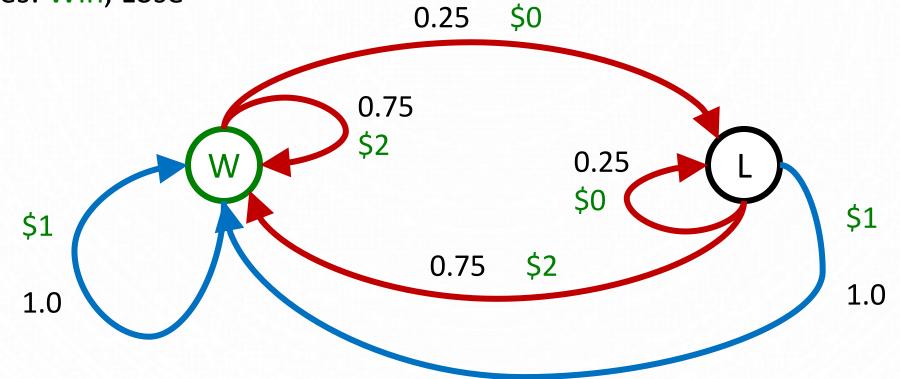
Reinforcement Learning

DOUBLE BANDITS



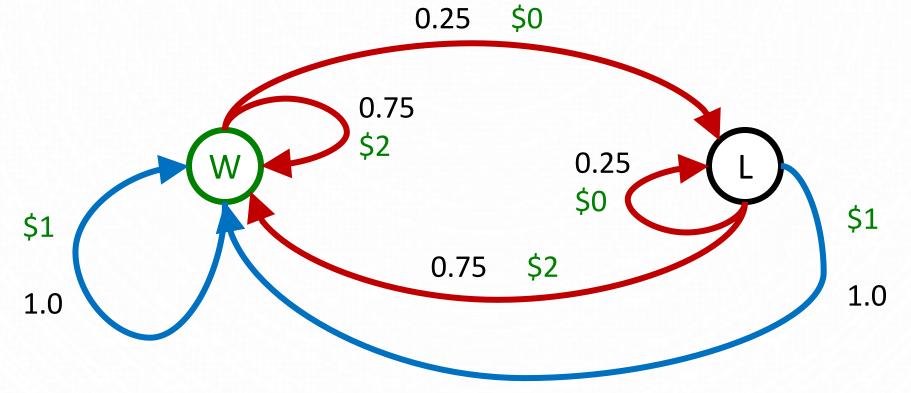
DOUBLE-BANDIT MDP

- Actions: *Blue, Red*
- States: Win, Lose



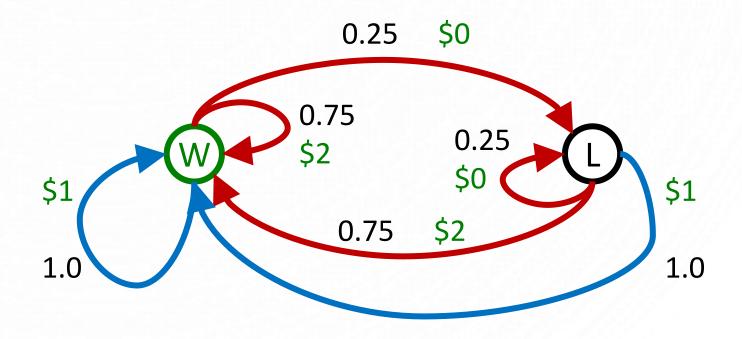
DOUBLE-BANDIT MDP

• Formulate the problem as an MDP, and solve it by Value Iteration, you will find the best policy is to always play the red machine

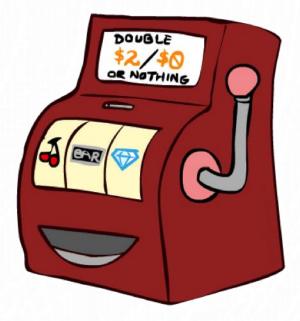


OFFLINE PLANNING

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!



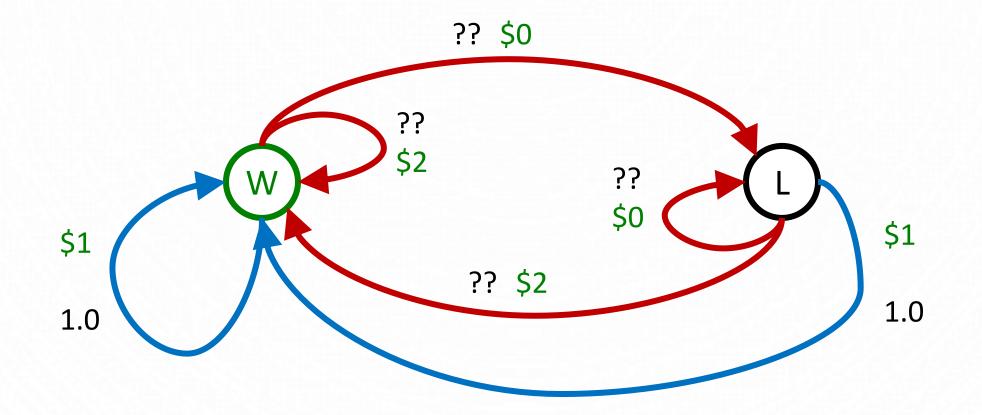
LET'S PLAY!



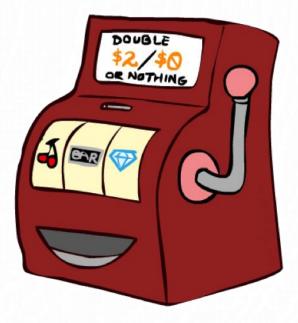
\$2\$2\$0\$2\$2\$0\$0\$0

ONLINE LEARNING

• Rules changed! Red's win chance is unknown.



LET'S PLAY!



\$0\$0\$0\$2\$0\$0\$0\$0\$0

WHAT JUST HAPPENED?

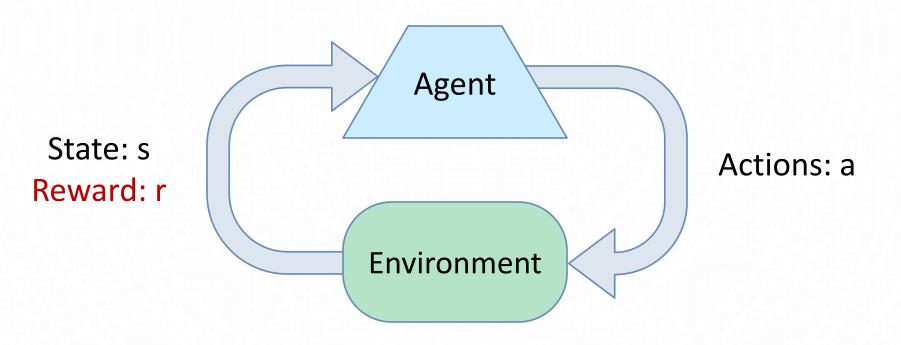
- That wasn't planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out

- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Sampling: because of chance, you have to try things repeatedly

EXPLORATION VS EXPLOITATION

- Restaurant Selection
 - Exploitation: Go to your favorite restaurant
 - Exploration: Try a new restaurant
- Oil Drilling
 - Exploitation: Drill at the best-known location
 - Exploration: Drill at a new location
- Game Playing
 - Exploitation: Play the move you believe is best
 - Exploration: Play an experimental move

REINFORCEMENT LEARNING



- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Initial

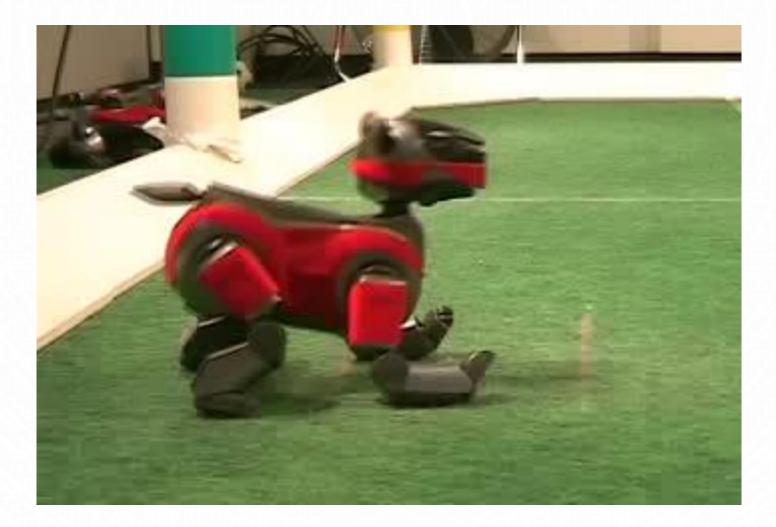
[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – initial]

Training

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – training]



Finished

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – finished]

EXAMPLE: SIDEWINDING

[Andrew Ng]

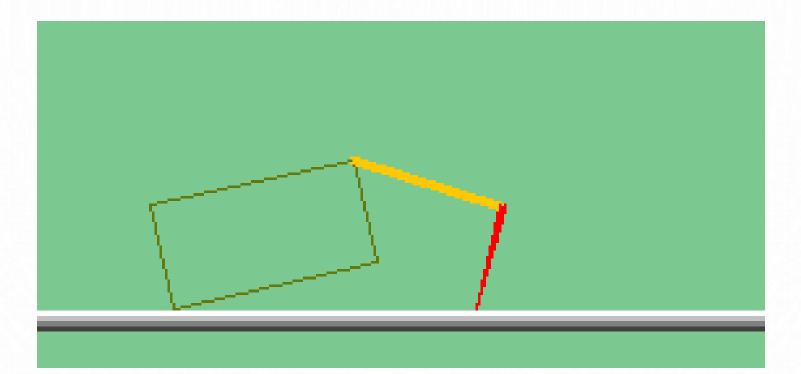
[Video: SNAKE – climbStep+sidewinding]

EXAMPLE: TODDLER ROBOT

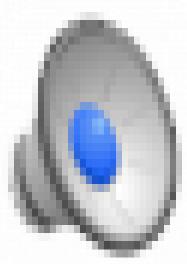
[Tedrake, Zhang and Seung, 2005]

[Video: TODDLER – 40s]

THE CRAWLER!

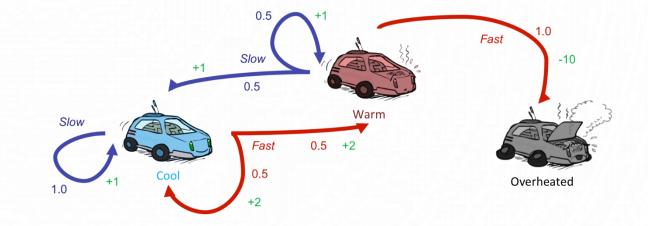


VIDEO OF DEMO CRAWLER BOT

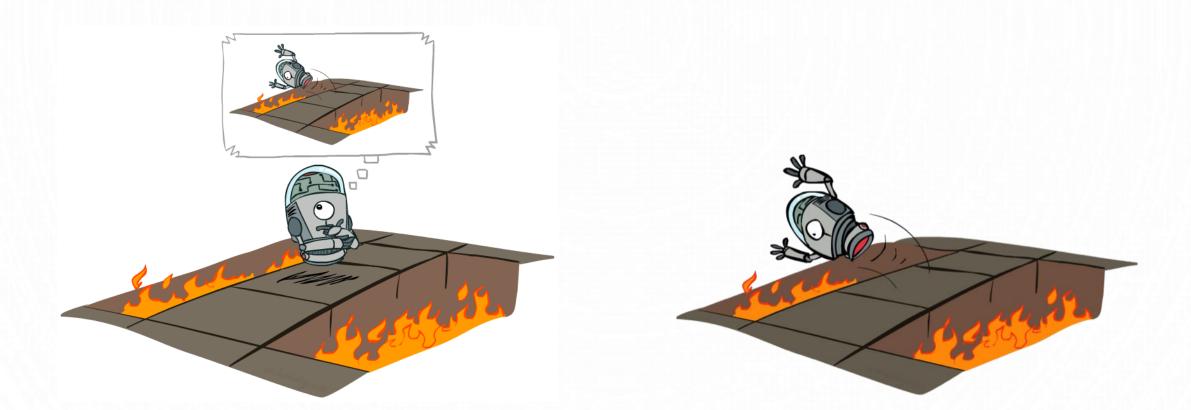


REINFORCEMENT LEARNING

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$
- New twist: don't know T or R
 - i.e. we don't know which states are good or what the actions do
 - Must actually try out actions and states to learn



OFFLINE (MDPS) VS. ONLINE (RL)



Offline Solution

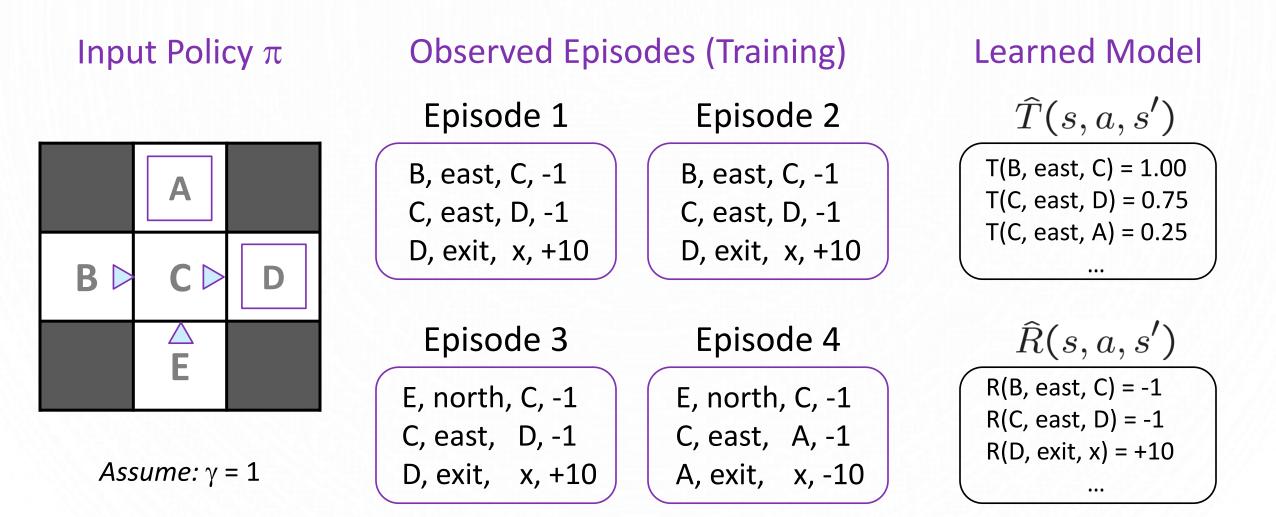
Online Learning

MODEL-BASED LEARNING 0

MODEL-BASED LEARNING

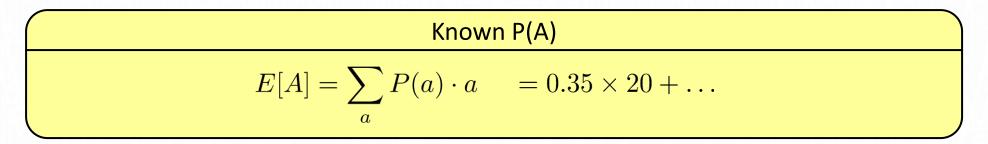
- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
 - Count outcomes s' for each (s, a)
 - Normalize to give an estimate of $\widehat{T}(s, a, s')$
 - Discover each $\widehat{R}(s, a, s')$ when we experience (s, a, s')
- Step 2: Solve the learned MDP
 - For example, use value iteration, as before

EXAMPLE: MODEL-BASED LEARNING

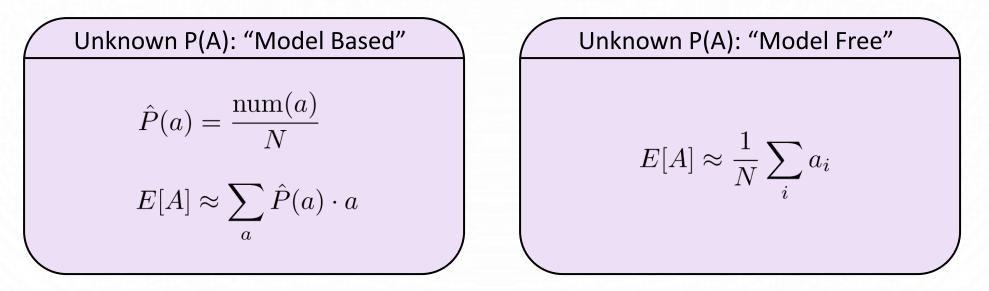


EXAMPLE: EXPECTED AGE

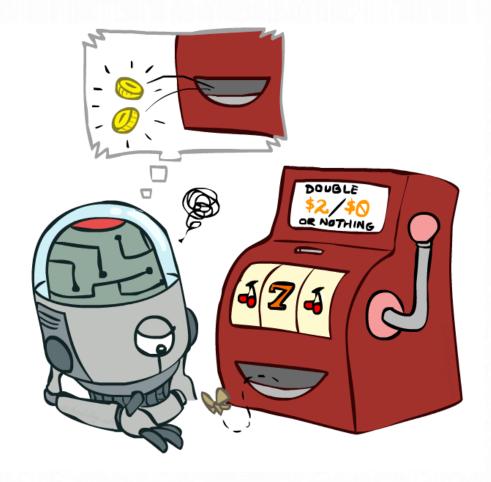
Goal: Compute expected age of students in a class



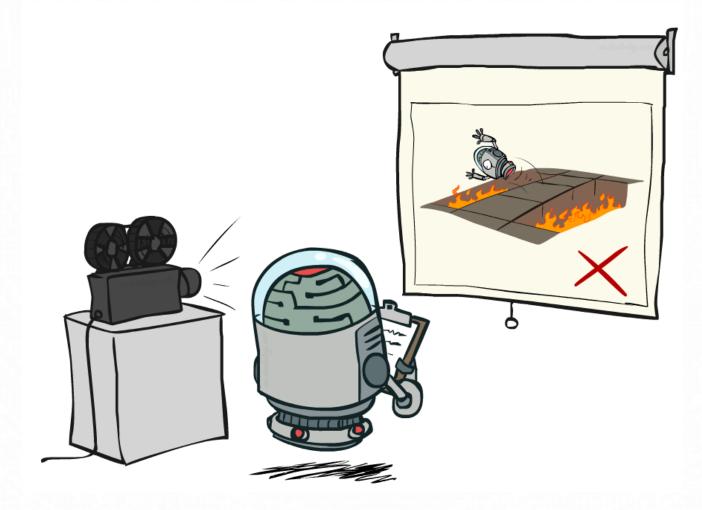
Without P(A), instead collect samples $[a_1, a_2, ..., a_N]$



MODEL-FREE LEARNING

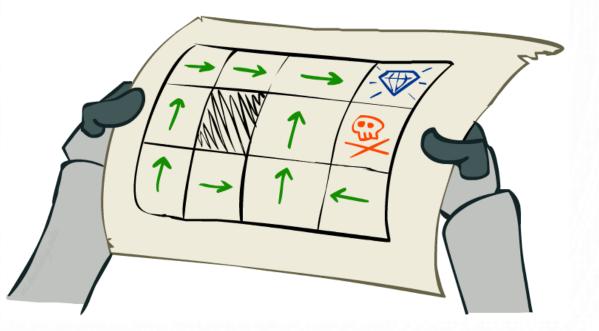


PASSIVE REINFORCEMENT LEARNING



PASSIVE REINFORCEMENT LEARNING

- Given a fixed policy $\pi(s)$
 - You don't know the transitions T(s, a, s')
 - You don't know the rewards R(s, a, s')
- Goal: learn the state values $V^{\pi}(s)$



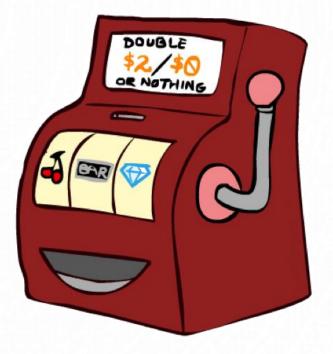
- In this case:
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.

$$V_0^{\pi}(s) = 0$$

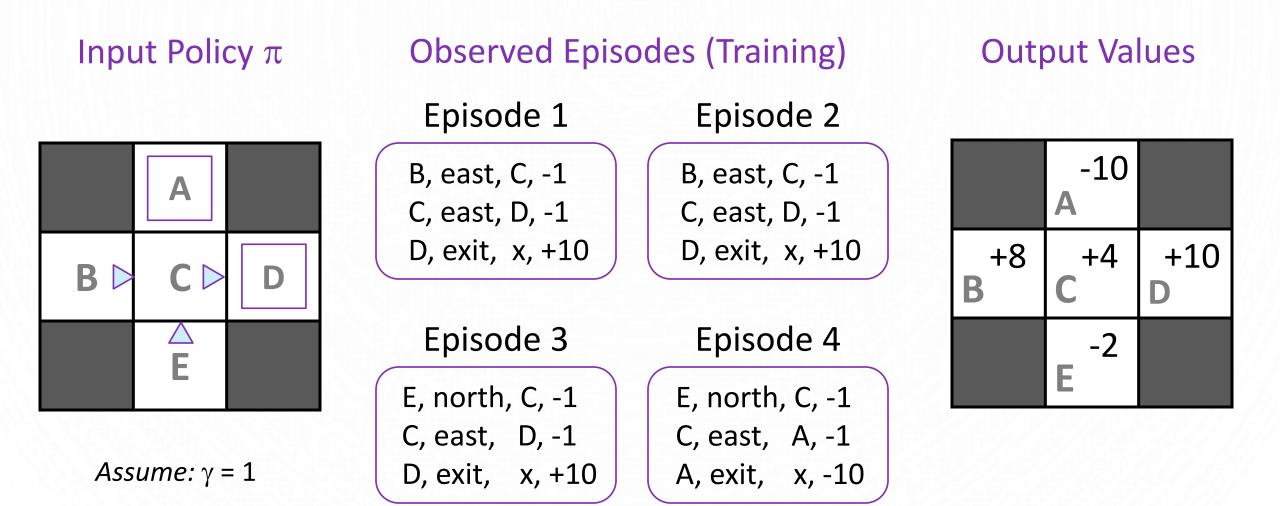
$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

DIRECT EVALUATION

- Goal: Compute the value for each state under a given π , i.e. $V^{\pi}(s)$
- Idea: Average together observed sample values
 - Let the agent act according to π
 - For each state, calculate the sum of the discounted rewards from that state to the end of the game
 - Average those samples from different episodes
- This is called direct evaluation



EXAMPLE: DIRECT EVALUATION



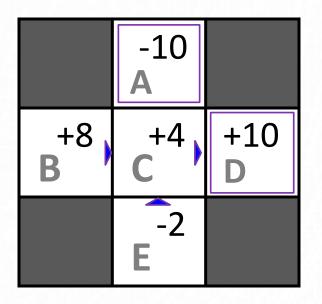
EXAMPLE: DIRECT EVALUATION

	Episode 1	Episode 2	Episode 3	Episode 4	average
А	none	none	none	-10	-10
В	-1-1+10=8	-1-1+10=8	none	none	+8
С	-1+10=9	-1+10=9	-1+10=9	-1-10=-11	+4
D	10	10	10	none	+10
E	none	none	-1-1+10=8	-1-1-10=-12	-2

PROBLEMS WITH DIRECT EVALUATION

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values



If B and E both go to C under this policy, how can their values be different?

WHY NOT USE POLICY EVALUATION?

π(s)

s, π(s)

(π(s),s

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - In other words, how do we take a weighted average without knowing the weights?

SAMPLE-BASED POLICY EVALUATION?

• We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

• Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_{1} = R(s, \pi(s), s_{1}') + \gamma V_{k}^{\pi}(s_{1}')$$

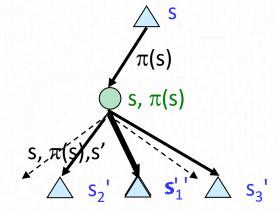
$$sample_{2} = R(s, \pi(s), s_{2}') + \gamma V_{k}^{\pi}(s_{2}')$$

$$\dots$$

$$sample_{n} = R(s, \pi(s), s_{n}') + \gamma V_{k}^{\pi}(s_{n}')$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{-} \sum sample_{i}$$

n



Almost! But we can't rewind time to get sample after sample from state s.

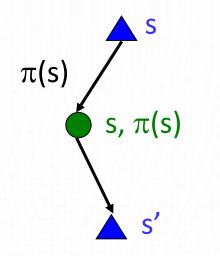
TEMPORAL DIFFERENCE LEARNING

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing policy evaluation!

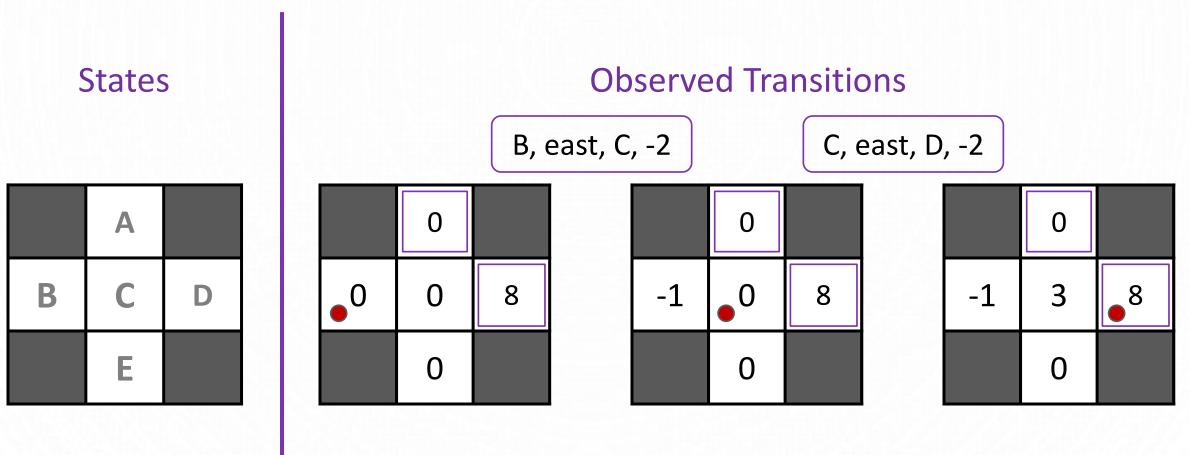
Sample of V(s): $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$

Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$



EXAMPLE: TEMPORAL DIFFERENCE LEARNING



Assume: $\gamma = 1$, $\alpha = 1/2$

 $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$

PROBLEMS WITH TD VALUE LEARNING

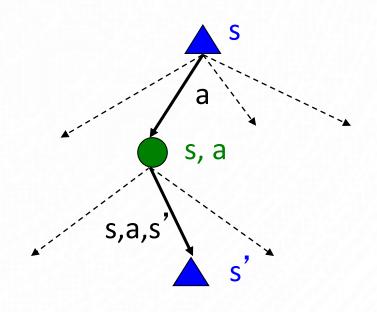
- TD value leaning is a model-free way to do policy evaluation (calculate the values V), mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q(s, a)$$
$$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

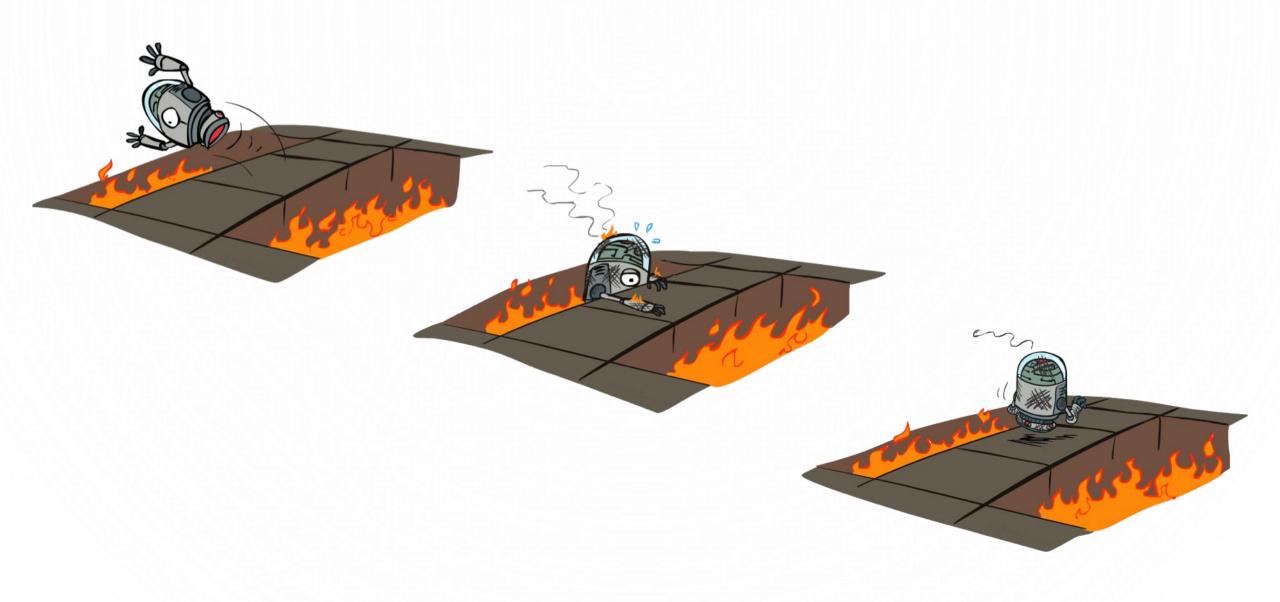
Recall: policy extraction:

 $\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \times [R(s, a, s') + \gamma V^*(s')]$

- Idea: learn Q-values, not values
- Makes action selection model-free too!

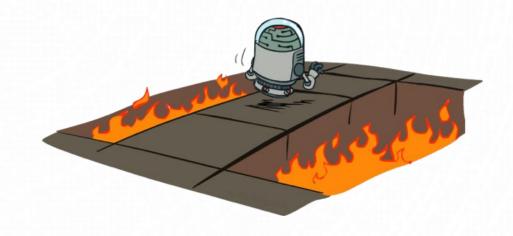


ACTIVE REINFORCEMENT LEARNING



ACTIVE REINFORCEMENT LEARNING

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values
- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...



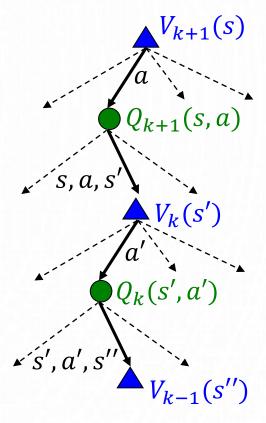
DETOUR: Q-VALUE ITERATION

- Value iteration:
 - Start with $V_0(s) = 0$
 - Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$
 - Given Q_k , calculate the $(k + 1)^{th}$ iteration q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$



Q-LEARNING

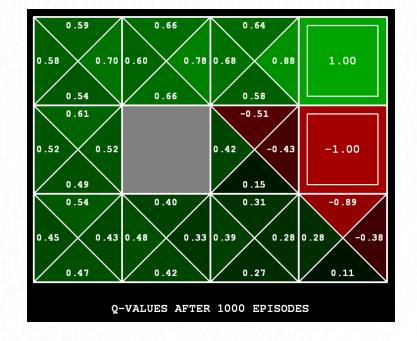
- Q-Learning: sample-based Q-value iteration $Q(s, a) \leftarrow Q(s, a) + \alpha(sample - Q(s, a))$
- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$

• Incorporate the new estimate into a running average:

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$

 $Q(s,a) \leftarrow Q(s,a) + \alpha(sample - Q(s,a))$



[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

VIDEO OF DEMO Q-LEARNING -- GRIDWORLD

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a') \quad \text{Let } \gamma = 1, \alpha = 0.5$ $Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [sample]$

