
Reinforcement Learning

DOUBLE BANDITS

DOUBLE-BANDIT MDP

• Actions: Blue, Red

• States: Win, Lose

W L

$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

DOUBLE-BANDIT MDP

• Formulate the problem as an MDP, and solve it by Value Iteration, you will find

the best policy is to always play the red machine

W L

$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

OFFLINE PLANNING

• Solving MDPs is offline planning

• You determine all quantities through computation

• You need to know the details of the MDP

• You do not actually play the game!

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

LET’S PLAY!

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0

ONLINE LEARNING

• Rules changed! Red’s win chance is unknown.

W L

$1

1.0

$1

1.0

?? $0

??
$2

?? $2

??
$0

LET’S PLAY!

$0 $0 $0 $2 $0

$2 $0 $0 $0 $0

WHAT JUST HAPPENED?

• That wasn’t planning, it was learning!

• Specifically, reinforcement learning

• There was an MDP, but you couldn’t solve it with just computation

• You needed to actually act to figure it out

• Important ideas in reinforcement learning that came up

• Exploration: you have to try unknown actions to get information

• Exploitation: eventually, you have to use what you know

• Sampling: because of chance, you have to try things repeatedly

EXPLORATION VS EXPLOITATION

• Restaurant Selection

• Exploitation: Go to your favorite restaurant

• Exploration: Try a new restaurant

• Oil Drilling

• Exploitation: Drill at the best-known location

• Exploration: Drill at a new location

• Game Playing

• Exploitation: Play the move you believe is best

• Exploration: Play an experimental move

REINFORCEMENT LEARNING

• Basic idea:
• Receive feedback in the form of rewards

• Agent’s utility is defined by the reward function

• Must (learn to) act so as to maximize expected rewards

• All learning is based on observed samples of outcomes!

Environment

Agent

Actions: aState: s
Reward: r

EXAMPLE: LEARNING TO WALK

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

EXAMPLE: LEARNING TO WALK

Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]

EXAMPLE: LEARNING TO WALK

Training
[Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]

EXAMPLE: LEARNING TO WALK

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

EXAMPLE: SIDEWINDING

[Andrew Ng] [Video: SNAKE – climbStep+sidewinding]

EXAMPLE: TODDLER ROBOT

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]

THE CRAWLER!

VIDEO OF DEMO CRAWLER BOT

REINFORCEMENT LEARNING

• Still assume a Markov decision process (MDP):

• A set of states s S

• A set of actions (per state) A

• A model T(s,a,s’)

• A reward function R(s,a,s’)

• Still looking for a policy (s)

• New twist: don’t know T or R

• i.e. we don’t know which states are good or what the actions do

• Must actually try out actions and states to learn

OFFLINE (MDPS) VS. ONLINE (RL)

Offline Solution Online Learning

MODEL-BASED LEARNING

MODEL-BASED LEARNING

• Model-Based Idea:
• Learn an approximate model based on experiences
• Solve for values as if the learned model were correct

• Step 1: Learn empirical MDP model
• Count outcomes s’ for each (s, a)
• Normalize to give an estimate of
• Discover each when we experience (s, a, s’)

• Step 2: Solve the learned MDP
• For example, use value iteration, as before

EXAMPLE: MODEL-BASED LEARNING

Input Policy

Assume: = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

EXAMPLE: EXPECTED AGE

Goal: Compute expected age of students in a class

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

MODEL-FREE LEARNING

PASSIVE REINFORCEMENT LEARNING

PASSIVE REINFORCEMENT LEARNING

• Given a fixed policy (𝑠)
• You don’t know the transitions 𝑇(𝑠, 𝑎, 𝑠′)
• You don’t know the rewards 𝑅(𝑠, 𝑎, 𝑠′)

• Goal: learn the state values 𝑉𝜋(𝑠)

• In this case:
• No choice about what actions to take
• Just execute the policy and learn from experience
• This is NOT offline planning! You actually take actions in the world.

DIRECT EVALUATION

• Goal: Compute the value for each state under a

given , i.e. 𝑉𝜋(𝑠)

• Idea: Average together observed sample values

• Let the agent act according to

• For each state, calculate the sum of the discounted

rewards from that state to the end of the game

• Average those samples from different episodes

• This is called direct evaluation

EXAMPLE: DIRECT EVALUATION

Input Policy

Assume: = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

EXAMPLE: DIRECT EVALUATION

Episode 1 Episode 2 Episode 3 Episode 4 average

A none none none -10 -10

B -1-1+10=8 -1-1+10=8 none none +8

C -1+10=9 -1+10=9 -1+10=9 -1-10=-11 +4

D 10 10 10 none +10

E none none -1-1+10=8 -1-1-10=-12 -2

PROBLEMS WITH DIRECT EVALUATION

• What’s good about direct evaluation?

• It’s easy to understand

• It doesn’t require any knowledge of T, R

• It eventually computes the correct average values,

using just sample transitions

• What bad about it?

• It wastes information about state connections

• Each state must be learned separately

• So, it takes a long time to learn

Output Values

If B and E both go to C
under this policy, how can
their values be different?

A

B C D

E

+8 +4 +10

-10

-2

WHY NOT USE POLICY EVALUATION?

• Simplified Bellman updates calculate V for a fixed policy:
• Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections between the states
• Unfortunately, we need T and R to do it!

• Key question: how can we do this update to V without knowing T and R?
• In other words, how do we take a weighted average without knowing the weights?

(s)

s

s, (s)

s, (s),s’

s’

SAMPLE-BASED POLICY EVALUATION?

• We want to improve our estimate of V by computing these averages:

• Idea: Take samples of outcomes s’ (by doing the action!) and average

(s)

s

s, (s)

s1's2' s3'

s, (s),s’

s'

Almost! But we can’t
rewind time to get sample
after sample from state s.

TEMPORAL DIFFERENCE LEARNING

• Big idea: learn from every experience!

• Update V(s) each time we experience a transition (s, a, s’, r)

• Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values

• Policy still fixed, still doing policy evaluation!

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

EXAMPLE: TEMPORAL DIFFERENCE LEARNING

Assume: = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

PROBLEMS WITH TD VALUE LEARNING

• TD value leaning is a model-free way to do policy evaluation (calculate the
values V), mimicking Bellman updates with running sample averages

• However, if we want to turn values into a (new) policy, we’re sunk:

• Recall: policy extraction:

 𝜋∗ 𝑠 = arg max
𝑎

σ𝑠′ 𝑇(𝑠, 𝑎, 𝑠′) × 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗(𝑠′)

• Idea: learn Q-values, not values

• Makes action selection model-free too!

a

s

s, a

s,a,s’

s’

ACTIVE REINFORCEMENT LEARNING

ACTIVE REINFORCEMENT LEARNING

• Full reinforcement learning: optimal policies (like value iteration)
• You don’t know the transitions T(s,a,s’)

• You don’t know the rewards R(s,a,s’)

• You choose the actions now

• Goal: learn the optimal policy / values

• In this case:
• Learner makes choices!

• Fundamental tradeoff: exploration vs. exploitation

• This is NOT offline planning! You actually take actions in the world and
find out what happens…

DETOUR: Q-VALUE ITERATION

• Value iteration:
• Start with V0(s) = 0
• Given Vk, calculate the depth k+1 values for all states:

• But Q-values are more useful, so compute them instead
• Start with Q0(s,a) = 0
• Given Qk, calculate the (𝑘 + 1)𝑡ℎ iteration q-values for all q-states:

𝑎

𝑉𝑘+1(𝑠)

𝑄𝑘+1(𝑠, 𝑎)

𝑠, 𝑎, 𝑠′

𝑉𝑘(𝑠′)

𝑎′

𝑠′, 𝑎′, 𝑠′′

𝑄𝑘(𝑠′, 𝑎′)

𝑉𝑘−1(𝑠′′)

Q-LEARNING

• Q-Learning: sample-based Q-value iteration

• Learn Q(s,a) values as you go

• Receive a sample (s,a,s’,r)

• Consider your old estimate:

• Consider your new sample estimate:

• Incorporate the new estimate into a running average:

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼(𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄 𝑠, 𝑎) [Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

VIDEO OF DEMO Q-LEARNING -- GRIDWORLD
Let 𝛾 = 1, 𝛼 = 0.5

	Slide 1
	Slide 2: Double Bandits
	Slide 3: Double-Bandit MDP
	Slide 4: Double-Bandit MDP
	Slide 5: Offline Planning
	Slide 6: Let’s Play!
	Slide 7: Online Learning
	Slide 8: Let’s Play!
	Slide 9: What Just Happened?
	Slide 10: Exploration vs exploitation
	Slide 11: Reinforcement Learning
	Slide 12: Example: Learning to Walk
	Slide 13: Example: Learning to Walk
	Slide 14: Example: Learning to Walk
	Slide 15: Example: Learning to Walk
	Slide 16: Example: Sidewinding
	Slide 17: Example: Toddler Robot
	Slide 18: The Crawler!
	Slide 19: Video of Demo Crawler Bot
	Slide 20: Reinforcement Learning
	Slide 21: Offline (MDPs) vs. Online (RL)
	Slide 22: Model-Based Learning
	Slide 23: Model-Based Learning
	Slide 24: Example: Model-Based Learning
	Slide 25: Example: Expected Age
	Slide 26: Model-Free Learning
	Slide 27: Passive Reinforcement Learning
	Slide 28: Passive Reinforcement Learning
	Slide 29: Direct Evaluation
	Slide 30: Example: Direct Evaluation
	Slide 31: Example: Direct Evaluation
	Slide 32: Problems with Direct Evaluation
	Slide 33: Why Not Use Policy Evaluation?
	Slide 34: Sample-Based Policy Evaluation?
	Slide 35: Temporal Difference Learning
	Slide 36: Example: Temporal Difference Learning
	Slide 37: Problems with TD Value Learning
	Slide 38: Active Reinforcement Learning
	Slide 39: Active Reinforcement Learning
	Slide 40: Detour: Q-Value Iteration
	Slide 41: Q-Learning
	Slide 42: Video of Demo Q-Learning -- Gridworld

