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Bayesian Net

• Causal relation among several events

• Observe some event(s)

• Want to infer the probability of other events

Section 14.1. Representing Knowledge in an Uncertain Domain 511

A Bayesian network is a directed graph in which each node is annotated with quantita-

tive probability information. The full specification is as follows:

1. Each node corresponds to a random variable, which may be discrete or continuous.

2. A set of directed links or arrows connects pairs of nodes. If there is an arrow from node

X to node Y , X is said to be a parent of Y. The graph has no directed cycles (and hence

is a directed acyclic graph, or DAG.

3. Each node X i has a conditional probability distribution P(X i | Par ents(X i )) that quan-

tifies the effect of the parents on the node.

The topology of the network—the set of nodes and links—specifies the conditional indepen-

dence relationships that hold in the domain, in a way that will be made precise shortly. The

intuitive meaning of an arrow is typically that X has a direct influence on Y, which suggests

that causes should be parents of effects. It is usually easy for a domain expert to decide what

direct influences exist in the domain—much easier, in fact, than actually specifying the prob-

abilities themselves. Once the topology of the Bayesian network is laid out, we need only

specify a conditional probability distribution for each variable, given its parents. We will

see that the combination of the topology and the conditional distributions suffices to specify

(implicitly) the full joint distribution for all the variables.

Recall the simple world described in Chapter 13, consisting of the variables Toothache,

Cavity , Catch, and Weather . We argued that Weather is independent of the other vari-

ables; furthermore, we argued that Toothache and Catch are conditionally independent,

given Cavity . These relationships are represented by the Bayesian network structure shown

in Figure 14.1. Formally, the conditional independence of Toothache and Catch, given

Cavity , is indicated by the absence of a link between Toothache and Catch. Intuitively, the

network represents the fact that Cavity is a direct cause of Toothache and Catch, whereas

no direct causal relationship exists between Toothache and Catch.

Now consider the following example, which is just a little more complex. You have

a new burglar alarm installed at home. It is fairly reliable at detecting a burglary, but also

responds on occasion to minor earthquakes. (This example is due to Judea Pearl, a resident

of Los Angeles—hence the acute interest in earthquakes.) You also have two neighbors, John

and Mary, who have promised to call you at work when they hear the alarm. John nearly

always calls when he hears the alarm, but sometimes confuses the telephone ringing with

Weather Cavity

Toothache Catch

Figure 14.1 A simple Bayesian network in which Weather is independent of the other

three variables and Toothache and Catch are conditionally independent, given Cavity .
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Bayesian Net

• Four variables:
⎻ 𝐶𝑎𝑣𝑖𝑡𝑦: a direct cause of 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 and 𝐶𝑎𝑡𝑐ℎ

⎻ 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 and 𝐶𝑎𝑡𝑐ℎ: no direct causal relationship

⎻ 𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 and 𝐶𝑎𝑡𝑐ℎ: conditionally independent, 
given 𝐶𝑎𝑣𝑖𝑡𝑦

Section 14.1. Representing Knowledge in an Uncertain Domain 511

A Bayesian network is a directed graph in which each node is annotated with quantita-

tive probability information. The full specification is as follows:

1. Each node corresponds to a random variable, which may be discrete or continuous.

2. A set of directed links or arrows connects pairs of nodes. If there is an arrow from node

X to node Y , X is said to be a parent of Y. The graph has no directed cycles (and hence

is a directed acyclic graph, or DAG.

3. Each node X i has a conditional probability distribution P(X i | Par ents(X i )) that quan-

tifies the effect of the parents on the node.

The topology of the network—the set of nodes and links—specifies the conditional indepen-

dence relationships that hold in the domain, in a way that will be made precise shortly. The

intuitive meaning of an arrow is typically that X has a direct influence on Y, which suggests

that causes should be parents of effects. It is usually easy for a domain expert to decide what

direct influences exist in the domain—much easier, in fact, than actually specifying the prob-

abilities themselves. Once the topology of the Bayesian network is laid out, we need only

specify a conditional probability distribution for each variable, given its parents. We will

see that the combination of the topology and the conditional distributions suffices to specify

(implicitly) the full joint distribution for all the variables.

Recall the simple world described in Chapter 13, consisting of the variables Toothache,

Cavity , Catch, and Weather . We argued that Weather is independent of the other vari-

ables; furthermore, we argued that Toothache and Catch are conditionally independent,

given Cavity . These relationships are represented by the Bayesian network structure shown

in Figure 14.1. Formally, the conditional independence of Toothache and Catch, given

Cavity , is indicated by the absence of a link between Toothache and Catch. Intuitively, the

network represents the fact that Cavity is a direct cause of Toothache and Catch, whereas

no direct causal relationship exists between Toothache and Catch.

Now consider the following example, which is just a little more complex. You have

a new burglar alarm installed at home. It is fairly reliable at detecting a burglary, but also

responds on occasion to minor earthquakes. (This example is due to Judea Pearl, a resident

of Los Angeles—hence the acute interest in earthquakes.) You also have two neighbors, John

and Mary, who have promised to call you at work when they hear the alarm. John nearly

always calls when he hears the alarm, but sometimes confuses the telephone ringing with

Weather Cavity

Toothache Catch

Figure 14.1 A simple Bayesian network in which Weather is independent of the other

three variables and Toothache and Catch are conditionally independent, given Cavity .

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 3



Bayesian Net

• Four variables:
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Bayesian Net

• A directed graph

• Each node: a R.V. (discrete or continuous)

• Directed links: connect pairs of nodes
⎻ A link from 𝑋 to 𝑌: 𝑋 is a parent of 𝑌

⎻ e.g. Cavity: a parent of Toothache
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Bayesian Net

• No directed cycles
⎻ A directed acyclic graph (DAG)

⎻ Equivalent to say: there exists an ordering of the 
nodes such that links always go from lower numbered 
nodes to higher numbered nodes

• Conditional probability

𝑃(𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))
⎻ Quantifies the effect of the parents on the child node
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Burglar Alarm Example

• You have a new burglar alarm installed at home

• The alarm also responds on occasion to minor 
earthquakes

• You have two neighbors John and Mary
⎻ They promised to call you at work when they hear the 

alarm
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Burglar Alarm Example

• John
⎻ Nearly always calls you when he hears the alarm

⎻ but sometimes confuses the telephone ringing with 
the alarm and calls you too

• Mary
⎻ Likes loud music and often misses the alarm 

• Given the evidence of who has or has not called you, 
we would like to estimate the probability of a 
burglary
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Bayesian Net

• Burglary and Earthquake directly affect the Alarm
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Bayesian Net

• Whether John and Mary call depends only on the 
alarm
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• They do not perceive burglaries directly
• They do not notice minor earthquakes 
• They do not confer before calling



Core Problems

• How to construct a Bayes Net?

• How to design inference procedures?

• Inference
⎻ e.g. given the evidence that John called, infer 

whether the Burglary occurred or not.

⎻ Find the probability…
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Joint Distribution

• Chain rule (joint distribution of 𝑛 variables) 

• 𝑃 𝑋1, … , 𝑋𝑛 = 𝑃 𝑋𝑛 𝑋𝑛−1, … , 𝑋1
× P 𝑋𝑛−1|𝑋𝑛−2, … , 𝑋1
×⋯× 𝑃 𝑋2 𝑋1 × 𝑃 𝑋1
= ς𝑖=1

𝑛 𝑃(𝑋𝑖|𝑋𝑖−1, … , 𝑋1)

• Joint distribution of all variables in the Bayes 
Net:

⎻ The product of the conditional probabilities of all 
variables 

⎻ 𝑃(𝑋1, … , 𝑋𝑛) = ς𝑖=1
𝑛 𝑃(𝑋𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))
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Construct Bayesian Networks

• Nodes
⎻ Determine the set of variables that are required to 

model the problem

• Links
⎻ For each node (variable), figure out its parent node(s), 

if there is any

e.g. P(MaryCalls|Alarm)

⎻ Draw a link pointing from the parent node to the child 
node
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Construct Bayesian Networks

• Number the nodes in a proper way
⎻ Parents have smaller order indices than their children

• 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑋𝑖 ⊆ {𝑋𝑖−1, … , 𝑋1}

• 𝑃 𝑋𝑖 𝑋𝑖−1 , … , 𝑋1 = 𝑃(𝑋𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

• Joint distribution of all variables in the Bayes 
Net:

⎻ The product of the conditional probabilities of all 
variables 

⎻ 𝑃(𝑋1, … , 𝑋𝑛) = ς𝑖=1
𝑛 𝑃(𝑋𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))
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Construct Bayesian Networks

• CPTs: Write out the conditional probability table for 
each variable that has parent node(s)
⎻ 𝑃 𝑋𝑖 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑋𝑖
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Example

• Draw the Bayesian Network that corresponds to the 
factored joint probability distribution

• P(A,B,C,D)= P(A)× P(B|A, C) ×P(C|D) ×P(D)

• Answer
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4. (10 pts total, 1 pt each) Bayesian Networks.  
Draw the Bayesian Network that corresponds to the conditional probability equation. 
 
 
4a.  P(B|A,C) P(A) P(C|D) P(D)   

 
 
4b.  P(A) P(B) P(C) P(D)    

 
 
4c.  P(A|B) P(C|B) P(B) P(D)   

 
 
4d.  P(D|C) P(C|B) P(B|A) P(A)   

 
 
4e.  P(B|A) P(A) P(C|D) P(D)   

Write down the factored conditional probability equation that corresponds to the 
graphical Bayesian Network shown. 
 
 
4f.  P(D|A,B,C) P(A) P(B) P(C)   

 

 
 
 
4g.  P(D|A,C) P(C|B) P(B|A) P(A)   

 
 
 
 
4h.  P(D|B,C) P(C|A,B) P(B) P(A)   

 
 
 
 
4i.  P(D|A,B,C) P(C|A,B) P(B|A) P(A)  

 
 
 
 
4j.  P(D|B,C) P(C|A) P(B|A) P(A)   
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See Section 14.2. 



Example

• Draw the Bayesian Network that corresponds to the 
factored joint probability

• P(A,B,C,D)= P(A|B)× P(B) ×P(C|B)×P(D)
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Example

• Write the joint probability P(A,B,C,D) in terms of the 
product of conditional probabilities (factored joint 
probability) for the following Bayesian Network

• Answer

• P(A,B,C,D)=P(A) ×P(B|A) ×P(C|B) ×P(D|C)
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Example

• Write the joint probability P(A,B,C,D) in terms of the 
product of conditional probabilities for the following 
Bayesian Network

• Answer

• P(A,B,C,D) = P(A) ×P(B|A) ×P(C|B) ×P(D|A,C)

CSEN266: Artificial Intelligence ©Ying Liu, Santa Clara University 19

5 

 

4. (10 pts total, 1 pt each) Bayesian Networks.  
Draw the Bayesian Network that corresponds to the conditional probability equation. 
 
 
4a.  P(B|A,C) P(A) P(C|D) P(D)   

 
 
4b.  P(A) P(B) P(C) P(D)    

 
 
4c.  P(A|B) P(C|B) P(B) P(D)   

 
 
4d.  P(D|C) P(C|B) P(B|A) P(A)   

 
 
4e.  P(B|A) P(A) P(C|D) P(D)   

Write down the factored conditional probability equation that corresponds to the 
graphical Bayesian Network shown. 
 
 
4f.  P(D|A,B,C) P(A) P(B) P(C)   

 

 
 
 
4g.  P(D|A,C) P(C|B) P(B|A) P(A)   

 
 
 
 
4h.  P(D|B,C) P(C|A,B) P(B) P(A)   

 
 
 
 
4i.  P(D|A,B,C) P(C|A,B) P(B|A) P(A)  

 
 
 
 
4j.  P(D|B,C) P(C|A) P(B|A) P(A)   

A

 B
C D

A

 

CB D

A

 

B
C D

A

 

B C D

A

 

B C D

A

 

D

CB

A

 

D

CB

A

 

D

C

B

A

 

D

C

B

A

 

D

C

B

See Section 14.2. 



Exact Inference in Bayesian Networks

• Task: to compute the posterior probability 
distribution for a set of query variables, given some 
observed event (some assignment of values to a set 
of evidence variables)
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Exact Inference in Bayesian Networks

• A simple model: consider only one query variable
⎻ Query variable: 𝑋

⎻ Evidence variables: 𝐄 = { 𝐸1, … , 𝐸𝑚}

⎻ The observed event: 𝐞 = {𝐸1 = 𝑒1, … , 𝐸𝑚 = 𝑒𝑚}

⎻ Hidden variables: 

Nonevidence, nonquery variables

𝐘 = {𝑌1, … , 𝑌𝑙}

⎻ The complete set of variables: 𝐕 = {𝑋} ∪ 𝐄 ∪ 𝐘

⎻ The query: ask for the posteriori probability 
distribution P(𝑋|𝐞)
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Burglary Alarm
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Burglary Alarm

• Query variable: 𝐵 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦

• 𝐵 can take two values:

𝐵=𝑏 (Burglary occurs)

𝐵=¬𝑏 (Burglary does not occur)
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Exact Inference in Bayesian Networks

• A simple model
⎻ Evidence variables:

⎻ 𝐽 (𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙𝑠)
• 𝐽 = 𝑗: John called

• 𝐽 = ¬𝑗: John didn’t call

⎻ 𝑀(𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙𝑠)

⎻ The observed event:

⎻ 𝐽 = 𝑗,𝑀 = 𝑚

⎻ That is, both John and Mary called

⎻ If 𝐽 = 𝑗,𝑀 = ¬𝑚 , this means John called but Mary 
didn’t call
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Burglary Alarm

• A simple model
⎻ Hidden variables: 

Nonevidence, nonquery variables

⎻ 𝐸 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒
• 𝐸 = 𝑒, or 𝐸 = ¬𝑒

⎻ 𝐴 (𝐴𝑙𝑎𝑟𝑚)
• 𝐴 = 𝑎, or 𝐴 = ¬𝑎

⎻ The query: ask for the posteriori probability 
distribution 𝑃 𝐵 𝑗,𝑚)
• That is, find 𝑃 𝐵 = 𝑏 𝑗,𝑚) and P 𝐵 = ¬𝑏 𝑗,𝑚)

⎻ Which variables are not included in 𝑃 𝐵 𝑗,𝑚)?

⎻ 𝐸, 𝐴
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Joint Distribution

• Joint distribution of all variables in the Bayes 
Net:

⎻ The product of the conditional probabilities of all 
variables 

⎻ 𝑃(𝑋1, … , 𝑋𝑛) = ς𝑖=1
𝑛 𝑃(𝑋𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

• Example: Calculate the joint probability that
⎻ The alarm has sounded

⎻ Neither a burglary nor an earthquake has occurred

⎻ Both John and Mary called

⎻ That is: 𝑃 𝑗,𝑚, 𝑎, ¬𝑏, ¬𝑒
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Joint Distribution

• 𝑃 𝑗,𝑚, 𝑎, ¬𝑏, ¬𝑒
= 𝑃 𝑗 𝑎 𝑃 𝑚 𝑎 𝑃 𝑎 ¬𝑏 ∧ ¬𝑒 𝑃 ¬𝑏 𝑃 ¬𝑒
= 0.90 × 0.70 × 0.001 × 0.999 × 0.998 = 0.000628
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Reduce variable(s) in a joint distribution

• Joint distribution 𝑃(𝑋, 𝐸, 𝑌)

• 𝑃 𝑋 = 0, 𝐸 = 0, 𝑌 = 1 =0.3

• 𝑃 𝑋 = 1, 𝐸 = 0, 𝑌 = 0 = 0.05

• ...
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Reduce variable(s) in a joint distribution

• Joint distribution 𝑃(𝑋, 𝐸, 𝑌)

• 𝑃 𝑋, 𝐸 = σ𝑌=0,1𝑃(𝑋, 𝐸, 𝑌)

• 𝑃 𝑋 = 0, 𝐸 = 0

= σ𝑌=0,1𝑃 𝑋 = 0, 𝐸 = 0, 𝑌
= 𝑃 𝑋 = 0, 𝐸 = 0, 𝑌 = 0

+ 𝑃 𝑋 = 0, 𝐸 = 0, 𝑌 = 1
= 0.1 + 0.3 = 0.4
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Reduce variable(s) in a joint distribution

• Joint distribution 𝑃(𝑋, 𝐸, 𝑌)

• 𝑃 𝑋, 𝐸 = σ𝑌=0,1𝑃(𝑋, 𝐸, 𝑌)

• 𝑃 𝑋 = 1, 𝐸 = 0

= σ𝑌=0,1𝑃 𝑋 = 1, 𝐸 = 0, 𝑌
= 𝑃 𝑋 = 1, 𝐸 = 0, 𝑌 = 0

+ 𝑃 𝑋 = 1, 𝐸 = 0, 𝑌 = 1
= 0.05 + 0.1 = 0.15
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Reduce variable(s) in a joint distribution

• Joint distribution 𝑃(𝑋, 𝐸, 𝑌)

• 𝑃 𝑌 = σ𝑋=0,1σ𝐸=0,1𝑃(𝑋, 𝐸, 𝑌)

• 𝑃 𝑌 = 0

= σ𝑋=0,1σ𝐸=0,1𝑃(𝑋, 𝐸, 𝑌 = 0)

= 𝑃 𝑋 = 0, 𝐸 = 0, 𝑌 = 0 + 𝑃(𝑋 = 0, 𝐸 = 1, 𝑌 = 0)+
𝑃 𝑋 = 1, 𝐸 = 0, 𝑌 = 0 + 𝑃(𝑋 = 1, 𝐸 = 1, 𝑌 = 0)

= 0.1 + 0.2 + 0.05 + 0.05 = 0.4
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Reduce variable(s) in a joint distribution

• Joint distribution 𝑃(𝑋, 𝐸, 𝑌)

• 𝑃 𝑌 = σ𝑋=0,1;𝐸=0,1𝑃(𝑋, 𝐸, 𝑌)

• 𝑃 𝑌 = 0 = σ𝑋=0,1;𝐸=0,1𝑃(𝑋, 𝐸, 𝑌 = 0)

= 𝑃 𝑋 = 0, 𝐸 = 0, 𝑌 = 0 + 𝑃(𝑋 = 0, 𝐸 = 1, 𝑌 = 0)+
𝑃 𝑋 = 1, 𝐸 = 0, 𝑌 = 0 + 𝑃(𝑋 = 1, 𝐸 = 1, 𝑌 = 0)

= 0.1 + 0.2 + 0.05 + 0.05 = 0.4
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Example

• Rain is the cause of Sprinkler

• Rain is the cause of Grass wet

• Sprinkler is the cause of Grass wet

• Goal: find the distribution of

• 𝑃(𝑅𝑎𝑖𝑛|𝐺𝑟𝑎𝑠𝑠 𝑤𝑒𝑡 = 𝑡)

• That is, find 
⎻ 𝑃(𝑅𝑎𝑖𝑛 = 𝑡|𝐺𝑟𝑎𝑠𝑠 𝑤𝑒𝑡 = 𝑡)

⎻ 𝑃(𝑅𝑎𝑖𝑛 = 𝑓|𝐺𝑟𝑎𝑠𝑠 𝑤𝑒𝑡 = 𝑡)

⎻ They sum up to 1
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Example

• 𝑅: Rain

• 𝐺: Grass

• 𝑆: Sprinkler 

• Goal: find 𝑃(𝑅 = 𝑡|𝐺 = 𝑡) and 𝑃(𝑅 = 𝑓|𝐺 = 𝑡)

• Which variable is not included in these two 
probabilities?
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1. Query variable?
Rain: 𝑅

2. Evidence variable?
Grass wet: 𝐺

3. Hidden variable?
Sprinkler: 𝑆



Disease and its symptoms

• Find P(flu|sore throat)
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1. Query variable?
flu

2. Evidence variable?
Sore throat

3. Hidden variable(s)?
Chills, fever

flu

fever sore 
throat

chills



Events surrounding a traffic jam

• Find P(bad weather|traffic jam, sirens)

• 1. Query variable?

• Bad weather
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Bad
weather

Traffic 
jam

accident
Rush 
hour

sirens



Events surrounding a traffic jam

• Find P(bad weather|traffic jam, sirens)

• 2. Evidence variable(s)?

• Traffic jam, sirens
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Bad
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Events surrounding a traffic jam

• Find P(bad weather|traffic jam, sirens)

• 3. Hidden variable(s)?

• Rush hour, accident
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Bad
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Inference 
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Sprinkler

Rain t f

f 0.4 0.6

t 0.01 0.99

Rain

t f

0.2 0.8

P(G|S,R) Grass Wet

Sprinkler Rain t f

f f 0.0 1.0

f t 0.8 0.2

t f 0.9 0.1

t t 0.99 0.01

• P(S|R)

Inference:
𝑃(𝑅|𝐺 = 𝑡)



Inference

• 𝑃 𝑅 = 𝑡 𝐺 = 𝑡 =
𝑃(𝑅=𝑡,𝐺=𝑡)

𝑃(𝐺=𝑡)
(1)

• 𝑃 𝑅 = 𝑓 𝐺 = 𝑡 =
𝑃(𝑅=𝑓,𝐺=𝑡)

𝑃(𝐺=𝑡)
(2)

• 𝑃(𝐺 = 𝑡) is the same in (1) and (2)

• 𝐿𝑒𝑡 𝛼 =
1

𝑃(𝐺=𝑡)
, 𝑡ℎ𝑒𝑛

• 𝑃 𝑅 = 𝑡 𝐺 = 𝑡 = 𝛼𝑃 𝑅 = 𝑡, 𝐺 = 𝑡

• Which variable is not utilized?

• 𝑆!
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Inference

• 𝑃 𝑅 = 𝑡 𝐺 = 𝑡 =
𝑃(𝑅=𝑡,𝐺=𝑡)

𝑃(𝐺=𝑡)
(1)

• 𝑃 𝑅 = 𝑓 𝐺 = 𝑡 =
𝑃(𝑅=𝑓,𝐺=𝑡)

𝑃(𝐺=𝑡)
(2)

• 𝑃(𝐺 = 𝑡) is the same in (1) and (2)

• 𝐿𝑒𝑡 𝛼 =
1

𝑃(𝐺=𝑡)
, 𝑡ℎ𝑒𝑛

• 𝑃 𝑅 = 𝑡 𝐺 = 𝑡 = 𝛼𝑃 𝑅 = 𝑡, 𝐺 = 𝑡

= 𝛼σ𝑆=𝑡,𝑓 𝑃(𝑅 = 𝑡, 𝐺 = 𝑡, 𝑆)

• Sum over hidden variable 𝑆
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Inference

• 𝑃 𝑅 = 𝑡 𝐺 = 𝑡 = 𝛼𝑃 𝑅 = 𝑡, 𝐺 = 𝑡

• = 𝛼σ𝑆=𝑡,𝑓𝑃(𝑅 = 𝑡, 𝐺 = 𝑡, 𝑆) (*)

• Recall

𝑃(𝑋1, … , 𝑋𝑛) =ෑ

𝑖=1

𝑛

𝑃(𝑋𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

• (*)= 𝛼σ𝑆=𝑡,𝑓 𝑃 𝑅 = 𝑡 𝑃 𝑆 𝑅 = 𝑡 𝑃 𝐺 = 𝑡 𝑅 = 𝑡, 𝑆

= 𝛼 𝑃 𝑅 = 𝑡
0.2

σ𝑆=𝑡,𝑓 𝑃(𝑆|𝑅 = 𝑡)𝑃 𝐺 = 𝑡 𝑅 = 𝑡, 𝑆
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0.2 0.8



Inference

• = 𝛼𝑃 𝑅 = 𝑡
0.2

σ𝑆=𝑡,𝑓𝑃(𝑆|𝑅 = 𝑡)𝑃 𝐺 = 𝑡 𝑅 = 𝑡, 𝑆

• = 𝛼 × 0.2 × [𝑃 𝑆 = 𝑡 𝑅 = 𝑡
0.01

× 𝑃 𝐺 = 𝑡 𝑅 = 𝑡, 𝑆 = 𝑡
0.99

+𝑃 𝑆 = 𝑓 𝑅 = 𝑡
0.99

× 𝑃 𝐺 = 𝑡 𝑅 = 𝑡, 𝑆 = 𝑓
0.8

]

• = 𝛼 × 0.1604
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P(S|R) Sprinkler

Rain t f

f 0.4 0.6

t 0.01 0.99

P(G|S,R) Grass Wet

Sprinkler Rain t f

f f 0.0 1.0

f t 0.8 0.2

t f 0.9 0.1

t t 0.99 0.01



Inference

• 𝑃 𝑅 = 𝑡 𝐺 = 𝑡 =
𝑃(𝑅=𝑡,𝐺=𝑡)

𝑃(𝐺=𝑡)
(1) = 𝛼 × 0.1604

• 𝑃 𝑅 = 𝑓 𝐺 = 𝑡 =
𝑃(𝑅=𝑓,𝐺=𝑡)

𝑃(𝐺=𝑡)
(2)

• 𝑃(𝐺 = 𝑡) is the same in (1) and (2)

• 𝐿𝑒𝑡 𝛼 =
1

𝑃(𝐺=𝑡)
, 𝑡ℎ𝑒𝑛

• 𝑃 𝑅 = 𝑓 𝐺 = 𝑡 = 𝛼𝑃 𝑅 = 𝑓, 𝐺 = 𝑡

= 𝛼σ𝑆=𝑡,𝑓 𝑃(𝑅 = 𝑓, 𝐺 = 𝑡, 𝑆)

• Sum over hidden variable 𝑆
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Inference

• 𝑃 𝑅 = 𝑓 𝐺 = 𝑡 = 𝛼𝑃 𝑅 = 𝑓, 𝐺 = 𝑡

• = 𝛼σ𝑆=𝑡,𝑓𝑃(𝑅 = 𝑓, 𝐺 = 𝑡, 𝑆)

• = 𝛼σ𝑆=𝑡,𝑓𝑃 𝑅 = 𝑓 𝑃 𝑆 𝑅 = 𝑓 𝑃 𝐺 = 𝑡 𝑅 = 𝑓, 𝑆

• = 𝛼𝑃 𝑅 = 𝑓
0.8

σ𝑆=𝑡,𝑓 𝑃(𝑆|𝑅 = 𝑓)𝑃 𝐺 = 𝑡 𝑅 = 𝑓, 𝑆
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Inference

• = 𝛼𝑃 𝑅 = 𝑓
0.8

σ𝑆=𝑡,𝑓 𝑃(𝑆|𝑅 = 𝑓)𝑃 𝐺 = 𝑡 𝑅 = 𝑓, 𝑆

• = 𝛼 × 0.8 × [𝑃 𝑆 = 𝑡 𝑅 = 𝑓
0.4

× 𝑃 𝐺 = 𝑡 𝑅 = 𝑓, 𝑆 = 𝑡
0.9

+𝑃 𝑆 = 𝑓 𝑅 = 𝑓
0.6

× 𝑃 𝐺 = 𝑡 𝑅 = 𝑓, 𝑆 = 𝑓
0

]

• = 𝛼 × 0.288
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P(S|R) Sprinkler

Rain t f

f 0.4 0.6

t 0.01 0.99

P(G|S,R) Grass Wet

Sprinkler Rain t f

f f 0.0 1.0

f t 0.8 0.2

t f 0.9 0.1

t t 0.99 0.01



Inference

• 𝑃(𝑅 = 𝑡│𝐺 = 𝑡) = 𝛼 × 0.1604

• 𝑃(𝑅 = 𝑓│𝐺 = 𝑡) = 𝛼 × 0.288

• 𝛼 × 0.1604+𝛼 × 0.288 = 1, 𝛼 = 2.2302

• Distribution:

• 𝑃 𝑅 = 𝑡 𝐺 = 𝑡 = 𝛼 × 0.1604 = 0.3577

• 𝑃 𝑅 = 𝑓 𝐺 = 𝑡 = 𝛼 × 0.288 = 0.6423
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Inference

• 𝑃(𝑅 = 𝑡│𝐺 = 𝑡) = 𝛼 × 0.1604

• 𝑃(𝑅 = 𝑓│𝐺 = 𝑡) = 𝛼 × 0.288

• Distribution (another way to calculate it):

• 𝑃 𝑅 = 𝑡 𝐺 = 𝑡 =
𝛼×0.1604

𝛼×0.1604+𝛼×0.288
= 0.3577

• 𝑃 𝑅 = 𝑓 𝐺 = 𝑡 =
𝛼×0.288

𝛼×0.1604+𝛼×0.288
= 0.6423
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