Bayes Net

CSEN266

Artificial Intelligence

Bayesian Net

- Causal relation among several events
- Observe some event(s)
- Want to infer the probability of other events

Bayesian Net

- Four variables:

- Cavity: a direct cause of Toothache and Catch
- Toothache and Catch: no direct causal relationship
- Toothache and Catch: conditionally independent, given Cavity

Bayesian Net

- Four variables:

- Weather: independent of the other variables

Bayesian Net

- A directed graph
- Each node: a R.V. (discrete or continuous)
- Directed links: connect pairs of nodes
- A link from X to $Y: X$ is a parent of Y
- e.g. Cavity: a parent of Toothache

Bayesian Net

- No directed cycles
- A directed acyclic graph (DAG)
- Equivalent to say: there exists an ordering of the nodes such that links always go from lower numbered nodes to higher numbered nodes
- Conditional probability
$P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
- Quantifies the effect of the parents on the child node

Burglar Alarm Example

- You have a new burglar alarm installed at home
- The alarm also responds on occasion to minor earthquakes
- You have two neighbors John and Mary
- They promised to call you at work when they hear the alarm

Burglar Alarm Example

- John
- Nearly always calls you when he hears the alarm
- but sometimes confuses the telephone ringing with the alarm and calls you too
- Mary
- Likes loud music and often misses the alarm
- Given the evidence of who has or has not called you, we would like to estimate the probability of a burglary

Bayesian Net

- Burglary and Earthquake directly affect the Alarm

Bayesian Net

- Whether John and Mary call depends only on the alarm • They do not perceive burglaries directly
- They do not notice minor earthquakes
- They do not confer before calling

Core Problems

- How to construct a Bayes Net?
- How to design inference procedures?
- Inference
- e.g. given the evidence that John called, infer whether the Burglary occurred or not.
- Find the probability...

Joint Distribution

- Chain rule (joint distribution of n variables)
- $P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{n} \mid X_{n-1}, \ldots, X_{1}\right)$

$$
\begin{gathered}
\times \mathrm{P}\left(X_{n-1} \mid X_{n-2}, \ldots, X_{1}\right) \\
\times \cdots \times P\left(X_{2} \mid X_{1}\right) \times P\left(X_{1}\right) \\
=\prod_{i=1}^{n} P\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)
\end{gathered}
$$

- Joint distribution of all variables in the Bayes Net:
- The product of the conditional probabilities of all variables
$-P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid p a r e n t s\left(X_{i}\right)\right)$

Construct Bayesian Networks

- Nodes
- Determine the set of variables that are required to model the problem
- Links
- For each node (variable), figure out its parent node(s), if there is any

```
e.g. P(MaryCalls|Alarm)
```

- Draw a link pointing from the parent node to the child node

Construct Bayesian Networks

- Number the nodes in a proper way
- Parents have smaller order indices than their children
- parents $\left(X_{i}\right) \subseteq\left\{X_{i-1}, \ldots, X_{1}\right\}$
- $P\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)=P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
- Joint distribution of all variables in the Bayes Net:
- The product of the conditional probabilities of all variables
- $P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid p a r e n t s\left(X_{i}\right)\right)$

Construct Bayesian Networks

- CPTs: Write out the conditional probability table for each variable that has parent node(s)
- $P\left(X_{i} \mid p a r e n t s\left(X_{i}\right)\right)$

Example

- Draw the Bayesian Network that corresponds to the factored joint probability distribution
- $P(A, B, C, D)=P(A) \times P(B \mid A, C) \times P(C \mid D) \times P(D)$
- Answer

Example

- Draw the Bayesian Network that corresponds to the factored joint probability
- $P(A, B, C, D)=P(A \mid B) \times P(B) \times P(C \mid B) \times P(D)$
- Answer

Example

- Write the joint probability $P(A, B, C, D)$ in terms of the product of conditional probabilities (factored joint probability) for the following Bayesian Network

- Answer
- $P(A, B, C, D)=P(A) \times P(B \mid A) \times P(C \mid B) \times P(D \mid C)$

Example

- Write the joint probability $P(A, B, C, D)$ in terms of the product of conditional probabilities for the following Bayesian Network

- Answer
- $P(A, B, C, D)=P(A) \times P(B \mid A) \times P(C \mid B) \times P(D \mid A, C)$

Exact Inference in Bayesian Networks

- Task: to compute the posterior probability distribution for a set of query variables, given some observed event (some assignment of values to a set of evidence variables)

Exact Inference in Bayesian Networks

- A simple model: consider only one query variable
- Query variable: X
- Evidence variables: $\mathbf{E}=\left\{E_{1}, \ldots, E_{m}\right\}$
- The observed event: $\mathbf{e}=\left\{E_{1}=e_{1}, \ldots, E_{m}=e_{m}\right\}$
- Hidden variables:

Nonevidence, nonquery variables
$\mathbf{Y}=\left\{Y_{1}, \ldots, Y_{l}\right\}$

- The complete set of variables: $\mathbf{V}=\{X\} \cup \mathbf{E} \cup \mathbf{Y}$
- The query: ask for the posteriori probability distribution $\mathrm{P}(X \mid \mathbf{e})$

Burglary Alarm

Burglary Alarm

- Query variable: B (Burglary)
- B can take two values:
$B=b$ (Burglary occurs)
$B=\neg b$ (Burglary does not occur)

Exact Inference in Bayesian Networks

- A simple model
- Evidence variables:
- J (JohnCalls)
- $J=j$: John called
- $J=\neg j$: John didn't call
- M(MaryCalls)
- The observed event:
- $J=j, M=m$
- That is, both John and Mary called
- If $J=j, M=\neg m$, this means John called but Mary didn't call

Burglary Alarm

- A simple model
- Hidden variables:

Nonevidence, nonquery variables

- E (Earthquake)
- $E=e$, or $E=\neg e$
- A (Alarm)
- $A=a$, or $A=\neg a$
- The query: ask for the posteriori probability distribution $P(B \mid j, m)$
- That is, find $P(B=b \mid j, m)$ and $\mathrm{P}(B=\neg b \mid j, m)$
- Which variables are not included in $P(B \mid j, m)$?
- E, A

Joint Distribution

- Joint distribution of all variables in the Bayes Net:
- The product of the conditional probabilities of all variables
$-P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid p a r e n t s\left(X_{i}\right)\right)$
- Example: Calculate the joint probability that
- The alarm has sounded
- Neither a burglary nor an earthquake has occurred
- Both John and Mary called
- That is: $P(j, m, a, \neg b, \neg e)$

Joint Distribution

- $P(j, m, a, \neg b, \neg e)$
$=P(j \mid a) P(m \mid a) P(a \mid \neg b \wedge \neg e) P(\neg b) P(\neg e)$
$=0.90 \times 0.70 \times 0.001 \times 0.999 \times 0.998=0.000628$

Reduce variable(s) in a joint distribution

- Joint distribution $P(X, E, Y)$

	$X=0, E=0$	$X=0, E=1$	$X=1, E=0$	$X=1, E=1$
$Y=0$	0.1	0.2	0.05	0.05
$Y=1$	0.3	0.1	0.1	0.1

- $P(X=0, E=0, Y=1)=0.3$
- $P(X=1, E=0, Y=0)=0.05$

Reduce variable(s) in a joint distribution

- Joint distribution $P(X, E, Y)$

	$X=0, E=0$	$X=0, E=1$	$X=1, E=0$	$X=1, E=1$
$Y=0$	0.1	0.2	0.05	0.05
$Y=1$	0.3	0.1	0.1	0.1

- $P(X, E)=\sum_{Y=0,1} P(X, E, Y)$
- $P(X=0, E=0)$

$$
\begin{aligned}
= & \sum_{Y=0,1} P(X=0, E=0, Y) \\
= & P(X=0, E=0, Y=0) \\
& +P(X=0, E=0, Y=1) \\
= & 0.1+0.3=0.4
\end{aligned}
$$

Reduce variable(s) in a joint distribution

- Joint distribution $P(X, E, Y)$

	$X=0, E=0$	$X=0, E=1$	$X=1, E=0$	$X=1, E=1$
$Y=0$	0.1	0.2	0.05	0.05
$Y=1$	0.3	0.1	0.1	0.1

- $P(X, E)=\sum_{Y=0,1} P(X, E, Y)$
- $P(X=1, E=0)$

$$
\begin{aligned}
= & \sum_{Y=0,1} P(X=1, E=0, Y) \\
= & P(X=1, E=0, Y=0) \\
& +P(X=1, E=0, Y=1) \\
= & 0.05+0.1=0.15
\end{aligned}
$$

Reduce variable(s) in a joint distribution

- Joint distribution $P(X, E, Y)$

	$X=0, E=0$	$X=0, E=1$	$X=1, E=0$	$X=1, E=1$
$Y=0$	0.1	0.2	0.05	0.05
$Y=1$	0.3	0.1	0.1	0.1

- $P(Y)=\sum_{X=0,1} \sum_{E=0,1} P(X, E, Y)$
- $P(Y=0)$
$=\sum_{X=0,1} \sum_{E=0,1} P(X, E, Y=0)$
$=P(X=0, E=0, Y=0)+P(X=0, E=1, Y=0)+$
$P(X=1, E=0, Y=0)+P(X=1, E=1, Y=0)$
$=0.1+0.2+0.05+0.05=0.4$

Reduce variable(s) in a joint distribution

- Joint distribution $P(X, E, Y)$

	$X=0, E=0$	$X=0, E=1$	$X=1, E=0$	$X=1, E=1$
$Y=0$	0.1	0.2	0.05	0.05
$Y=1$	0.3	0.1	0.1	0.1

- $P(Y)=\sum_{X=0,1 ; E=0,1} P(X, E, Y)$
- $P(Y=0)=\sum_{X=0,1 ; E=0,1} P(X, E, Y=0)$

$$
=P(X=0, E=0, Y=0)+P(X=0, E=1, Y=0)+
$$

$$
P(X=1, E=0, Y=0)+P(X=1, E=1, Y=0)
$$

$$
=0.1+0.2+0.05+0.05=0.4
$$

Example

- Rain is the cause of Sprinkler
- Rain is the cause of Grass wet

Grass wet

- Sprinkler is the cause of Grass wet
- Goal: find the distribution of
- $P($ Rain \mid Grass wet $=t)$
- That is, find
$-P($ Rain $=t \mid$ Grass wet $=t)$
$-P($ Rain $=f \mid$ Grass wet $=t)$
- They sum up to 1

Example

1. Query variable? Rain: R

2. Evidence variable? Grass wet: G

- R: Rain

3. Hidden variable? Sprinkler: S

- G: Grass
- S : Sprinkler
- Goal: find $P(R=t \mid G=t)$ and $P(R=f \mid G=t)$
- Which variable is not included in these two probabilities?

Disease and its symptoms

- Find $\mathrm{P}($ flu \mid sore throat $)$

3. Hidden variable(s)?

Chills, fever

Events surrounding a traffic jam

- Find $P($ bad weather|traffic jam, sirens)
- 1. Query variable?
- Bad weather

Events surrounding a traffic jam

- Find $P($ bad weather|traffic jam, sirens)
- 2. Evidence variable(s)?
- Traffic jam, sirens

Events surrounding a traffic jam

- Find P(bad weather|traffic jam, sirens)
- 3. Hidden variable(s)?
- Rush hour, accident

Inference

$P(S / R)$	Sprinkler	
Rain	t	f
f	0.4	0.6
t	0.01	0.99

	$P(G / S, R)$			Grass Wet	
Inference:	Sprinkler	Rain	t	f	
	f	f	0.0	1.0	
	f	t	0.8	0.2	
	t	f	0.9	0.1	
	t	t	0.99	0.01	

Inference

- $P(R=t \mid G=t)=\frac{P(R=t, G=t)}{P(G=t)}$
- $P(R=f \mid G=t)=\frac{P(R=f, G=t)}{P(G=t)}$
- $P(G=t)$ is the same in (1) and (2)
- Let $\alpha=\frac{1}{P(G=t)}$,then
- $P(R=t \mid G=t)=\alpha P(R=t, G=t)$
- Which variable is not utilized?
-S!

Inference

- $P(R=t \mid G=t)=\frac{P(R=t, G=t)}{P(G=t)}$
- $P(R=f \mid G=t)=\frac{P(R=f, G=t)}{P(G=t)}$
- $P(G=t)$ is the same in (1) and (2)
- Let $\alpha=\frac{1}{P(G=t)}$,then
- $P(R=t \mid G=t)=\alpha P(R=t, G=t)$
$=\alpha \sum_{S=t, f} P(R=t, G=t, S)$
- Sum over hidden variable S

Inference

- $P(R=t \mid G=t)=\alpha P(R=t, G=t)$
- $=\alpha \sum_{s=t, f} P(R=t, G=t, S)$
- Recall

$$
\begin{gathered}
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \text { parents }\left(X_{i}\right)\right) \\
\cdot\left(^{*}\right)=\alpha \sum_{S=t, f} P(R=t) P(S \mid R=t) P(G=t \mid R=t, S) \\
=\alpha \underbrace{P(R=t)}_{0.2} \sum_{S=t, f} P(S \mid R=t) P(G=t \mid R=t, S)
\end{gathered}
$$

Inference

$\cdot \alpha \underbrace{P(R=t)}_{0.2} \sum_{S=t, f} P(S \mid R=t) P(G=t \mid R=t, S)$
$\bullet=\alpha \times 0.2 \times[\underbrace{P(S=t \mid R=t)}_{0.01} \times \underbrace{P(G=t \mid R=t, S=t)}_{0.99}$

$$
+\underbrace{P(S=f \mid R=t)}_{0.99} \times \underbrace{P(G=t \mid R=t, S=f)}_{0.8}]
$$

- $=\alpha \times 0.1604$

$P(S / R)$	Sprinkler	
Rain	t	f
f	0.4	0.6
t	0.01	0.99

$P(G \mid S, R)$

Sprinkler	Rain	t	f
f	f	0.0	1.0
f	t	0.8	0.2
t	f	0.9	0.1
t	t	0.99	0.01

Inference

- $P(R=t \mid G=t)=\frac{P(R=t, G=t)}{P(G=t)} \quad(1)=\alpha \times 0.1604$
- $P(R=f \mid G=t)=\frac{P(R=f, G=t)}{P(G=t)}$
- $P(G=t)$ is the same in (1) and (2)
- Let $\alpha=\frac{1}{P(G=t)}$,then
- $P(R=f \mid G=t)=\alpha P(R=f, G=t)$
$=\alpha \sum_{S=t, f} P(R=f, G=t, S)$
- Sum over hidden variable S

Inference

- $P(R=f \mid G=t)=\alpha P(R=f, G=t)$
- $=\alpha \sum_{S=t, f} P(R=f, G=t, S)$
$\cdot=\alpha \sum_{S=t, f} P(R=f) P(S \mid R=f) P(G=t \mid R=f, S)$
$\bullet=\alpha \underbrace{P(R=f)}_{0.8} \sum_{S=t, f} P(S \mid R=f) P(G=t \mid R=f, S)$

Inference

$\cdot=\alpha \underbrace{P(R=f)}_{0.8} \sum_{S=t, f} P(S \mid R=f) P(G=t \mid R=f, S)$
$\bullet=\alpha \times 0.8 \times[\underbrace{P(S=t \mid R=f)}_{0.4} \times \underbrace{P(G=t \mid R=f, S=t)}_{0.9}$ $+\underbrace{P(S=f \mid R=f)}_{0.6} \times \underbrace{P(G=t \mid R=f, S=f)}_{0}]$

- $=\alpha \times 0.288$

$P(S / R)$	Sprinkler	
Rain	t	f
f	0.4	0.6
t	0.01	0.99

$P(G \mid S, R)$
Grass Wet

Sprinkler	Rain	t	f
f	f	0.0	1.0
f	t	0.8	0.2
t	f	0.9	0.1
t	t	0.99	0.01

Inference

- $P(R=t \mid G=t)=\alpha \times 0.1604$
- $P(R=f \mid G=t)=\alpha \times 0.288$
- $\alpha \times 0.1604+\alpha \times 0.288=1, \alpha=2.2302$
- Distribution:
- $P(R=t \mid G=t)=\alpha \times 0.1604=0.3577$
- $P(R=f \mid G=t)=\alpha \times 0.288=0.6423$

Inference

- $P(R=t \mid G=t)=\alpha \times 0.1604$
- $P(R=f \mid G=t)=\alpha \times 0.288$
- Distribution (another way to calculate it):
- $P(R=t \mid G=t)=\frac{\alpha \times 0.1604}{\alpha \times 0.1604+\alpha \times 0.288}=0.3577$
- $P(R=f \mid G=t)=\frac{\alpha \times 0.288}{\alpha \times 0.1604+\alpha \times 0.288}=0.6423$

