# **Bayes Net**

# CSEN266 Artificial Intelligence

#### **Bayesian Net**



- Causal relation among several events
- Observe some event(s)
- Want to infer the probability of other events

#### **Bayesian Net**



- Four variables:
  - *Cavity*: a direct cause of *Toothache* and *Catch*
  - Toothache and Catch: no direct causal relationship

 Toothache and Catch: conditionally independent, given Cavity





• Four variables:

- *Weather*: independent of the other variables

#### **Bayesian Net**



- A directed graph
- Each node: a R.V. (discrete or continuous)
- Directed links: connect pairs of nodes
  - A link from X to Y: X is a parent of Y
  - e.g. Cavity: a parent of Toothache

**Bayesian Net** 



- No directed cycles
  - A directed acyclic graph (DAG)
  - Equivalent to say: there exists an ordering of the nodes such that links always go from lower numbered nodes to higher numbered nodes
- Conditional probability
  - $P(X_i | Parents(X_i))$ 
    - Quantifies the effect of the parents on the child node

# **Burglar Alarm Example**

- You have a new burglar alarm installed at home
- The alarm also responds on occasion to minor earthquakes
- You have two neighbors John and Mary
  - They promised to call you at work when they hear the alarm

# Burglar Alarm Example

- John
  - Nearly always calls you when he hears the alarm
  - but sometimes confuses the telephone ringing with the alarm and calls you too
- Mary
  - Likes loud music and often misses the alarm
- Given the evidence of who has or has not called you, we would like to estimate the probability of a burglary

#### **Bayesian Net**



Burglary and Earthquake directly affect the Alarm

## **Bayesian Net**



- Whether John and Mary call depends only on the
  - alarm
- They do not perceive burglaries directly
- They do not notice minor earthquakes
- They do not confer before calling

CSEN266: Artificial Intelligence

©Ying Liu, Santa Clara University

## **Core Problems**

- How to construct a Bayes Net?
- How to design inference procedures?
- Inference
  - e.g. given the evidence that John called, infer whether the Burglary occurred or not.
  - Find the probability...

# Joint Distribution

• Chain rule (joint distribution of *n* variables)

- Joint distribution of all variables in the Bayes Net:
  - The product of the conditional probabilities of all variables

$$- P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | parents(X_i))$$

# **Construct Bayesian Networks**

#### Nodes

 Determine the set of variables that are required to model the problem

#### • Links

- For each node (variable), figure out its parent node(s), if there is any
  e.g. P(MaryCalls|Alarm)
- Draw a link pointing from the parent node to the child node

## **Construct Bayesian Networks**

• Number the nodes in a proper way

Parents have smaller order indices than their children

- $parents(X_i) \subseteq \{X_{i-1}, \dots, X_1\}$
- $P(X_i|X_{i-1}, \dots, X_1) = P(X_i|parents(X_i))$
- Joint distribution of all variables in the Bayes Net:
  - The product of the conditional probabilities of all variables

$$- P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | parents(X_i))$$

## **Construct Bayesian Networks**

- CPTs: Write out the conditional probability table for each variable that has parent node(s)
  - $P(X_i | parents(X_i))$

- Draw the Bayesian Network that corresponds to the factored joint probability distribution
- $P(A,B,C,D) = P(A) \times P(B|A,C) \times P(C|D) \times P(D)$
- Answer



- Draw the Bayesian Network that corresponds to the factored joint probability
- $P(A,B,C,D) = P(A|B) \times P(B) \times P(C|B) \times P(D)$
- Answer



• Write the joint probability P(A,B,C,D) in terms of the product of conditional probabilities (factored joint probability) for the following Bayesian Network

$$A \longrightarrow B \longrightarrow C \longrightarrow D$$

- Answer
- $P(A,B,C,D)=P(A) \times P(B|A) \times P(C|B) \times P(D|C)$

 Write the joint probability P(A,B,C,D) in terms of the product of conditional probabilities for the following Bayesian Network



- Answer
- $P(A,B,C,D) = P(A) \times P(B|A) \times P(C|B) \times P(D|A,C)$

Exact Inference in Bayesian Networks

 Task: to compute the posterior probability distribution for a set of query variables, given some observed event (some assignment of values to a set of evidence variables) Exact Inference in Bayesian Networks

- A simple model: consider only one query variable
  - Query variable: X
  - Evidence variables:  $\mathbf{E} = \{ E_1, \dots, E_m \}$
  - The observed event:  $\mathbf{e} = \{E_1 = e_1, ..., E_m = e_m\}$
  - Hidden variables:

Nonevidence, nonquery variables

$$\mathbf{Y} = \{Y_1, \dots, Y_l\}$$

- The complete set of variables:  $\mathbf{V} = \{X\} \cup \mathbf{E} \cup \mathbf{Y}$ 

- The query: ask for the posteriori probability distribution P(X|e)

# **Burglary Alarm**



# **Burglary Alarm**

- Query variable: *B* (*Burglary*)
- B can take two values:
  B=b (Burglary occurs)
  B=¬b (Burglary does not occur)

# Exact Inference in Bayesian Networks

- A simple model
  - Evidence variables:
  - J (JohnCalls)
    - J = j: John called
    - $J = \neg j$ : John didn't call
  - M(MaryCalls)
  - The observed event:
  - -J = j, M = m
  - That is, both John and Mary called

# $^- \,$ If $J=j, M=\neg m$ , this means John called but Mary didn't call

CSEN266: Artificial Intelligence

©Ying Liu, Santa Clara University

# **Burglary Alarm**

- A simple model
  - Hidden variables:

Nonevidence, nonquery variables

-E (Earthquake)

• 
$$E = e$$
, or  $E = \neg e$ 

-A (Alarm)

• 
$$A = a$$
, or  $A = \neg a$ 

- The query: ask for the posteriori probability distribution P(B | j, m)
  - That is, find P(B = b | j, m) and  $P(B = \neg b | j, m)$
- Which variables are not included in P(B|j,m)?

- E, A

# Joint Distribution

- Joint distribution of all variables in the Bayes Net:
  - The product of the conditional probabilities of all variables

$$- P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | parents(X_i))$$

- Example: Calculate the joint probability that
  - The alarm has sounded
  - Neither a burglary nor an earthquake has occurred
  - Both John and Mary called
  - That is:  $P(j, m, a, \neg b, \neg e)$

# Joint Distribution



•  $P(j, m, a, \neg b, \neg e)$ =  $P(j|a)P(m|a)P(a|\neg b \land \neg e)P(\neg b)P(\neg e)$ =  $0.90 \times 0.70 \times 0.001 \times 0.999 \times 0.998 = 0.000628$ 

#### • Joint distribution P(X, E, Y)

|       | X=0, E=0 | X = 0, E = 1 | X = 1, E = 0 | X = 1, E = 1 |
|-------|----------|--------------|--------------|--------------|
| Y = 0 | 0.1      | 0.2          | 0.05         | 0.05         |
| Y = 1 | 0.3      | 0.1          | 0.1          | 0.1          |

• 
$$P(X = 0, E = 0, Y = 1) = 0.3$$

• P(X = 1, E = 0, Y = 0) = 0.05

#### • Joint distribution P(X, E, Y)

|       | X=0, E=0 | X = 0, E = 1 | X = 1, E = 0 | X = 1, E = 1 |
|-------|----------|--------------|--------------|--------------|
| Y = 0 | 0.1      | 0.2          | 0.05         | 0.05         |
| Y = 1 | 0.3      | 0.1          | 0.1          | 0.1          |

• 
$$P(X, E) = \sum_{Y=0,1} P(X, E, Y)$$

• 
$$P(X=0, E=0)$$

$$= \sum_{Y=0,1} P(X = 0, E = 0, Y)$$
  
=  $P(X = 0, E = 0, Y = 0)$   
+  $P(X = 0, E = 0, Y = 1)$ 

= 0.1 + 0.3 = 0.4

#### • Joint distribution P(X, E, Y)

|       | X=0, E=0 | X = 0, E = 1 | X = 1, E = 0 | X = 1, E = 1 |
|-------|----------|--------------|--------------|--------------|
| Y = 0 | 0.1      | 0.2          | 0.05         | 0.05         |
| Y = 1 | 0.3      | 0.1          | 0.1          | 0.1          |

• 
$$P(X, E) = \sum_{Y=0,1} P(X, E, Y)$$

• 
$$P(X = 1, E = 0)$$

$$= \sum_{Y=0,1} P(X = 1, E = 0, Y)$$
  
=  $P(X = 1, E = 0, Y = 0)$   
+  $P(X = 1, E = 0, Y = 1)$   
=  $0.05 + 0.1 = 0.15$ 

#### • Joint distribution P(X, E, Y)

|       | X=0, E=0 | X = 0, E = 1 | X = 1, E = 0 | X = 1, E = 1 |
|-------|----------|--------------|--------------|--------------|
| Y = 0 | 0.1      | 0.2          | 0.05         | 0.05         |
| Y = 1 | 0.3      | 0.1          | 0.1          | 0.1          |

- $P(Y) = \sum_{X=0,1} \sum_{E=0,1} P(X, E, Y)$
- P(Y = 0)=  $\sum_{X=0,1} \sum_{E=0,1} P(X, E, Y = 0)$ = P(X = 0, E = 0, Y = 0) + P(X = 0, E = 1, Y = 0) + P(X = 1, E = 0, Y = 0) + P(X = 1, E = 1, Y = 0)= 0.1 + 0.2 + 0.05 + 0.05 = 0.4

#### • Joint distribution P(X, E, Y)

|       | X=0, E=0 | X = 0, E = 1 | X = 1, E = 0 | X = 1, E = 1 |
|-------|----------|--------------|--------------|--------------|
| Y = 0 | 0.1      | 0.2          | 0.05         | 0.05         |
| Y = 1 | 0.3      | 0.1          | 0.1          | 0.1          |

- $P(Y) = \sum_{X=0,1;E=0,1} P(X, E, Y)$
- $P(Y = 0) = \sum_{X=0,1;E=0,1} P(X, E, Y = 0)$
- = P(X = 0, E = 0, Y = 0) + P(X = 0, E = 1, Y = 0) + P(X = 1, E = 0, Y = 0) + P(X = 1, E = 1, Y = 0) = 0.1 + 0.2 + 0.05 + 0.05 = 0.4

- Rain is the cause of Sprinkler
- Rain is the cause of Grass wet
- Sprinkler is the cause of Grass wet
- Goal: find the distribution of
- P(Rain|Grass wet = t)
- That is, find
  - P(Rain = t | Grass wet = t)
  - P(Rain = f | Grass wet = t)
  - They sum up to 1



Sprinkler

Rain



1. Query variable? Rain: *R* 

2. Evidence variable? Grass wet: *G* 

3. Hidden variable?

Sprinkler: S

- R: Rain
- G: Grass
- S: Sprinkler
- Goal: find P(R = t | G = t) and P(R = f | G = t)
- Which variable is not included in these two probabilities?

CSEN266: Artificial Intelligence

# Disease and its symptoms



• Find P(flu|sore throat)

3. Hidden variable(s)? Chills, fever

# Events surrounding a traffic jam



- Find P(bad weather | traffic jam, sirens)
- 1. Query variable?
- Bad weather

# Events surrounding a traffic jam



- Find P(bad weather | traffic jam, sirens)
- 2. Evidence variable(s)?
- Traffic jam, sirens

# Events surrounding a traffic jam



- Find P(bad weather|traffic jam, sirens)
- 3. Hidden variable(s)?
- Rush hour, accident



|             | P(G S,R)  |      | Grass Wet |      |  |
|-------------|-----------|------|-----------|------|--|
|             | Sprinkler | Rain | t         | f    |  |
| P(R G = t)  | f         | f    | 0.0       | 1.0  |  |
| I(I(I) - U) | f         | t    | 0.8       | 0.2  |  |
|             | t         | f    | 0.9       | 0.1  |  |
|             | t         | t    | 0.99      | 0.01 |  |

• 
$$P(R = t | G = t) = \frac{P(R=t,G=t)}{P(G=t)}$$
 (1)  
•  $P(R = f | G = t) = \frac{P(R=f,G=t)}{P(G=t)}$  (2)

• 
$$P(G = t)$$
 is the same in (1) and (2)

• Let 
$$\alpha = \frac{1}{P(G=t)}$$
, then

• 
$$P(R = t | G = t) = \alpha P(R = t, G = t)$$

- Which variable is not utilized?
- *S*!

• 
$$P(R = t | G = t) = \frac{P(R=t,G=t)}{P(G=t)}$$
 (1)  
•  $P(R = f | G = t) = \frac{P(R=f,G=t)}{P(G=t)}$  (2)

• 
$$P(G = t)$$
 is the same in (1) and (2)

• Let 
$$\alpha = \frac{1}{P(G=t)}$$
, then

• 
$$P(R = t | G = t) = \alpha P(R = t, G = t)$$
  
=  $\alpha \sum_{S=t,f} P(R = t, G = t, S)$ 

• Sum over hidden variable S

- $P(R = t | G = t) = \alpha P(R = t, G = t)$
- =  $\alpha \sum_{\mathbf{S}=t,f} P(R=t,G=t,\mathbf{S})$  (\*)
- Recall

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | parents(X_i))$$

• (\*)= 
$$\alpha \sum_{S=t,f} P(R=t) P(S|R=t) P(G=t|R=t,S)$$

$$= \alpha \underbrace{P(R = t)}_{0.2} \underbrace{\sum_{S=t,f} P(S|R = t) P(G = t|R = t, S)}_{\text{Sprinkler} \leftarrow \text{Rain}} \qquad \frac{\text{Rain}}{\text{t} \quad f}_{\text{Grass wet}}$$

| •                                                                                | • = $\alpha \underbrace{P(R=t)}_{S=t,f} \sum_{S=t,f} P(S R=t) P(G=t R=t,S)$ |       |       |           |                 |           |           |      |  |  |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------|-------|-----------|-----------------|-----------|-----------|------|--|--|
|                                                                                  | 0.2                                                                         |       |       |           |                 |           |           |      |  |  |
| • = $\alpha \times 0.2 \times [P(S = t   R = t) \times P(G = t   R = t, S = t)]$ |                                                                             |       |       |           |                 |           |           |      |  |  |
|                                                                                  |                                                                             |       |       | (         | 0.01            |           | 0.99      |      |  |  |
|                                                                                  |                                                                             | + P(. | S = f | F R =     | $t) \times P(G$ | G = t   R | t = t, S  | = f  |  |  |
|                                                                                  |                                                                             |       | 0.    | 99        |                 |           | 0.8       |      |  |  |
| • = $\alpha \times 0.1604$                                                       |                                                                             |       |       |           | P(G S,R)        |           | Grass Wet |      |  |  |
| P(S/R) Sprinkler                                                                 |                                                                             |       |       | Sprinkler | Rain            | t         | f         |      |  |  |
|                                                                                  | Rain                                                                        | t     | f     |           | f               | f         | 0.0       | 1.0  |  |  |
|                                                                                  | $\frac{1}{1}$                                                               |       |       |           | f               | t         | 0.8       | 0.2  |  |  |
|                                                                                  | 1                                                                           | 0.4   |       |           | t               | f         | 0.9       | 0.1  |  |  |
|                                                                                  | l                                                                           | 0.01  | 0.55  |           | t               | t         | 0.99      | 0.01 |  |  |

• 
$$P(R = t | G = t) = \frac{P(R = t, G = t)}{P(G = t)}$$
 (1) =  $\alpha \times 0.1604$   
•  $P(R = f | G = t) = \frac{P(R = f, G = t)}{P(G = t)}$  (2)

• P(G = t) is the same in (1) and (2)

• Let 
$$\alpha = \frac{1}{P(G=t)}$$
, then

• 
$$P(R = f | G = t) = \alpha P(R = f, G = t)$$
  
=  $\alpha \sum_{S=t,f} P(R = f, G = t, S)$ 

• Sum over hidden variable S

•  $P(R = f | G = t) = \alpha P(R = f, G = t)$ 

• = 
$$\alpha \sum_{\mathbf{S}=t,f} P(R = f, G = t, \mathbf{S})$$

• =  $\alpha \sum_{\mathbf{S}=t,f} P(R=f) P(\mathbf{S}|R=f) P(G=t|R=f,\mathbf{S})$ 

• = 
$$\alpha \underbrace{P(R=f)}_{0.8} \sum_{\mathbf{S}=t,f} P(\mathbf{S}|R=f) P(G=t|R=f,\mathbf{S})$$



| • = $\alpha \underbrace{P(R = f)}_{S=t,f} \sum_{S=t,f} P(S R = f) P(G = t R = f, S)$ |        |           |      |                  |           |           |       |  |  |
|--------------------------------------------------------------------------------------|--------|-----------|------|------------------|-----------|-----------|-------|--|--|
| 0.8                                                                                  |        |           |      |                  |           |           |       |  |  |
| • = $\alpha \times 0.8 \times [P(S = t   R = f) \times P(G = t   R = f, S = t)]$     |        |           |      |                  |           |           |       |  |  |
|                                                                                      |        |           |      | 0.4              |           | 0         | .9    |  |  |
|                                                                                      | + P(S) | S = f     | R  = | $f) \times P(d)$ | G = t   F | R = f, S  | = f)] |  |  |
|                                                                                      |        | 0.        | 6    |                  |           | Ò         |       |  |  |
| • = $\alpha \times 0.288$                                                            |        |           |      | <i>P(G S,R)</i>  |           | Grass Wet |       |  |  |
| P(S R)                                                                               | Sprin  | Sprinkler |      | Sprinkler        | Rain      | t         | f     |  |  |
|                                                                                      |        |           |      | f                | f         | 0.0       | 1.0   |  |  |
| Rain                                                                                 | t      | f         |      | f                | t         | 0.8       | 0.2   |  |  |
| f                                                                                    | 0.4    | 0.6       |      | t                | f         | 0.9       | 0.1   |  |  |
| t                                                                                    | 0.01   | 0.99      |      | t                | t         | 0.99      | 0.01  |  |  |

- $P(R = t \mid G = t) = \alpha \times 0.1604$
- $P(R = f \mid G = t) = \alpha \times 0.288$
- $\alpha \times 0.1604 + \alpha \times 0.288 = 1, \alpha = 2.2302$
- Distribution:
- $P(R = t | G = t) = \alpha \times 0.1604 = 0.3577$

• 
$$P(R = f | G = t) = \alpha \times 0.288 = 0.6423$$

- $P(R = t \mid G = t) = \alpha \times 0.1604$
- $P(R = f \mid G = t) = \alpha \times 0.288$
- Distribution (another way to calculate it):

• 
$$P(R = t | G = t) = \frac{\alpha \times 0.1604}{\alpha \times 0.1604 + \alpha \times 0.288} = 0.3577$$

• 
$$P(R = f | G = t) = \frac{\alpha \times 0.288}{\alpha \times 0.1604 + \alpha \times 0.288} = 0.6423$$