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ABSTRACT Video prediction is an essential vision task due to its wide applications in real-world scenarios.
However, it is indeed challenging due to the inherent uncertainty and complex spatiotemporal dynamics
of video content. Several state-of-the-art deep learning methods have achieved superior video prediction
accuracy at the expense of huge computational cost. Hence, they are not suitable for devices with limitations
in memory and computational resource. In the light of Green Artificial Intelligence (AI), more environment
friendly deep learning solutions are desired to tackle the problem of large models and computational
cost. In this work, we propose a novel video prediction network 3DTransLSTM, which adopts a hybrid
transformer-long short-term memory (LSTM) structure to inherit the merits of both self-attention and
recurrence. Three-dimensional (3D) depthwise separable convolutions are used in this hybrid structure to
extract spatiotemporal features, meanwhile enhancing model efficiency. We conducted experimental studies
on four popular video prediction datasets. Compared to existing methods, our proposed 3DTransLSTM
achieved competitive frame prediction accuracy with significantly reduced model size, trainable parameters,
and computational complexity. Moreover, we demonstrate the generalization ability of the proposed model
by testing the model on dataset completely unseen in the training data.

INDEX TERMS 3D separable convolution, deep learning, depthwise convolution, LSTM, pointwise
convolution, self-attention, spatiotemporal modeling, transformer, visual communications, video prediction.

I. INTRODUCTION
With the increasing advent of powerful graphics processing
units (GPUs), deep learning is the foremost option of many
artificial intelligence (AI) applications and it has been a
crucial part in the advancement of many computer vision
(CV) algorithms. In this work, we focus on the task of
video frame prediction. A video frame prediction model
generates future frames from past frames, by learning the
complex spatiotemporal content and dynamics of the video
data. It finds a wide range of real-world applications such
as video coding [1], autonomous vehicles [2] and anomaly
detection [3].

Many existing video prediction models are based on
2-dimensional convolutional neural networks (2D CNNs)
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[4], [5], [6], [7], [8], 3-dimensional (3D) CNNs [9], [10],
or recurrent neural networks (RNNs) [11], [12]. While CNNs
can extract local features, RNNs are specifically used to
learn sequential representations. To benefit from both CNNs
and RNNs, other approaches [13], [14], [15], [16], [17],
[18], [19], [20] proposed to combine CNN and RNN and
learn spatiotemporal features from video data. Among these
works, many adopted the long short-termmemory (LSTM) as
their RNN structure, which led to the family of ConvLSTM
models.

Transformers which have primarily demonstrated success
in natural language processing (NLP) [21] and several
vision tasks [22], [23], [24], [25] were also recently utilized
for video prediction [26], [27], [28]. Transformer models
are capable of capturing long-range dynamics without
the vanishing gradient problem of recurrent networks and
have the advantage of parallelism with the self-attention
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mechanism [21]. However, the accuracy of transformer
models usually comes at the price of huge computational
cost [29].

Recently, researchers across the NLP and CV commu-
nities [30], [31] advocated to shift the focus to Green AI
with energy-efficient deep learning solutions, rather than
continuously pushing red AI methods to reach state-of-the-
art (SOTA) results using massive computational power. Our
work focuses on developing an efficient video frame predic-
tion model with reduced model size, fewer parameters, and
low computational complexity, while achieving competitive
prediction accuracy.

Since both transformer and ConvLSTM models have
achieved superior accuracy in predictive learning, in this
work, we propose a hybrid transformer-LSTM
(3DTransLSTM) model to predict future video frames.
To learn spatiotemporal dynamics from video data, the
proposed 3DTransLSTM network adopted 3D separable
convolutions to extract features along the temporal, height,
and width dimensions. The 3D separable convolutions not
only offer higher prediction accuracy than 2D convolutions,
but also reduce the computational complexity compared to
standard 3D convolutions. Our main contributions can be
summarized as follows:
• For the first time in the literature, we proposed a hybrid
transformer-LSTM (3DTransLSTM) network for the
video prediction task. On the one hand, the transformer
module can leverage long-range correlations among
multiple successive video frames, and parallelize the
computation with its self-attention mechanism. On the
other hand, the LSTM module can enable spatiotempo-
ral information flow vertically within each time step and
horizontally among multiple time steps.

• The proposed 3DTransLSTM adopts 3D convolutions
to effectively learn spatiotemporal dynamics. To reduce
computational cost, the standard 3D convolution is
decomposed into a 3D depthwise convolution and
a pointwise convolution, which reduced the model
size, trainable parameters, and floating-point operations
(FLOPs). To the best of our knowledge, this is the first
time that 3D separable convolution is utilized in a hybrid
transformer-LSTM network.

• Qualitative and quantitative experimental results on
popular video prediction datasets show that, compared
to SOTAmethods, the proposedmodel achieves compet-
itive video frame prediction accuracy with significantly
smaller model size, fewer model parameters, and
less computational cost. Further, we demonstrated the
generalization ability of the proposed model by testing
the model on video sequences completely unseen in the
training dataset.

The remaining of the paper is organized as follows.
In Section II, we discuss existing video frame prediction
methods and explain the motivation behind our proposed
model. In Section III, we provide the preliminaries on 3D
depthwise separable convolutions. Section IV elaborates on

our proposed 3DTransLSTM model in detail. Section V
presents experiments on four video prediction datasets and
comparison studies with prior arts. Section VI concludes the
paper and discusses future research directions.

II. RELATED WORK
A. VIDEO PREDICTION METHODS
Existing video prediction methods can be broadly classified
into four categories: CNN-based methods, RNN-based meth-
ods, generative adversarial network (GAN)-based methods,
and transformer-based methods.

Many 2D CNN-based video prediction approaches [4], [5],
[32], [33] were devised to model spatiotemporal dynamics in
video data. In [4], the content encoder and motion encoder
focused on the static scene information and the temporal
dynamics of consecutive frames, respectively. In [32],
a convolutional encoder-decoder network was proposed to
explicitly incorporate a time-related input variable to model
temporal correlations. Deformable convolutions were used to
fuse features from previous frames in [33].
Certain 2D CNN-based frame prediction schemes were

proposed for inter-frame prediction [6], [7], [8] in traditional
video coding such as the high efficiency video coding
(HEVC) [34] and versatial video coding (VVC) [35], or in
learning-based video coding. For example, a 2D CNN-
based deep network was proposed for both uni-directional
and bi-directional frame prediction in HEVC and avoided
coding additional motion information [6]. Another CNN-
based multi-resolution video prediction network (VPN) [7]
utilized two sub-VPN architectures in cascade to generate
virtual reference frame from previously coded frames in
HEVC. Further, recurrent and bi-directional in-loop predic-
tion modules were proposed in [8] as part of a deep learning-
based video compression system.

3D CNN is another way to extract spatiotemporal features.
It was used along with optical flow images to predict future
frames based on a single image in [9]. Spatially displaced
convolution network (SDC-Net) [10] utilized a 3D CNN for
video prediction, conditioning on both past frames and past
optical flows.

Using CNNs alone can only take into account local
structures or short-range dependencies in video data due to
the limited size of convolution kernels. To effectively capture
long-range correlations in a video sequence, methods based
on RNNs [11], [12] were proposed to predict future frames.
For example, an LSTM-based encoder-decoder network was
developed in [11]. It used an encoder LSTM to map an
input video sequence into a fixed length representation, which
was then decoded using single or multiple decoder LSTMs
to predict future frames. Folded recurrent neural network
(FRNN) [12] presented a recurrent auto-encoder with state
sharing between the encoder and the decoder. It utilized
stacked double-mapping gated recurrent unit (GRU) layers to
enable bidirectional information flow between the input and
the output.
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Although RNNs effectively learn sequential representa-
tions, they fail to accurately learn spatial content [13].
To address this issue, convolutions were incorporated into
LSTMs to form ConvLSTMs [13], where the internal
fully connections in LSTM were replaced by convolution
operations. For example, ConvLSTM was utilized in [4]
for motion prediction, and was used in [5] to generate
appearance features of the next frame from two previous
frames. In addition, the stacked ConvLSTM architecture
was explored in the dynamic neural advection (DNA)
module [14], which predicted the distribution of each pixel
in the current frame based on the previous frame. E3D-
LSTM [15] integrated 3D convolutions into LSTM to capture
short-term frame dependencies and utilized a gate-controlled
self-attention module to perceive long-term correlations. The
PredRNN [16] network proposed the popular spatiotem-
poral LSTM (ST-LSTM) structure. It adopted a temporal
memory cell and a novel spatiotemporal memory cell to
simultaneously memorize spatial and temporal information.
Later on, several video prediction methods adopted ST-
LSTM as their building blocks [17], [18], [19], [20].
For example, the memory-in-memory (MIM) [17] model
improved PredRNN [16] by replacing the simple forget
gate in the ST-LSTM block with two cascaded memory
transitions, which more effectively captured non-stationary
dynamics. CrevNet [18] used a reversible auto-encoder and
stacked ST-LSTM blocks for future frame prediction and
object detection. PredRNN-V2 [19] improved PredRNN [16]
by introducing a memory decoupling loss to ST-LSTM
to keep the memory cells from learning redundant fea-
tures. Other ConvLSTM or convolutional GRU (ConvGRU)
approaches such as TrajGRU [36], PredRNN++ [37], Conv-
TTLSTM [38], STGRU [39] and ASTM [40] were also
developed for the video prediction task.

Due to the mean-squared error (MSE) loss adopted in
model training, CNN-based video prediction models tend to
generate blurry predicted frames which are inconsistent with
human perception. To overcome this limitation, GAN-based
models adopt adversarial training such that the predicted
frames are sharper and present more details than pure CNN-
basedmethods. BeyondMSE [41] was the pioneer in applying
adversarial training for video prediction. It used a multi-
scale architecture and an image gradient difference loss along
with the MSE loss. Dual-Motion GAN (DM-GAN) [42]
used a dual adversarial training mechanism with two pairs
of generator and discriminator to generate future frames
and future flows simultaneously. CycleGAN [43] adopted a
forward-backward prediction scheme by training a generator
to produce both future frames and past frames. Attention-
based inter-frame prediction method in [44] enhanced
coding efficiency of VVC by incorporating GAN-based
deep attention map estimation and deep frame interpolation
methods.

In recent years, transformers have been developed for
NLP and CV tasks. Compared with RNN-based methods, the
transformer architecture can extract long-term dependencies

more efficiently and get rid of the limitation of seriality.
In particular, a few approaches combined transformers and
CNNs for video frame prediction. For instance, ConvTrans-
former [26] used an end-to-end encoder-decoder transformer
architecture for video interpolation and extrapolation tasks.
It proposed multi-head convolutional self-attention layers
with 2D convolutions in both the encoder and decoder.
The temporal convolutional transformer network (TCTN)
[27] used a transformer-based encoder for video prediction,
where 3D convolutional layers were employed to extract
short-term dependencies and masked self-attention layers
were used to capture long-term dependencies. The video
prediction transformer (VPTR) [28] proposed to separately
perform spatial attention and temporal attention. First, spatial
attention was performed locally on each feature patch
using multi-head self-attention (MHSA), followed by a 2D
separable convolution-based feed-forward neural network.
Afterwards, a temporal MHSA was adopted to model the
temporal dependency between frames.

B. MOTIVATION OF THE PROPOSED METHOD
Although the aforementioned SOTA methods achieved
accurate video prediction results, their accuracy comes at a
price of big model size, large amount of model parameters
and heavy computational complexity. For example, the
transformer-based models TCTN [27] and VPTR [28]
have large model size and FLOPs due to standard 3D
convolutions and complicated attention mechanisms, respec-
tively. The ConvLSTM-based models E3D-LSTM [15]
and CrevNet [18] adopted standard 3D convolutions too.
MIM [17] also has relatively larger model size and FLOPs
since it adopted additional memory modules inside the
original ST-LSTM blocks.

In this work, we aim at developing a lightweight video
prediction network which still offers competitive frame
prediction accuracy. To achieve this goal, we design a hybrid
architecture that benefits from both transformer and LSTM
structures. This is the first time in the literature that such
hybrid structure is proposed for video frame prediction.
Besides, while existing video prediction networks adopt 2D
convolutions [4], [5], [6], [8], [19], [26], [28], [32], [33] or
standard 3D convolutions [15], [27], our proposed network
adopts the idea of 3D separable convolution. Separable
convolution was first conceived in MobileNet [45] to develop
lightweight models suitable for mobile and embedded
devices. Later on, 2D separable CNN was utilized for faster
video segmentation [46], moving object detection [47], and
violence detection [48]. To alleviate the computation burden
of standard 3D convolution in deep networks, 3D separable
CNNwas proposed for dynamic hand gesture recognition and
video moving object segmentation [49], [50], [51]. In our
preliminary work [20], 3D separable convolution-based ST-
LSTM was developed with a reversible architecture for
video frame prediction. In this work, we propose to use
3D separable convolutions in a hybrid transformer-LSTM
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network. This not only leverages spatiotemporal correlations,
but also effectively reduces model size, trainable parameters,
and computational cost.

III. PRELIMINARIES
In this section, we contrast the 2D, 2D separable, 3D and 3D
separable convolutions and explain the rationale behind the
usage of depthwise separable convolutions.

A. 2D CONVOLUTION VERSUS 2D SEPARABLE
CONVOLUTION
For an RGB image of size C×H×W where C is the number
of channels, H is the height andW is the width of the image,
2D convolutions use N 3D filters of size C×K ×K (channel
× height × width) to convolve the image in the height and
width directions to produce feature maps of size N × Ȟ ×
W̌ . To reduce its computational complexity, a 2D convolution
can be separated into a 2D depthwise convolution and a 1D
pointwise convolution. In a 2D depthwise convolution, filters
of size 1×K ×K (channel× height× width) convolve with
each input channel to produce an intermediate output C ×
Ȟ × W̌ . Afterwards, 1D pointwise convolutions convolve the
intermediate output in the channel direction with N filters of
size C × 1 × 1 (channel × height × width), to generate the
final output feature maps of size N × Ȟ × W̌ .

B. 3D CONVOLUTION VERSUS 3D SEPARABLE
CONVOLUTION
Video prediction needs a model to learn spatiotemporal
information abundantly and deeply. To achieve this goal, prior
arts adopted standard 3D convolutions [15], [18], [27]. Let
Xin ∈ RC×L×H×W be a 4D video tensor, where C , L, H , and
W represent the channel, number of successive video frames,
height, and width. As illustrated in Fig. 1 (a), a standard 3D
convolution uses a 4D filter of size C ×K ×K ×K (channel
× time × height × width) which moves in three directions
(time, height, width) to generate a 3D output tensor of size
L ′ × H ′ × W ′. N such filters would create the final output
tensor Xout ∈ RN×L ′×H ′×W ′ . The number of floating-point
multiplications involved in such a standard 3D convolution is
C × K × K × K × N × L ′ × H ′ ×W ′.

Although standard 3D convolution is amply used for
video prediction, it has made the network architectures much
complex andmodel sizes bigger. To reduce the computational
complexity, a standard 3D convolution can be separated into
a 3D depthwise convolution and a pointwise convolution,
which are combinedly termed as 3D depthwise separable
convolution. As shown in Fig. 1 (b) Step 1, the depthwise
convolution applies filters of size 1 × K × K × K to each
of the C input channels to produce an intermediate output
of size C × L ′ × H ′ × W ′. This process involves C × K ×
K × K × L ′ × H ′ × W ′ multiplications. The intermediate
output goes through the pointwise convolution described in
Fig. 1 (b) Step 2, where filters of size C × 1 × 1 × 1 are
applied along the channel direction to produce an output of
size 1 × L ′ × H ′ × W ′. The final 4D output tensor of size

FIGURE 1. (a) The standard 3D convolution, and (b) the 3D depthwise
separable convolution.

N ×L ′×H ′×W ′ is generated by applying N such pointwise
filters. Such a pointwise convolution involves C × N × L ′ ×
H ′ ×W ′ multiplications. To compare the computational cost
of the 3D depthwise separable convolution with the standard
3D convolution, we compute the ratio of the number of
multiplications involved in these two types of convolutions
as

3D depthwise separable convolution
standard 3D convolution

=

C × K × K × K × L ′ × H ′ ×W ′+
C × N × L ′ × H ′ ×W ′

C × K × K × K × N × L ′ × H ′ ×W ′

=
1
N
+

1
K 3 (1)

Therefore, the decomposed convolution can reduce the
computational cost of the standard 3D convolution by 1

N +
1
K3

where N is the number of output channels and K is the filter
dimension in time, height, and width.

IV. PROPOSED METHOD
In this section, we elaborate our algorithm in detail. Fig. 2
shows the overall framework of the proposed architecture
for three time steps t − 1, t, t + 1. The proposed video
frame prediction network enables temporal information flow
indicated by the four arrows connecting adjacent time steps.

A. PROBLEM STATEMENT
Consider the video prediction process at time step t . The
network takes a 4D tensor Xt ∈ RC×L×H×W as the input,
which represents L successive video frames with frame
indices t, t + 1, · · · , t + L − 1, where C , H andW represent
the channel, height and width of each frame. The problem
of video prediction is to predict the L frames X̂t+1 ∈

RC×L×H×W with frame indices t + 1, t + 2, · · · , t +L given
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Xt and can be formulated as

X̂t+1 = Net(Xt |θ ), (2)

where Net(·) represents the frame prediction network, and θ

is the collection of trainable model parameters.

B. ALGORITHM OVERVIEW
As shown in the middle column of Fig. 2, at time step t ,
each frame in the 4D video tensor Xt ∈ RC×L×H×W is
spatially split into p × p patches, forming a tensor Pt ∈
RCp2×L×H

p ×
W
p , where H

p ×
W
p is the resulting number of

patches, and Cp2 is the length of each flattened patch. Next,
Pt is processed by spatial embedding and positional encoding
to generate an output tensor Zt ∈ Rdmodel×L×H

p ×
W
p , where

dmodel is the embedded dimension. Zt is then passed through
six 3DTransLSTM blocks, which leverage transformers and
LSTM to extract spatiotemporal features and generate an
output tensor Ẑt+1 ∈ Rdmodel×L×H

p ×
W
p . It is then processed by

the prediction head to generate the predicted patches P̂t+1 ∈
RCp2×L×H

p ×
W
p , which is reshaped to form the final output

frames X̂t+1 ∈ RC×L×H×W . In the following subsections,
we elaborate the proposed network components in detail.

C. SPATIAL EMBEDDING AND POSITIONAL ENCODING
The proposed spatial embedding module processes the input
patches Pt ∈ RCp2×L×H

p ×
W
p to produce the embedded feature

maps. It adopts two 2D depthwise separable convolutional
layers. As shown in (3), 2D depthwise separable convolution
G is adopted to output intermediate feature map J1 ∈
Rdmodel×L×H

p ×
W
p , followed by another 2D depthwise sepa-

rable convolution S, which outputs J2 ∈ Rdmodel×L×H
p ×

W
p .

Both G and S are applied frame by frame. J1 and J2 are then
added and passed through the Dropout layer to output the
final embedded feature maps Embt ∈ Rdmodel×L×H

p ×
W
p .

J1 = LeakyReLU
(
GCp

2
×1×1

∗ (G1×7×7
⊗ Pt )

)
J2 = LeakyReLU

(
Sdmodel×1×1 ∗ (S1×5×5 ⊗ J1)

)
Embt = Dropout (J1 + J2) (3)

In (3), ⊗ is the 2D depthwise convolution operation, and ∗
is the 1D pointwise convolution operation. G adopts a 2D
depthwise convolution with Cp2 filters of size 1 × 7 × 7
followed by a 1D pointwise convolution with dmodel filters
of size (Cp2) × 1 × 1. Similarly, S adopts a 2D depthwise
convolution with dmodel filters of size 1 × 5 × 5 followed
by a 1D pointwise convolution with dmodel filters of size
dmodel × 1× 1.

To preserve the positional information of the input video
sequence, fixed positional encoding Pos ∈ Rdmodel×L×H

p ×
W
p

is calculated via (4) [26], where i represents the channel
index, 0 ≤ i < dmodel, l is the temporal index 0 ≤ l < L − 1,

(h,w) are the spatial indices, and k = 104.

Posi,l,h,w =


sin

(
l

k
i

dmodel

)
, i even,

cos

(
l

k
i−1

dmodel

)
, i odd.

(4)

Pos is added to the embedded feature maps Embt to generate
the output Zt ∈ Rdmodel×L×H

p ×
W
p by

Zt = Embt + Pos. (5)

D. 3D TRANSFORMER-LSTM
The stack of six 3DTransLSTM blocks across three time
steps t − 1, t , t + 1 as shown in Fig. 2 are described in
detail in Fig. 3 (a). Take time step t as an example: the
positioned feature maps Zt ∈ Rdmodel×L×H

p ×
W
p pass through

these six 3DTransLSTM blocks to output Ẑt+1. In each
3DTransLSTM block, the input is processed by two parallel
branches. Branch 1 is indicated by the blue arrow. It extracts
features within time step t through transformers, and outputs
Zout1t . Branch 2 enables information flow across three time
steps t−1, t, t+1 through ST-LSTM structures, and outputs
Zout2t . In the following we give detailed descriptions of
Branch 1 and Branch 2.
Branch 1: Its network structure is separately depicted

in Fig. 4. It adopts two sub-blocks: 1) 3D separable
convolution-based self-attention (3DSepSA), and 2) 3D sepa-
rable convolution-based feed-forward network (3DSepFFN).
Layer normalization (LN ) is applied before each sub-block,
and residual connection is applied after each sub-block.

1) 3DSepSA
As shown in Fig. 4 (a), the input tensor Zt first goes through
a LN layer by

Zattn_int = LN (Zt ). (6)

As shown in Fig. 4 (b), the 3DSepSA module then takes
Zattn_int ∈ Rdmodel×L×H

p ×
W
p as the input and calculates three

tensorsQ,K,V of dimension dmodel × L × H
p ×

W
p using 3D

separable convolutional kernelsWq,Wk ,Wv as follows

Q = W dmodel×1×1×1
q ∗

(
W 1×3×3×3
q ⊛ Zattn_int

)
,

K = W dmodel×1×1×1
k ∗

(
W 1×3×3×3
k ⊛ Zattn_int

)
,

V = W dmodel×1×1×1
v ∗

(
W 1×3×3×3
v ⊛ Zattn_int

)
, (7)

where ∗ denotes 1D pointwise convolution and⊛ denotes 3D
depthwise convolution.

To calculate the attention of the above tensors,
we first transpose the tensors Q,K and V to dimension
H
p ×

W
p × L × dmodel. Let Hp ×

W
p be the batch size, then the

batch has H
p ×

W
p samples, and each sample is a tensor of

size L × dmodel, denoted by Q ∈ RL×dmodel , K ∈ RL×dmodel ,
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FIGURE 2. The overall architecture of the proposed network for three time steps t − 1, t , and t + 1.

FIGURE 3. (a) The stack of six 3DTransLSTM blocks for time steps t − 1, t, t + 1. Each 3DTransLSTM block consists of Branch 1 (blue arrow) and Branch 2
(green arrow). Branch 2 further consists of 4 3D separable convolution-based ST-LSTM (3D SepST-LSTM) layers. (b) The structure of the l -th 3D
SepST-LSTM layer at time step t .

and V ∈ RL×dmodel . Within each sample, the self-attention
Z ∈ RL×dmodel among L temporal elements is calculated as

Z = Softmax
(
Mask(

QKT
√
dmodel

)
)
V. (8)

We use a single-head masked self-attention where the
masking mechanism only allows a position to look at the
previous tokens and prevents the leaking of information to
future tokens [27]. We mask out the attention to future tokens
by setting their attention scores to−∞, which generates zero
weights after they are passed through the Softmax(·) function.
Next, the self-attentions of all samples in the batch are

grouped and transposed to form the output self-attention

Z̃attnt ∈ Rdmodel×L×H
p ×

W
p , which is then processed by 3D

depthwise separable convolution WA and a Dropout layer as
shown in (9),

Zattnt = Dropout
(
W dmodel×1×1×1
A ∗ (W 1×3×3×3

A ⊛ Z̃attnt )
)

.

(9)

Afterwards, a residual connection from the inputZt is applied
to Zattnt to produce the final output of the attention module
Zattn_outt as

Zattn_outt = Zattnt + Zt . (10)
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FIGURE 4. (a) Branch 1 of the 3DTransLSTM block, (b) 3DSepFFN module (top), 3DSepSA
module (bottom).

2) 3DSepFFN
The second sub-block of Branch 1, 3DSepFFN, takes the
layer normalized Zattn_outt as the input,

Zff _int = LN (Zattn_outt ). (11)

As shown in Fig. 4 (b), inside the 3DSepFFN sub-block, there
are two 3D depthwise separable convolutional layersWff 1 and
Wff 2, each followed by a Dropout layer,

Zff 1t = LeakyReLU
(
W dmodel×1×1×1
ff 1 ∗

(W 1×3×3×3
ff 1 ⊛ Zff _int )

)
,

Zff 2t = W dmodel×1×1×1
ff 2 ∗

(
W 1×3×3×3
ff 2 ⊛ Dropout(Zff 1t )

)
,

Zff _outt = Dropout
(
Zff 2t

)
. (12)

The residual connection from the 3DSepSA sub-block
Zattn_outt ∈ Rdmodel×L×H

p ×
W
p and the output from the

3DSepFFN sub-block Zff _outt ∈ Rdmodel×L×H
p ×

W
p are added

to form the final outputZout1t ∈ Rdmodel×L×H
p ×

W
p of Branch 1,

Zout1t = Zff _outt + Zattn_outt . (13)

Branch 2: At time step t , Branch 2 shown by
the green arrow in Fig. 3 (a) enables spatiotemporal
information flow. It contains 4 layers of 3D separable
convolution-based ST-LSTM (3D SepST-LSTM), and
outputs Zout2t ∈ Rdmodel×L×H

p ×
W
p .

As shown in Fig. 3 (a), at the l-th 3D SepST-LSTM layer,
l = 1, 2, 3, 4, the inputs are the temporal memory cell
Cl
t−1 and hidden state Hl

t−1 delivered horizontally from the
same l-th layer of the previous time step t − 1, as well as
the spatiotemporal memory cell Ml−1

t and the hidden state

Hl−1
t delivered vertically from the (l − 1)-th 3D SepST-

LSTM layer of the current time step t . The outputs are the
spatiotemporal memory cellMl

t , the hidden state H
l
t , and the

temporal memory cell Cl
t . While Ml

t is delivered vertically
to the (l + 1)-th 3D SepST-LSTM layer, Cl

t is delivered
horizontally to the (t + 1)-th time step, and Hl

t is delivered
both vertically and horizontally. It is noteworthy that when
l = 1, the input spatiotemporal memory cell M0

t = M4
t−1,

which is the output spatiotemporal memory cell of the 4-th
3D SepST-LSTM layer of the previous time step t − 1, and
the input hidden stateH0

t = Zt , which is the positional feature
input of the entire stack of six 3DTransLSTM blocks.

All the gates and the input Zt , hidden stateHl
t and memory

cellsMl
t and C

l
t are 4D tensors of size dmodel × L × H

p ×
W
p ,

where dmodel is the number of channels, L is the temporal
length, Hp and W

p are the height and width.
Fig. 3 (b) shows the structure of the l-th 3D SepST-LSTM

layer at time step t . One set of input gate it , forget gate ft , and
input modulation gate gt are generated by processing hidden
states Hl−1

t and Hl
t−1 by 3D separable convolution as shown

in (14a). Here ⊛ is the 3D depthwise convolution, ∗ is the 1D
pointwise convolution, σ is the sigmoid function and τ is the
tanh function.

it = σ
(
Wxi ∗ (Wxi ⊛ Hl−1

t )+Whi ∗ (Whi ⊛ Hl
t−1)

)
ft = σ

(
Wxf ∗ (Wxf ⊛ Hl−1

t )+Whf ∗ (Whf ⊛ Hl
t−1)

)
gt = τ

(
Wxg ∗ (Wxg ⊛ Hl−1

t )+Whg ∗ (Whg ⊛ Hl
t−1)

)
(14a)

An extra set of input gate i′t , forget gate f ′t , and input
modulation gate g′t are generated by processing the hidden
stateHl−1

t and spatiotemporal memory cellMl−1
t again using
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3D separable convolution, as shown in (14b).

i′t = σ
(
W ′xi ∗ (W

′
xi ⊛ Hl−1

t )+Wmi ∗ (Wmi ⊛ Ml−1
t )

)
f ′t = σ

(
W ′xf ∗ (W

′
xf ⊛ Hl−1

t )+Wmf ∗ (Wmf ⊛ Ml−1
t )

)
g′t = τ

(
W ′xg ∗ (W

′
xg ⊛ Hl−1

t )+Wmg ∗ (Wmg ⊛ Ml−1
t )

)
(14b)

Afterwards, the output temporal memory cell Cl
t and spa-

tiotemporalmemory cellMl
t are generated by (14c) and (14d),

respectively, where ⊚ represents the Hadamard product.

Cl
t = ft ⊚ Cl

t−1 + it ⊚ gt (14c)

Ml
t = f ′t ⊚ Ml−1

t + i′t ⊚ g′t (14d)

The output gate ot is generated by processing
Hl−1
t ,Hl

t−1,M
l
t , and Cl

t again by 3D separable convolution,
as shown in (14e).

ot = σ
(
Wxo ∗ (Wxo ⊛ Hl−1

t )+Who ∗ (Who ⊛ Hl
t−1)

+Wmo ∗ (Wmo ⊛ Ml
t )+Wco ∗ (Wco ⊛ Cl

t )
)

(14e)

Finally, the hidden state Hl
t is generated by

Hl
t = ot ⊚ τ

(
W 2dmodel×1×1×1 ∗ [Cl

t ,M
l
t ]
)
, (14f)

where [Cl
t ,M

l
t ] is the channel concatenation of Cl

t and
Ml

t . In equations (14a), (14b), (14e), the depthwise 3D
convolution kernal size is set as 1×3×3×3, and the pointwise
convolution kernel size is set as dmodel × 1× 1× 1.
Branch 1 + Branch 2: As shown in Fig. 3 (a), the output

Zout1t from Branch 1 and the output Zout2t from Branch 2
are added together to form the output of one 3DTransLSTM
block. Six such 3DTransLSTMblocks are stacked to generate
the final output Ẑt+1 ∈ Rdmodel×L×H

p ×
W
p .

E. PREDICTION HEAD
In Fig. 2, the final output of the 3DTransLSTMblocks Ẑt+1 is
processed by a prediction head using pointwise convolution
WẐ with Cp2 filters of size dmodel × 1 × 1 × 1 to output the

predicted frame patches P̂t+1 ∈ RCp2×L×H
p ×

W
p as

P̂t+1 = W dmodel×1×1×1
Ẑ

∗ Ẑt+1. (15)

These frame patches are reshaped to generate the L predicted
frames X̂t+1 ∈ RC×L×H×W with frame indices t + 1 : t + L.

V. EXPERIMENTAL STUDIES
In this section, we demonstrate the effectiveness of the
proposed method through experiments conducted on four
video prediction datasets, including both synthetic and real-
word datasets. We analyze the performance of the proposed
model in terms of prediction accuracy and model efficiency,
and compare it with SOTA methods.

A. TRAINING AND INFERENCE STRATEGY
To train the network, we choose the widely used MSE as the
loss function. The MSE between the ground-truth frame Yk
with time index k and the corresponding predicted frame Ŷk
is calculated as follows:

MSE =
1

C × H ×W

C∑
c=1

H−1∑
i=0

W−1∑
j=0

(
Yk (c, i, j)

− Ŷk (c, i, j)
)2 (16)

where C , H , and W denotes the number of channels, the
height and width of the frame, respectively.

As described in Section IV, in each time step, our proposed
network takes L frames as the input (for example, frame t
to frame t + L − 1), and generates L predicted frames (for
example, frame t + 1 to frame t + L), with one time index
shift. It is noteworthy that the video sequence length L can be
different during the training and inference stages, and L can
also vary during the inference stage, while the dimensions of
the trained filters are fixed.

We train ourmodelNet to predict the next L frames X̂t+1 =

{Ŷt+1, Ŷt+2, · · · , Ŷt+L} ∈ RC×L×H×W by learning from the
previous L frames Xt = {Yt ,Yt+1, · · · ,Yt+L−1} in three
successive iterations. In iteration 1,Xt is used to predict X̂t+1.
In iteration 2, Xt+1 ∈ RC×L×H×W is used to predict X̂t+2 ∈

RC×L×H×W . In iteration 3, Xt+2 ∈ RC×L×H×W is used to
predict X̂t+3 ∈ RC×L×H×W . Since there are three iterations
and each iteration has L predicted frames, the MSE loss used
to train the network is averaged over 3L predicted frames.
During inference, the model takes the previous K frames

Xt = {Yt ,Yt+1, · · · ,Yt+K−1} ∈ RC×K×H×W as
the input, and predicts the future N frames X̂t+K =

{Ŷt+K , Ŷt+K+1, · · · , Ŷt+K+N−1} ∈ RC×N×H×W . The
inference process is given in Algorithm 1.

Algorithm 1 The Inference Process
Input: Xt = {Yt ,Yt+1, · · · ,Yt+K−1}

Xin← Xt
for i = 0, 1, 2, to N − 1 do
{Ŷt+1, Ŷt+2, · · · , Ŷt+K+i} ← Net(Xin)
Xin← Concat(Xin, Ŷt+K+i)

end for
Output: X̂t+K = {Ŷt+K , Ŷt+K+1, · · · , Ŷt+K+N−1}

As described in Algorithm 1, the inference process
consists of N iterations. In the i-th iteration, the last
predicted frame Ŷt+K+i is concatenated with the current
input video sequence to form a new input sequence Xin ∈

RC×(K+i+1)×H×W of K + i + 1 frames. After N iterations,
a total of N future frames are predicted, denoted as
X̂t+K = {Ŷt+K , Ŷt+K+1, · · · , Ŷt+K+N−1}.
The input and output sequence length L during training, the

input video frame number K and the predicted future frame
number N during inference are provided for each dataset in
Section V-B.
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B. DATASETS
We conducted experimental studies on the synthetic Mov-
ingMNIST (MMNIST) dataset [13] and real-world datasets
KTH Action [52] and Human 3.6m [53]. To evaluate the
generalization ability of the proposedmethod, we also trained
themodel on the KITTI [54] dataset and tested it on an unseen
Caltech Pedestrian [55] dataset.

1) MMNIST
This is a widely used synthetic grayscale video prediction
dataset, with a frame size of 1×64×64. The first dimension
represents the grayscale channel. Two digits continuously
move in the frame, initialized at a random location. The digits
move in a constant velocity and angle, bouncing off the edges
of the frame. Following TCTN [27], we used two subsets
of this dataset for training: MMNIST-2K with 2,000 video
sequences and MMNIST-10K with 10,000 video sequences.
Each sequence has 20 frames. We trained one model on each
subset and tested both trained models on another unseen
MMNIST subset of 3,000 video sequences (MMNIST-3K).
During training, the input and output sequence lengths were
both L = 17. During testing, we used K = 10 previous
frames to predict N = 10 future frames.

2) KTH ACTION
KTH is a grayscale dataset originally used for action
recognition. It has video sequences of 25 individuals doing
six types of actions: walking, running, jogging, boxing,
hand waving and clapping. Videos are shot with static
cameras at 25 frames per second (fps) in four settings,
namely, outdoors, outdoors with scale variations, outdoors
with different clothes, and indoors. Individuals 1-16 were
used for training and individuals 17-25 were used for testing.
The training set contained 8,488 sequences and the testing set
had 5,041 sequences. Each sequence had 20 frames, and each
frame was resized to 1× 64× 64, where the first dimension
represented the grayscale channel. Similar to the MMNIST
dataset, during training, the input and output sequence length
is L = 17 frames. During testing, the previousK = 10 frames
were used to predict N = 10 future frames.

3) HUMAN 3.6m
This is a complex human pose action dataset, originally with
3.6 million RGB images. It comprises of video sequences
with humans performing different types of actions. Each
sequence has 8 frames. We followed the experiment setting
in [19] and chose only the ‘‘walking’’ scenario. The original
3×1000×1000 resolution frames were resized to 3×128×
128 resolution in our experiments, where the first dimension
represented the RGB channels. Subjects S1, S5, S6, S7, S8
were used for training which had 2,624 video sequences,
and subjects S9, S11 were used for testing which had 1,135
video sequences. For training we set the input and output
sequence length as L = 5 and for testing we used the previous
K = 4 frames to predict the future N = 4 frames.

4) KITTI AND CALTECH PEDESTRIAN
The KITTI and Caltech Pedestrian datasets are two car-
mounted camera video datasets with real-world scenarios,
widely used for video frame prediction. The KITTI dataset
was used for model training. It consisted of 3,150 sequences
and each sequence had 13 frames. A subset of the Caltech
dataset was used for model testing. This dataset was collected
from a vehicle driving through regular traffic in an urban
environment. It had 1,983 sequences and each sequence had
11 frames. We followed [56] to preprocess the datasets. The
frames from both datasets were center-cropped and resized
to 3 × 128 × 160, where the first dimension represented the
RGB channels. During training, we set the input and output
sequence length to be L = 10. During testing, the previous
K = 10 frames were used to predict the next N = 1 frames.

C. EXPERIMENT SETTINGS
The models were trained with the PyTorch framework using
an NVIDIA Tesla V100 32 GB GPU. The ADAM optimizer
was used to minimize the MSE loss between the ground-truth
and the predicted frames. To prevent overfitting, dropout lay-
ers of the proposed network adopt a dropout rate of 0.05 dur-
ing training. The model was trained for 200 epochs for
MMNIST and KTH Action, and 300 epochs for Human 3.6m
and KITTI. We set the patch size as p = 4 and the hidden
dimension as dmodel = 128 for MMNIST, KTH Action, and
Human 3.6m. For KITTI dataset, we set the patch size as p =
2 and the hidden dimension as dmodel = 256. We used a stride
of 1 for the depthwise separable convolutions in our network.

D. METHODS IN COMPARISON
We compared the performance of our proposed model to
seven existing methods. They included three transformer-
based models: ConvTransformer [26], TCTN [27], and
VPTR [28], and four RNN-based models: FRNN [12], E3D-
LSTM [15], MIM [17], and PredRNN-V2 [19]. All the
models were implemented with the same experiment settings
proposed in their original works. To verify the generalization
ability of our proposed model, we chose the following
existing methods for comparison studies: the ConvLSTM-
based models DNA [14], CrevNet [18], the GAN-based DM-
GAN [42], the transformer-based VPTR [28], as well as the
CNN-based BeyondMSE [41].

E. EVALUATION METRICS
The quality of the predicted frame Ŷk compared to the
original frame Yk , was evaluated using the peak signal-to-
noise ratio (PSNR) defined as

PSNR = 10 log10
2552

MSE(Yk , Ŷk )
. (17)

Besides, the structural similarity index (SSIM) was also
calculated. It is a metric consistent with human subjective
opinion and is defined as [57]:

SSIM(Yk , Ŷk ) = l(Yk , Ŷk )α × c(Yk , Ŷk )β × g(Yk , Ŷk )γ ,

(18)
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TABLE 1. Quantitvative results on MMNIST-3K and KTH Action datasets. The best, second-best, and third-best results of each metric are highlighted in
red, blue and brown, respectively.

FIGURE 5. The visual results on the MMNIST-3K dataset [13] for models
trained on the MMNIST-10K dataset.

where l, c, and g are the luminance, contrast and structure
comparison measures between Yk and Ŷk , and α, β and
γ are parameters to define the relative importance of these
three components [57]. The final reported PSNR and SSIM
were averaged over all N predicted future frames. Higher
PSNR and SSIM values indicate that the predicted frames
have higher quality.

Besides the aforementioned accuracy metrics, the model
efficiency is also evaluated by calculating the model size
measured in megabytes (MB) and the number of trainable
parameters measured in millions (M). We also use the
evaluation metric - giga floating point operations (GFLOPs)
to infer the computational complexity of the model. GFLOPs
calculate the total number of floating point operations, such
as addition, subtraction, multiplication and division needed
for model inference. Lower GFLOPs usually indicate less
computationally expensive models.

F. EXPERIMENTAL RESULTS
1) MMNIST
Though the dynamics of MMNIST seem simple, the frequent
occlusion and overlapping of the digits make the prediction
complex. Table 1 compares the frame prediction accuracy
performance between the proposed model and existing

models on the MMNIST-3K test set after the models were
trained on the MMNIST-2K and MMNIST-10K datasets.
The best, second-best, and third-best results of each metric
are highlighted in red, blue and brown, respectively. Our
proposed model 3DTransLSTM achieved the highest PSNR
and SSIM scores when it was trained on MMNIST-2K,
and it achieved the second highest PSNR and SSIM scores
when it was trained on MMNIST-10K. It is superior in
terms of model size and parameters, and it requires the
second fewest GFLOPs for inference. When the models were
trained on MMNIST-10K, PredRNN-V2 [19] achieved the
highest PSNR, but our proposed model has 39.2% decrease
in model size and 51.5% decrease in parameters, compared
to PredRNN-V2. To visually demonstrate the effectiveness
of our proposed model, Fig. 5 shows the qualitative results
of models trained on MMNIST-10K. We observe that
ConvTransformer [26] and VPTR [28] generated blurry
results and E3D-LSTM [15] failed to correctly predict the
relative positions of the digits. The results of our proposed
3DTransLSTM model correctly captured the trajectory of
moving digits and looked similar to the ground truth without
blurriness. MIM [17], PredRNN-V2 [19], and TCTN [27]
produced good visual results at the expense of huge model
size, parameters and computational complexity compared to
our proposed model.

2) KTH ACTION
The KTH Action dataset has a similar frame size (64 × 64)
and input/output sequence length as the MMNIST dataset.
The quantitative results are also summarized in Table 1.
Obviously, the proposed 3DTransLSTM model achieved the
third highest PSNR and SSIM values. Although theMIM [17]
and VPTR [28] models achieved slightly higher PSNR and
SSIM values than 3DTransLSTM, their model sizes were
much larger, and they required much more parameters and
GFLOPs. Fig. 6 shows the predicted frames of different
models. We observe that the proposed 3DTransLSTM model
predicted the motion of the hands correctly and it preserved
the structure of the person. In contrast, the transformer-
based models VPTR [28], ConvTransformer [26], and the
ConvLSTM-based model E3D-LSTM [15] generated blurry
results and had missing arms. The visual results of MIM [17],
TCTN [27], and PredRNN-V2 [19] are close to the proposed
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FIGURE 6. The visual results on the KTH Action dataset [52]. The proposed 3DTransLSTM model predicted the motion of
the hands correctly and preserved the structure of the person, unlike the blurry results of VPTR [28], ConvTransformer [26]
and E3D-LSTM [15].

TABLE 2. Quantitative results on human 3.6m dataset. ∗ The results are
reported in [17]. The best, second-best, and third-best results of each
metric are highlighted in red, blue and brown, respectively.

TABLE 3. Quantitative results on Caltech Pedestrian dataset. ∗ The results
are reported in [18]. † The results are reported in [58]. The best,
sec‘ond-best, and third-best results of each metric are highlighted in red,
blue and brown, respectively.

3DTransLSTM, but they require much more computational
cost.

3) HUMAN 3.6m
This human pose dataset has video frames of dimension
3 × 128 × 128, where the first dimension represents the
RGB channels. Our proposed model predicts the future four
frames based on previous four frames. Table 2 summarizes
the quantitative results of the comparedmodels. The proposed

FIGURE 7. The visual results on the human 3.6m dataset [53].

3DTransLSTM achieved the smallest model size, fewest
number of parameters and GFLOPs. In terms of prediction
accuracy, it achieved the second highest PSNR and SSIM
values. Although VPTR [28] achieved the highest frame
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TABLE 4. Ablation study on MMNIST-3K. The best and second-best results of each metric are highlighted in red and blue, respectively.

FIGURE 8. The visual results on the Caltech Pedestrian dataset [55] shows that our proposed model 3DTransLSTM
produces results similar to high computational models such as CrevNet [18] and VPTR [28].

prediction accuracy, it was 44 times the size of our model,
and it required 17 times more parameters than our model.
Fig. 7 shows the visual quality of the predicted frames.
We observe that the proposed 3DTransLSTM model is
able to preserve the structure of the person’s body and
shape of arms. In contrast, the solely ConvLSTM-based
models E3D-LSTM [15], MIM [17] and PredRNN-V2
[19] produced vague results and had inconsistencies in the
physical appearance of the person, especially the shape of
arms. Besides, the transformer-based model TCTN [27] also
generated blurry results. The quantitative and qualitative
results show that our model works effectively for RGB video
frames.

4) KITTI AND CALTECH PEDESTRIAN
To evaluate the generalization ability of video prediction
models, we trained the models on the KITTI dataset [54]
using the previous 10 frames to predict the next one frame
and evaluated the trained models on the Caltech Pedestrian
dataset [55]. Both the KITTI and Caltech Pedestrian datasets
are complex datasets comprised of real-world scenarios with
multiple moving objects in the background. We observe
from Table 3 that the proposed 3DTransLSTM achieved
the best model efficiency in terms of model size, number
of parameters, and GFLOPs. Besides, it achieved the third
highest PSNR and SSIM values. Although CrevNet [18]
has the highest PSNR and SSIM values, it required much
larger model size, much more parameters and GFLOPs
than our model did. Fig. 8 shows that our proposed model
generated accurate visual results similar to CrevNet [18] and
VPTR [28], producing clear objects and texts in the predicted
frames.

G. ABLATION STUDY
We conducted a series of experiments with various designs of
the proposed TransLSTM network to validate the advantages

of using 3D separable convolutions. The models were trained
on the MMNIST-2K dataset and tested on the MMNIST-3K
dataset. The results are summarized in Table 4.

First, we designed Model A, which is the TransLSTM
network with traditional 2D convolutions in the spatial
embedding module, the self-attention and feed-forward
layers of Branch 1, and in the ST-LSTM layers of Branch 2.
It achieved an average PSNR of 19.44 dB and an average
SSIM of 0.844. Its model size is 745MB. It has 78.7 M
trainable parameters, and it requires 934.7 GFLOPs to
conduct inference.

To reduce the model size, parameters, and computational
complexity of Model A, we designed Model B, which
is the TransLSTM network with 2D separable convolu-
tions. It apparently reduces the model size, parameters,
and computation complexity to 50.9 MB, 10.5 M, and
126.09 GFLOPs, respectively. Nevertheless, the video frame
prediction accuracy has decreased to an average PSNR of
18.03 dB and an average SSIM of 0.791.

To leverage temporal information in the video sequence,
we further designed Model C, the TransLSTM with tradi-
tional 3D convolutions in self-attention and feed-forward
layers of Branch 1 and ST-LSTM layers of Branch 2.
The results in Table 4 showed that the prediction accuracy
was significantly improved compared to traditional 2D
convolutions (Model A), achieving an average PSNR of
21.48 dB and an average SSIM of 0.913. However, this
comes at a price of dramatically increased model size (1,100
MB), number of trainable parameters (231.5M) and GFLOPs
(2,914.3).

In contrast, our proposed model, 3DTransLSTM with
3D separable convolutions, significantly reduces the model
size, number of parameters, and GFLOPs by 94.9%, 95%,
and 95.2%, respectively, compared to Model C. Meanwhile,
it only slightly decreased the prediction accuracy by 2.1% for
the PSNR metric and by 2.2% for the SSIM metric.
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The above ablation studies thoroughly validate the ben-
efits of the proposed 3DTransLSTM with 3D separable
convolutions. This network architecture not only leverages
the spatiotemporal correlations in the video to provide
competitive frame prediction accuracy, but also significantly
reduces the model size, trainable parameters and computa-
tional complexity compared to traditional 3D convolutions.
Therefore, it offers a good trade-off between model accuracy
and model complexity.

VI. CONCLUSION
Video frame prediction is a challenging yet essential vision
task in various real-world scenarios. In this era of Green AI,
it is extremely important for machine learning models to offer
both model efficiency and accuracy. In this paper, we devise
a novel video prediction framework 3DTransLSTM, incorpo-
rating both transformer and LSTM structures with 3D separa-
ble convolutions. Extensive experimental results demonstrate
the effectiveness of our proposed scheme on both synthetic
and real-world datasets. Compared to existing approaches,
our method is able to achieve competitive prediction accuracy
with significantly reduced model size, number of parameters,
and computational complexity. Hence, our model is more
suitable for memory-constrained and computation resource-
limited platforms, such as mobile and embedded devices.
In the future, we plan to adapt this approach to various
video processing tasks, such as reference frame generation
in learning-based video coding, video super-resolution, and
omnidirectional video frame prediction.
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