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ABSTRACT

We consider the problem of online foreground extraction from compressed-sensed (CS) surveillance videos. A
technically novel approach is suggested and developed by which the background scene is captured by an L1-
norm subspace sequence directly in the CS domain. In contrast to conventional L2-norm subspaces, L1-norm
subspaces are seen to offer significant robustness to outliers, disturbances, and rank selection. Subtraction of
the L1-subspace tracked background leads then to effective foreground/moving objects extraction. Experimental
studies included in this paper illustrate and support the theoretical developments.

Keywords: Background and foreground extraction, compressive sampling, compressed sensing, convex op-
timization, feature extraction, L1 principal component analysis, singular value decomposition, total-variation
minimization, video surveillance.

1. INTRODUCTION

An interesting line of research on video background subtraction is based on low-rank subspace approximation. In
contrast to pixel-level background modeling schemes1−,10 low-rank subspace approximations are block-level or
image-level and extensively exploit spatial correlations. Subspace/background estimation is conventionally car-
ried out by L2-norm based principal component analysis (L2-PCA), such as block-level one-dimensional PCA11

and frame-level two-directional two-dimensional PCA ((2D)2PCA).12 L2-PCA in general seeks a low-rank sub-
space to represent the background scene but is easily affected by moving objects in the foreground scene, i.e.
“outliers” that are numerically distant from the background. In recent years, there has been a growing interest in
robust PCA methods to deal with outliers in principal-component design13−,20 such as subspace decomposition
via L1-error minimization13−,16 non-negative matrix factorization via Manhattan distance minimization (Mah-
NMF),17 and robust PCA (RPCA)18 that performs low-rank background and sparse foreground decomposition.
In particular, RPCA minimizes a weighted sum of the nuclear-norm of the low-rank component and the `1-norm
of the sparse component. The robust PCA concept was later adopted in DECOLOR,19 which in addition models
continuity of the sparse components using Markov Random Fields (MRFs) to improve the accuracy of detecting
contiguous outliers.

Most existing algorithms19,20 for subspace-based background extraction are designed for offline processing
in which video frames are first collected and then processed. In this paper, we use the explicit term background
tracking, instead of background extraction, because we want to pursue online processing in which the decoder
in the processing center continuously receives new frames from cameras. Therefore, the objective is to update
(track) the background when each new frame arrives at the decoder leading to online foreground moving objects
extraction. This can be carried out by computing a sequence of L1-norm subspaces directly in the CS domain
where the low-rank property is preserved if each frame of the video is captured by the same compressed sensing
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Figure 1. Compressive video encoding block diagram

matrix. The proposed online CS-L1-subspace update algorithm computes (updates) new L1 principal components
that span the L1-subspace at each new frame’s arrival. Experimental studies that we include in this paper
demonstrate the effectiveness of the proposed algorithm and its robustness in the presence of outliers/faulty data
in CS measurements.

2. BACKGROUND/FOREGROUND EXTRACTION OF COMPRESSED-SENSED
SURVEILLANCE VIDEO

2.1 CS Surveillance Video Acquisition

We consider a practical CS surveillance video acquisition system that performs pure, direct compressed sensing
on each video frame. In the simple compressive video encoding block diagram shown in Fig. 1, each frame Xt

of size m × n is viewed as a vectorized column xt ∈ R
D, D = mn, where t is the frame index. Compressive

sampling is performed by projecting xt onto a P × D (P < D) measurement matrix Φ,

yt = Φxt, t = 1, 2, ..., (1)

where Φ is generated by randomly permuting the columns of an order-k, k ≥ D and multiple-of-four, Walsh-
Hadamard (WH) matrix followed by arbitrary selection of P rows from the k available WH rows (if k > D,
only D arbitrary columns are utilized). This class of WH measurement matrices has the advantage of easy
implementation (antipodal ±1 entries), fast transformation, and satisfactory reconstruction performance as we
see later on. A reacher class of matrices can also be found and used21,.22 For practical implementation, Φ
is generated once and fixed for all frames in the video sequence. The resulting CS measurement vectors yt,
t = 1, 2, ..., are then transmitted to the decoder.

2.2 Background/Foreground Extraction via CS-domain L1-PCA

Consider a sequence of N video frames in the form of a matrix X = [x1 x2 ... xN ] ∈ R
D×N . X can be viewed

as the sum of a low rank component L ∈ R
D×N that represents the background scene and a sparse component

E ∈ R
D×N that represents moving objects in the foreground scene, X = L + E. The CS measurement vectors

with sensing matrix Φ ∈R
P×D collected at the monitoring center form the matrix

Y = ΦX = Φ(L + E) = YL + ΦE (2)

where if L is a rank-d matrix, then YL , ΦL is also of rank d and represents the compressed-sensed background
scene.

A conventional tool to extract the low-rank component YL from Y is L2-PCA, which seeks the best rank-d
(d ≤ min{P, N}) representation of YL by solving

PL2

1 : (RL2
,SL2

) = arg min
R∈R

P×d,RT R=Id

S∈R
N×d

‖Y − RST ‖2. (3)

Problem PL2

1 is equivalent to the L2-projection maximization problem

PL2

2 : RL2
= arg max

R∈R
P×d

RT R=Id

‖YTR‖2. (4)
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The optimal RL2
solution (same in both PL2

1 and PL2

2 ) is simply the d dominant-singular-value left singular
vectors of Y.

In practice, however, the observed CS measurements may occasionally be corrupted by outliers O due to
acquisition failures, leading to the acquisition model23,24

Y = YL + ΦE + O. (5)

In this situation, the problem of background extraction can be tackled by L1 principal-component analysis
(L1-PCA) that pursues a robust low-rank subspace representation of YL in the form

PL1 : RL1
= arg max

R∈R
P×d

RT R=Id

‖YTR‖1. (6)

The d columns of RL1
in (6) are the so-called d L1 principal components that describe the rank-d subspace

in which YL lies. Exact calculation of the L1 principal components in (6) can be recast as a combinatorial
problem24,.25 In short, when the rank of the nominal signal YL is d = 1, (6) reduces to

PL1 : rL1
= arg max

r∈R
P

‖r‖2=1

‖YT r‖1 (7)

and we can rewrite the maximization problem in (7) as

max
r∈R

P

‖r‖2=1

‖YT r‖1 = max
r∈R

P

‖r‖2=1

max
b∈{±1}N

bTYT r, (8)

= max
b∈{±1}N

max
r∈R

P

‖r‖2=1

rT Yb, (9)

= max
b∈{±1}N

‖Yb‖2 and (10)

bopt = max
b∈{±1}N

bTYT Yb. (11)

Therefore, solving (7) is equivalent to finding the optimal binary antipodal vector bopt for problem (11), which
can be done optimally using exhaustive search in exponential time, or polynomial time,25 or suboptimally via
the single-bit-flipping (SBF) fast algorithm.26 The SBF algorithm for d = 1 starts with an initial binary vector
b(ini) ∈ {±1}N and iteratively produces a sequence of new binary vectors b(k), k = 1, 2, ..., where b(k+1) at
the (k + 1)-th iteration differs from b(k) at the k-th iteration only in a single bit position. At each iteration we
choose to flip the bit that results in the highest increase of the quadratic value bTYT Yb in (11). To efficiently
identify the bit to flip in a binary vector b(k) at the k-th iteration we observe that

b(k)T

YT Yb(k) = Tr(YT Y) +

N∑

i=1

2b
(k)
i






N∑

j>i
j=1

b
(k)
j (YT Y)i,j





. (12)

In view of (12), changing the i-th bit b
(k)
i in b(k) will change the quadratic value by

α
(k)
i = ±4b

(k)
i






N∑

j 6=i
j=1

b
(k)
j (YT Y)i,j





. (13)

Therefore, if (13) is negative, changing b
(k)
i to −b

(k)
i will increase the quadratic value in (12) by |α

(k)
i |. Then,

flipping the bit with the most negative contribution will offer the biggest increase. After we reach a (suboptimal)
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solution of (11), say b∗, the L1 principal component rL1
can be obtained by

rL1
=

Yb∗

‖Yb∗‖2

. (14)

When the rank of the nominal signal YL is d > 1, the problem PL1 in (6) can be solved by

RL1
= arg max

R∈R
P×d

RT R=Id

‖YTR‖1 (15)

= arg max
R∈R

P×d

RT R=Id

max
B∈{±1}N×d

tr(RTYB) and (16)

Bopt = max
B∈{±1}N×d

‖YB‖∗ (17)

where ‖ · ‖∗ stands for nuclear norm. The complexity of solving (17) is O(2Nd min{P 2d, Pd2}) by the ex-
haustive search algorithm,25 O(N rank(Y)d−d+1) by the polynomial-time algorithm,25 and O(N3) with the SBF
algorithm24,.26 The SBF algorithm for d > 1 starts with an initial binary matrix B(ini) ∈ {±1}N×d and itera-
tively produces a sequence of new binary matrices B(k), k = 1, 2, ..., where B(k+1) at the (k + 1)-th iteration
differs from B(k) at the kth iteration only in a single bit position. At each iteration we choose to flip the bit
that results in the highest increase of ‖YB‖∗ to reach a (suboptimal) solution of (17), say B∗. The associated
L1-norm projection operator RL1

can be obtained by performing the following steps:
1) Perform SBF with input B(ini) to obtain B∗.
2) Perform singular value decomposition (SVD) on YB∗ = UΣVT .
3) Return RL1

= U:,1:dV
T .

By projecting the observed CS measurements Y onto RL1
, we obtain/estimate the compressed-sensed low-

rank component which represents the CS background component

ŶL = RL1
RT

L1
Y. (18)

2.3 Total-variation Minimization for Pixel-domain Background Reconstruction and
Foreground Extraction

Next, the background scene can be reconstructed by performing CS recovery on the columns of ŶL, ŷL,t,
t = 1, 2, ..., N . Under the assumption that images are mostly piece-wise smooth, it is natural to exploit the
sparsity of the spatial gradient of video frames27−33 for pixel-domain background scene reconstruction by total-
variation (TV)∗ minimization23,24 of the form

˜̀
t = arg min

`t

µTV2D(`t) +
1

2
‖ŷL,t − Φ`t‖

2
2. (19)

To extract the sparse moving objects in the foreground, we perform frame-by-frame CS reconstruction in the
form of

x̃t = argmin
xt

[µTV2D(xt) +
1

2
‖yt − Φxt‖

2
2]. (20)

With the recovered video frames X̃ = [x̃1 x̃2 . . . x̃N ] ∈ R
D×N the sparse foreground can be recovered as

ẽt = x̃t − ˜̀
t (21)

for t = 1, 2, ..., N .

∗The definition of total-variation (TV) minimization can be found in prior works32,.33
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3. THE PROPOSED CS-DOMAIN L1-SUBSPACE-UPDATES ALGORITHM

The CS-domain L1-norm algorithm presented in Section 2 is suitable for offline background and foreground
extraction in which a fixed number of N compressed-sensed frames are collected at the monitoring decoder and
processed. In this section, we consider the problem of online background tracking where the decoder continuously
receives new frames. With on-line updated background scenes, we expect to be able to extract the foreground
moving objects in an on-line instantaneous manner.

In the Liu and Pados work,24 an adaptive CS-L1-PCA algorithm is proposed in which k background frames
that are already identified by processing preceding frames are utilized in processing new frames. In this context,24

the L1-norm maximization in (7) or in (15) needs to be carried out for every processing window. Since the
problems of solving for rL1

in (7) or RL1
in (15) boil down to the problems of solving for bopt and Bopt in (11)

and (17), respectively, we propose an online L1-subspace updating scheme that directly operates on the binary
antipodal vector b or matrix B. Instead of computing a new optimal b or B from scratch as in (11) and (17),
in this paper we modify (11) and (17) for the new processing window such that bopt and Bopt computed from
preceding frames are utilized to speed up processing.

3.1 Problem Statement

We start from N initial CS frames Y = [y1 y2 ... yN ] ∈ R
P×N . To extract background and foreground,

we solve (15) to obtain RL1
∈ R

P×d and the associated optimal binary matrix Bopt. When a new CS frame
yt ∈ R

P arrives at the decoder, we hope to exploit the information contained in RL1
, Bopt and yt to obtain an

updated L1-subspace Rt ∈ R
P×d.

To avoid processing an enlarging data ensemble, the size of the processing window is fixed at N frames.
Hence, before including the new frame yt into the data ensemble, one old frame needs to be removed from
Y. Assume that the i-th frame is removed, 1 ≤ i ≤ N , we denote the remaining N − 1 frames by Y/i =

[y1, ...,yi−1,yi+1, ...,yN ] ∈ R
P×(N−1). We then append the new frame yt to Y/i and form the new data

ensemble at time t, Yt , [Y/i yt] ∈ R
P×N . Now, the task is to find an updated L1-subspace Rt ∈ R

P×d.

3.2 Rank-1 CS-domain L1-subspace Updates

First, we consider the case d = 1 in which the problem is to find

rt = arg max
r∈R

P

‖r‖
2
=1

∥∥YT
t r

∥∥
1
. (22)

The associated optimization problem with respect to a binary antipodal vector bt ∈ {±1}N is

bt = arg max
b∈{±1}N

bT YT
t Ytb (23)

= arg max[
b/i

bt

]
∈{±1}N

[bT
/i bt]

[
YT

/i

yT
t

]
[Y/i yt]

[
b/i

bt

]
(24)

= arg max[
b/i

bt

]
∈{±1}N

{bT
/iY

T
/iY/ib/i + 2bty

T
t Y/ib/i + b2

ty
T
t yt} (25)

in which b/i ∈ {±1}N−1 is the binary antipodal vector associated with the N − 1 old frames Y/i and bt is the
binary antipodal bit associated with the new frame yt.

As we discussed, we wish to avoid solving (23) from scratch and instead exploit information contained in the
initial optimal binary vector bopt computed by (11) leading to an approximate solution of the optimal vector
bt. By these considerations, we remove the i-th bit from bopt for the initial data ensemble Y and the i-th frame
from matrix Y following the criterion

remove (yi, bi) s.t. i = arg max
1≤i≤N

∥∥yi − rL1
rT

L1
yi

∥∥2

2
, yi = [Y]:,i, (26)
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and denote the remaining length-(N − 1) antipodal bit vector by bopt/i. This way, we discard the frame with
the maximum error between yi and its projection on rL1

. Such a frame is more likely to contain moving objects,
therefore its removal shall lead to a better estimate of the new background. If we assume bopt/i is a good
approximation of the optimal partial binary antipodal vector b/i in (24), which is associated with the N − 1 old
frames Y/i, then the problem in (25) becomes to find the bit bt that maximizes 2bty

T
t Y/ibopt/i. The solution

to that is simply
b̂t = sgn{yT

t Y/ibopt/i}. (27)

Then, we initialize b
(ini)
t = [bT

opt/i b̂t]
T and carry out single-bit-flipping until no single bit flip can increase the

objective function bT
t YT

t Ytbt obtaining an approximate solution b∗
t to (23). We observe that the number of

iterations required for the SBF algorithm to obtain b∗
t with initial input b

(ini)
t is much fewer than that required by

computing a brand new optimal bt in (23). Then, we update the new L1 principal component rt and background
vector ŷL,t by

rt =
Ytb

∗
t

‖Ytb∗
t ‖2

, (28)

ŷL,t = rtr
T
t yt. (29)

When the next frame yt+1 arrives at the decoder, the i-th bit of b∗
t and the i-th frame of Yt are removed

following a similar criterion to (26)

remove (yi, bi) s.t. i = arg max
1≤i≤N

∥∥yi − rtr
T
t yi

∥∥2

2
, yi = [Yt]:,i, (30)

and we form the new data ensemble Yt+1 , [Yt/i yt+1]. To find the new L1 principal component rt+1 for
Yt+1, we solve (23) in which Yt is replaced by Yt+1 and bt is replaced by bt+1 = [bT

t/i bt+1]
T leading to the

following formulation:

bt+1 = arg max
b∈{±1}N

bTYT
t+1Yt+1b (31)

= arg max[
bt/i

bt+1

]
∈{±1}N

[bT
t/i bt+1]

[
YT

t/i

yT
t+1

]
[Yt/i yt+1]

[
bt/i

bt+1

]
(32)

where bt/i ∈ {±1}N−1 is the binary antipodal vector associated with the N − 1 old frames Yt/i and bt+1 is
the binary antipodal bit associated with the new frame yt+1. Again, our objective is to find an approximate
solution to (31). We initialize bt/i by b∗

t/i, that is the suboptimal solution to (23) excluding the i-th bit, bt+1

by b̂t+1 = sgn{yT
t+1Yt/ib

∗
t/i} and bt+1 by b

(ini)
t+1 = [b∗T

t/i b̂t+1]
T and perform SBF with Yt+1 and b

(ini)
t+1 as the

input to obtain b∗
t+1. Finally, we update the new L1 principal component rt+1 and background vector ŷL,t+1 by

rt+1 =
Yt+1b

∗
t+1∥∥Yt+1b∗
t+1

∥∥
2

, (33)

ŷL,t+1 = rt+1r
T
t+1yt+1. (34)

3.3 Rank-d (d > 1) CS-domain L1-subspace Updates

All these considerations can be easily extended to the multiple principal-components case. Considering the same
initially collected data ensemble Y of the previous section, the initial L1 principal components RL1

∈ R
P×d

and its associated binary antipodal matrix Bopt ∈ {±1}N×d can be found via (15)-(17). The compressed-sensed
background (low-rank) component is given by

ŶL = RL1
RT

L1
Y. (35)
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When a new sample yt arrives, following previous considerations on the moving window, the criterion to
remove frames is

remove (yi, bi) s.t. i = arg max
1≤i≤N

∥∥yi − RL1
RT

L1
yi

∥∥2

2
, yi = [Y]:,i, (36)

where bT
i ∈{±1}1×d is the i-th row of matrix Bopt. We set the new data matrix to Yt= [Y/i yt]. Then, we

solve the following problem to find the new L1-subspace Rt:

Rt = arg max
R∈R

P×d

RT R=Id

‖YT
t R‖1 (37)

= arg max
R∈R

P×d

RT R=Id

max
B∈{±1}N×d

tr(RTYtB), and (38)

Bt = arg max
B∈{±1}N×d

‖YtB‖∗ (39)

= arg max

 B/i

bT
t



∈{±1}N×d

∥∥∥∥[Y/i yt]

[
B/i

bT
t

]∥∥∥∥
∗

. (40)

Again we wish to avoid solving (39) from scratch. We assume that Bopt/i is a good approximation of the

partial binary matrix B/i in (40) and seek the vector b̂t such that

b̂t = arg max
bt∈{±1}d

∥∥∥∥Yt

[
Bopt/i

bT
t

]∥∥∥∥
∗

, (41)

which can be obtained by exhaustive search over the 2d combinations {±1}d. Then, we set B
(ini)
t =

[
Bopt/i

b̂T
t

]

and perform single-bit-flipping with input Yt and B
(ini)
t until no single bit flip in Bt can increase the value of

‖YtBt‖∗ leading to an approximate solution of (39), say B∗
t . Again, in this case the number of iterations needed

for SBF to converge is much fewer than that required to compute a new optimal Bt in (39). Finally, we update
subspace Rt and the background vector ŷL,t by

Rt = UtV
T
t , (42)

ŷL,t = RtR
T
t yt, (43)

where Ut and Vt are the P × d and N × d matrices that consists of the d dominant-singular-value, left and right
respectively, singular vectors of YtB

∗
t .

When a new sample yt+1 arrives at the decoder, we perform

1) Remove (yi, bi) s. t. i = arg max
1≤i≤N

∥∥yi−RtR
T
t yi

∥∥2

2
, yi= [Yt]:,i.

2) Set Yt+1 , [Yt/i yt+1].

3) Solve

Bt+1 = arg max
B∈{±1}N×d

‖Yt+1B‖∗ , (44)

= arg max

 Bt/i

bT
t+1



∈{±1}N×d

∥∥∥∥[Yt/i yt+1]

[
Bt/i

bT
t+1

]∥∥∥∥
∗

, (45)
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in which Bt/i is approximated by B∗
t/i and bt+1 is initialized as b̂t+1 = arg max

bt+1∈{±1}d

∥∥∥∥Yt+1

[
B∗

t/i

bT
t+1

]∥∥∥∥
∗

leading

to the initialization B
(ini)
t+1 =

[
B∗

t/i

b̂T
t+1

]
.

4) Perform SBF with input Yt+1 and B
(ini)
t+1 until it converges to B∗

t+1.

5) Compute
Rt+1 = Ut+1V

T
t+1, (46)

ŷL,t+1 = Rt+1R
T
t+1yt+1, (47)

where Ut+1 and Vt+1 are the P × d and N × d matrices that consists of the d dominant-singular-value, left and
right respectively, singular vectors of Yt+1B

∗
t+1.

3.4 Pixel-domain background reconstruction and foreground extraction

For each new frame yt, the background scene can be reconstructed by performing CS recovery on ŷL,t with the
procedure introduced in Section 2.3, followed by foreground extraction.

4. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of the proposed adaptive L1-PCA approach on two test surveillance video
sequences, PETS2001 and Airport. For each video sequence, a total number of Ntot = 200 frames are selected
to form a video volume. Each frame is compressed-sensed independently using the same randomly permuted
partial Walsh-Hadamard matrix. The number of CS measurements per frame is 37.5% of the total number of
pixels in the video frame. We compare the proposed adaptive L1-PCA method with non-adaptive L1-PCA and
adaptive L2-PCA. For the adaptive L1 and L2 approaches, we set Ntot = N +Nnew where N = 10 is the number
of frames for initialization and Nnew = 190 is the number of new arriving frames. The non-adaptive L1-PCA
scheme operates on non-overlapping windows of N = 10 frames and computes Ntot

N = 20 subspaces.

4.1 Clean Datasets

First, we carry out experiments on CS measurements that are “clean” (not corrupted by outliers). Background
tracking and foreground extraction results are shown in Figs. 2-5. For all experiments, 5 of the Nnew frames are
shown. The frame indices are indicated at the bottom of the figures.

In all experiments, the proposed online CS-L1-PCA algorithm outperforms its non-adaptive counterpart.
While the perceptual quality of the proposed adaptive CS-L1-PCA is similar to adaptive L2-PCA, we emphasize
that the processing time for adaptive L2-PCA is much longer than the proposed adaptive L1-PCA scheme due
to the required SVD computation for every L2-subspace update.

4.2 Corrupted Data Sets

In this section, we demonstrate how the algorithms react to corrupted CS measurements. For both test sequences,
75% of the CS measurements of 50% of the frames (randomly selected) are corrupted by outliers†.

Figs. 6 and 7 present the background and foreground recovery results for the PETS2001 sequence. d = 1
and d = 3 principal components are considered for all algorithms in comparison. When d = 1, non-adaptive
CS-L1-PCA and adaptive CS-L2-PCA are unable to recover the background and foreground scenes (Fig. 6
(ii),(vi) and Fig. 7 (ii),(vi)). On the contrary, the proposed adaptive CS-L1-PCA procedure is able to recover
the background and reveal the foreground moving objects after a few new frames (t ≥ 38) (Fig. 6 (iv) and Fig.
7 (iv)).

†If the i-th CS measurement of the t-th frame, yt(i), is selected to be corrupted by an outlier, then in the experiments
yt(i) is replaced by α max

1≤t≤Ntot

|yt(i)| (α = −3.5 herein).
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Figure 2. PETS2001 sequence (“clean” CS measurements): (i) original frames; and reconstructed background by (ii)
non-adaptive L1-PCA, (iii) proposed adaptive L1-PCA, (iv) adaptive L2-PCA updates.

Figure 3. PETS2001 sequence (“clean” CS measurements): (i) original frames; and extracted foreground by (ii) non-
adaptive L1-PCA, (iii) proposed adaptive L1-PCA, (iv) adaptive L2-PCA updates.
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Figure 4. Airport sequence (“clean” CS measurements): (i) original frames; and reconstructed background by (ii)
non-adaptive L1-PCA, (iii) proposed adaptive L1-PCA, (iv) adaptive L2-PCA updates.

Figure 5. Airport sequence (“clean” CS measurements): (i) original frames; and extracted foreground by (ii) non-adaptive
L1-PCA, (iii) proposed adaptive L1-PCA, (iv) adaptive L2-PCA updates.
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When a larger number of principal components is used, d = 3, it is expected that the performance of the
algorithms is improved. The reason for this is because the presence of outliers modifies/increases the effective
SVD rank of the low-rank background scenes. Still, the recovered background and foreground scenes by non-
adaptive CS-L1-PCA (Fig. 6 (iii) and Fig. 7 (iii)) are inaccurate and adaptive CS-L2-PCA is only able to
obtain good results when t ≥ 18 (Fig. 6 (vii) and Fig. 7 (vii)), which indicates possible detection failures of
important foreground objects. On the other hand, the proposed adaptive CS-L1-PCA procedure achieves good
reconstruction quality as early as t = 14 (Fig. 6 (v) and Fig. 7 (v)).

The same experiments are carried out for the Airport sequence and similar conclusions can be drawn from
Figs. 8 and 9.

Figure 6. PEST2001 sequence (“corrupted” CS measurements): (i) original frames; and reconstructed background by
(ii) non-adaptive L1-PCA (d = 1), (iii) non-adaptive L1-PCA (d = 3), (iv) adaptive L1-PCA (d = 1), (v) adaptive
L1-PCA (d = 3), (vi) adaptive L2-PCA (d = 1), (vii) adaptive L2-PCA (d = 3).
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Figure 7. PEST2001 sequence (“corrupted” CS measurements): (i) original frames; and extracted foreground by (ii)
non-adaptive L1-PCA (d = 1), (iii) non-adaptive L1-PCA (d = 3), (iv) adaptive L1-PCA (d = 1), (v) adaptive L1-PCA
(d = 3), (vi) adaptive L2-PCA (d = 1), (vii) adaptive L2-PCA (d = 3).
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Figure 8. Airport sequence (“corrupted” CS measurements): (i) original frames; and reconstructed background by (ii)
non-adaptive L1-PCA (d = 1), (iii) non-adaptive L1-PCA (d = 3), (iv) adaptive L1-PCA (d = 1), (v) adaptive L1-PCA
(d = 3), (vi) adaptive L2-PCA (d = 1), (vii) adaptive L2-PCA (d = 3).
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Figure 9. Airport sequence (“corrupted” CS measurements): (i) original frames; and extracted foreground by (ii) non-
adaptive L1-PCA (d = 1), (iii) non-adaptive L1-PCA (d = 3), (iv) adaptive L1-PCA (d = 1), (v) adaptive L1-PCA
(d = 3), (vi) adaptive L2-PCA (d = 1), (vii) adaptive L2-PCA (d = 3).
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5. CONCLUSIONS

We proposed an adaptive (online) compressed-sensed-domain L1-subspace update algorithm for compressed-
sensed surveillance video processing. For each new video frame arriving at the decoder, the algorithm updates
the low-rank subspace for background scene representation via CS-domain L1-PCA. Background reconstruction is
then performed for each new video frame by projecting the CS measurement vector onto the updated L1 subspace
followed by regular CS image recovery (for example, total-variation minimization). Experiments demonstrate
that when the received CS measurements are corrupted by outliers, the proposed adaptive CS-L1-PCA algorithm
offers significantly better performance than its L2-norm counterpart and the non-adaptive CS-L1-PCA approach.
In addition, in clean CS data operation, the proposed adaptive CS-L1-PCA method requires less processing time
for subspace update compared to the adaptive L2-PCA method. For future studies, more advanced algorithms
can be developed under the CS-L1-PCA framework to deal with more challenging situations in video surveillance
such as dynamic background, removing shadows cast by objects to more accurately describe the object shape,
and solving the camouflage problem.
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