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ABSTRACT

We consider the problem of representing individual faces by maximum L1-norm projection subspaces calculated
from available face-image ensembles. In contrast to conventional L2-norm subspaces, L1-norm subspaces are seen
to offer significant robustness to image variations, disturbances, and rank selection. Face recognition becomes
then the problem of associating a new unknown face image to the “closest,” in some sense, L1 subspace in the
database. In this work, we also introduce the concept of adaptively allocating the available number of principal
components to different face image classes, subject to a given total number/budget of principal components.
Experimental studies included in this paper illustrate and support the theoretical developments.

Keywords: Classification, dimensionality reduction, eigenfaces, face recognition, L1 principle component anal-
ysis, L2 principle component analysis, subspace signal processing.

1. INTRODUCTION

Face recognition has been a task of growing importance in the past decade with a wide range of commercial and
law enforcement applications. Among the different face recognition techniques available, subspace learning based
algorithms have attracted significant interest. The foundation of face recognition by subspace learning has been
the early (L2-norm) principal component analysis (PCA) work, in which a linear projection matrix is learned by
maximizing the data variance in the projection subspace.1 The columns of the computed projection matrix are
the so-called principal components, or features, or eigenfaces. Nevertheless, the features extracted by L2-PCA
can be easily affected by outliers in the training data. To address this problem, Kwak2 proposed to compute the
principal components by L1-norm maximization, solved approximately by an iterative algorithm. Markopoulos
et al.3 developed for the first time in the literature an optimal exponential-time algorithm and an optimal
polynomial-time algorithm to solve the L1-norm maximization problem exactly. A fast suboptimal algorithm
was also later developed.4 The developed3,4 L1-PCA algorithm was successfully applied to face recognition tasks
with outlier corrupted training face images.5

While it is shown5 that L1-PCA outperforms L2-PCA for face recognition with corrupted data, the computed
“common” L1 subspace does not exploit the prior knowledge about the class labels of the training samples. In
this work, we consider the computation of “individual” L1 subspaces, in which an L1 subspace is computed
for each class of face images using the training face images from that particular class. Then, classification is
performed by a nearest subspace (NS) criterion, which assigns a class label to the unknown testing sample
according to the subspace that most closely represents the testing sample. To control the total number of
calculated principal components over all samples, we extend the developed “individual” L1-subspace procedure
to an adaptive version, in which a fixed budget of principal components is allocated across different classes of
face images according to within-class variances. This scheme adaptively determines the number of principal
components required by different classes for feature extraction and is demonstrated to be more effective than the
“fixed” L1-principal-components allocation scheme.

The rest of the paper is organized as follows. In Section 2, we briefly review related works on L2 and
L1 principal-component-analysis-based face recognition schemes. In Section 3, we introduce the proposed “in-
dividual” L1-subspace calculation method for face recognition and its adaptive extension. Section 4 presents
experimental studies on three face data sets that strongly support our algorithmic developments. Finally, we
draw some conclusions in Section 5.



2. BACKGROUND

2.1 L2-subspace Face Recognition

In common L2-PCA formulation for face recognition,1 the N training face images of pixel size m × n are
vectorized as xi ∈ R

D, D = mn, i = 1, ..., N . Consider the data matrix that contains all training images
X = [x1,x2, ...,xN ] ∈ R

D×N . L2-PCA aims at finding a projection matrix R ∈ R
D×K , K ≤ D, that minimizes

the sum of the element-wise squared error between the original matrix and its rank-K representation,

(RL2
,SL2

) = arg min
R∈R

D×K ,RTR=IK

S∈R
N×K

‖X−RST‖2, (1)

which is equivalent to solving
RL2

= arg max
R∈R

D×K

RTR=IK

‖XTR‖2. (2)

The well known solution to problem (2) is given by the K singular vectors of X that correspond to the maximum
K singular values. The face recognition problem is then tackled by projecting an unknown face image x onto
RL2

to obtain it L2-subspace representation y = RTx ∈ R
K , followed by nearest neighbor (NN) classification

in the L2-subspace.

2.2 L1-subspace Face Recognition

If we consider the L1-norm instead of the L2-norm in (1), (2), the two problems are not equivalent anymore. If
we focus on the projection maximization problem, we seek matrix

RL1
= arg max

R∈R
D×K

RTR=IK

‖XTR‖1. (3)

Jointly in D, N , (3) is an NP-hard problem3,.6 This is not true for fixed D, however.3 The first ever optimal
algorithm with complexity polynomial in D has been developed.3 In fact, if we consider the solution for a single
principal component we have

rL1
= arg max

r∈RD,‖r‖2=1

∥∥XTr
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1

(4)

and3

rL1
=

Xbopt

‖Xbopt‖2
(5)

where bopt is a binary vector obtained by

bopt = arg max
b∈{±1}N

bTXTXb. (6)

A fast algorithm is developed4 for solving (5), in which (6) is solved approximately by iteratively flipping the bit
in b which most negatively contributes to the L2 projection energy. In the face recognition algorithm of Johnson
and Savakis,5 the fast algorithm4 for computing rL1

and the multiple L1-PCA algorithm2 are combined such
that K L1-principal components are calculated in a greedy conditional optimization manner. In particular, the
first L1-principal component r1 is calculated using the fast method4 and then the contribution of r1 is removed
form each data sample,

x
(update)
i = xi − r1r

T
1 xi (7)

where i = 1, 2, ..., N. The same procedure is continued until K L1 principal components r1, r2, .., rK are found.

3. PROPOSED METHOD

In this section, we first propose and describe “individual” L1-subspace face representation per person. Then,
we deal with the extension to “adaptive individual” L1-subspace representation subject to a total number of
principal components across individuals.



3.1 Individual L1-subspace Face Representation

Instead of training a “common” L1-subspace for robust face recognition, we propose an “individual” L1-subspace
face representation algorithm, in which an “individual” subspace is trained/calculated for each class of face images
using all training samples from the corresponding class. We consider a total number of C classes. Without loss of

generality, each class has N training samples that can be organized in matrix form asX(j) =
[
x
(j)
1 ,x

(j)
2 , ...,x

(j)
N

]
∈

R
D×N where j = 1, 2, ..., C is the class index and each column is a vectorized training image of class j that has

D pixels. To compute the L1-subspace of X(j), we first subtract the sample-mean µ
(j) = 1

N
X(j)1N from each

column of X(j) so that the training samples are zero-centered. Then, a rank-K L1-subspace representation of
class j is computed as follows. We calculate the first L1-principal component using the fast algorithm,4 i.e. we
find

q
(j)
1 = arg max

q∈RD,‖q‖
2
=1

∥∥∥qTX(j)
∥∥∥
1
. (8)

Then, the contribution of q
(j)
1 is removed from the entire training ensemble as follows

X(j) = X(j) − q
(j)
1 q

T(j)
1 X(j). (9)

The updated training ensemble X(j) is used to calculate the next principal component and the representation
continues until the desired number of components K is reached. The above greedy “individual” L1 subspace is

calculated for each class j = 1, 2, ..., C to obtain Q
(j)
L1

=
[
q
j
1,q

j
2, ...,q

j
K

]
.

Next, for classification we adopt a nearest-subspace (NS) approach. For each test face image xt, we
subtract the mean of the j-th class µ

(j) from xt. Then, the zero-centered test data point is projected on-

to the j-th L1 subspace Q
(j)
L1

and the reconstruction error using the j-th class L1-subspace is calculated as∥∥∥(xt − µj)−Q
(j)
L1

Q
T(j)
L1

(xt − µj)
∥∥∥
2
. The procedure is performed for each calculated “individual” L1-subspace

and the classification criterion is

ĵ = arg min
1≤j≤C

∥∥∥(xt − µj)−Q
(j)
L1

Q
T(j)
L1

(xt − µj)
∥∥∥
2

(10)

where ĵ is the determined class of xt.

3.2 Extension to Adaptive Individual L1-subspace Calculation

In Section 3.1, the “individual” L1-subspaces are computed with the same rank K (number of L1-principal
components). In this section, we consider the problem of allocating a total number of KC principal components
to different classes allowing the computed L1-subspace of different classes to have -possibly- different rank.
Intuitively, the within-class sample variance indicates the rank value required to represent the subspace of the
particular face image class. Therefore, we propose to utilize the following method to allocate the total number of
KC principal components across the C classes. We partition the per-class rank allocation value into two parts,

K
(j)
fix and K

(j)
var where K

(j)
fix stands for the fixed guaranteed number of principal components allocated to class j

and K
(j)
var stands for the variable number of principal components allocated to class j. The following condition

should of course be satisfied
C∑

j=1

(
K

(j)
fix +K(j)

var

)
= KC. (11)

In our algorithm, K
(j)
fix, j = 1, ..., C are fixed and known and K

(j)
var, j = 1, ..., C are determined by the within-class

variance defined as
var(j) = tr(Cov(j)) (12)

where
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is the covariance matrix for the j-th class. The variable number of principal components for class j is calculated
by

K(j)
var =


KC −

C∑

j=1

K
(j)
fix


 var(j)

∑C

j=1 var
(j)

. (14)

4. EXPERIMENTAL RESULTS

In this section, we experiment with three different databases, Extended Yale Face database,7 ORL database,8

and Aberdeen database,9 to illustrate and evaluate our theoretical developments.

4.1 Extended Yale Face Database

The Extended Yale Face database1 has C = 8 classes. Each class has 25 images of size 50×50 pixels (D = 2500).

We carried out 50 independent experiments. In each experiment, N = 8 images per class are randomly
selected for training and the remaining 17 images per class are used for testing. Both the training and testing
data sets are partially corrupted by “salt and pepper” noise patches, as seen in Fig. 1 for example. The size of
the noise patches is randomly chosen from the options {15 × 15, 20 × 20, 25 × 25, 30 × 30}. For class 1 and 2,
10% of the images are corrupted. The corruption percentage is set at 30% for class 3 and 4, 50% for class 5 and
6, and 70% for class 7 and 8.

For “common” subspaces, the number of L1 (or L2) principal components calculated varies from 1 to 20. For
“individual” subspaces (fixed-rank or adaptive-rank), the fixed budget of L1 (or L2) principal components varies
from 8 to 48.

Fig. 2 shows the recognition error rates for different schemes in comparison. We observe that “common”
L1-PCA performs better than “common” L2-PCA due to its resistance to outliers (noise patches). The same
conclusion can be drawn for the “individual” subspaces. In particular, the adaptive-rank L1 subspace approach
achieves a lower recognition error rate than its fixed-rank counterpart.

4.2 ORL Database

The ORL Face database has C = 8 classes. Each class has 10 images of size 50× 50 pixels (D = 2500).

We carried out 50 independent experiments. In each experiment, N = 7 images per class are randomly
selected for training and the remaining 3 images per class are used for testing. Both the training and testing
data sets are partially corrupted by “salt and pepper” noise patches, as in the example of Fig. 3. The size of
the noise patches is randomly chosen from the set {25× 25, 30× 30, 35× 35, 40× 40}. For class 1 and 2, 30% of
the images are corrupted. This corruption percentage is set at 40% for class 3 and 4, 60% for class 5 and 6, and
80% for class 7 and 8.

For “common” subspaces, the number of L1 (or L2) principal components calculated varies from 1 to 20. For
“individual” subspaces (fixed-rank or adaptive-rank), the fixed budget of L1 (or L2) principal components varies
from 8 to 40.

Fig. 4 shows the recognition error rates for different schemes in comparison. We observe that “common”
L1-PCA performs better than “common” L2-PCA due to its resistance to outliers (noise patches). The same
conclusion can be drawn for the “individual” subspaces. In particular, the adaptive-rank L1 subspace achieves
a lower recognition error rate than its fixed-rank counterpart.

1The cropped images are used in the experiment.



Figure 1. Two different subjects from the Extended Yale Face database and the applied noise patches.
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Figure 2. Comparison of common L1 (L2)-subspace, non-adaptive individual L1 (L2)-subspace, and adaptive individual L1 (L2)-
subspace classification on the Extended Yale Face database.

4.3 Aberdeen Database

The Aberdeen Face database has C = 8 classes. Each class has 18 images of size 50× 50 pixels (D = 2500).

We carried out 50 independent experiments. In each experiment, N = 8 images per class are randomly
selected for training and the remaining 10 images per class are used for testing. Both the training and testing
data sets are partially corrupted by “salt and pepper” noise patches, as in the example of Fig. 5. The size of
the noise patches is randomly chosen from the set {15× 15, 20× 20, 25× 25, 30× 30}. For class 1 and 2, 10% of
the images are corrupted. The corruption percentage is set at 30% for class 3 and 4, 50% for class 5 and 6, and
70% for class 7 and 8.

For “common” subspaces, the number of L1 (or L2) principal components calculated varies from 1 to 20. For
“individual” subspaces (fixed-rank or adaptive-rank), the fixed budget of L1 (or L2) principal components varies
from 8 to 48.

Fig. 6 shows the recognition error rates for different schemes in comparison. We observe that “common”



Figure 3. Two different subjects from the ORL database and the applied noise patches.
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Figure 4. Comparison of common L1 (L2)-subspace, non-adaptive individual L1 (L2)-subspace, and adaptive individual L1 (L2)-
subspace classification on the ORL database.

L1-PCA performs better than “common” L2-PCA due to its resistance to outliers (noise patches). The same
conclusion can be drawn for the “individual” subspaces. In particular, the adaptive-rank L1 subspace achieves
a lower recognition error rate than its fixed-rank counterpart.

5. CONCLUSION

In this paper, we proposed to represent individual faces by maximum L1-norm projection subspaces calculated
from available face-image ensembles. We considered adaptive rank formulation of the “individual” subspace,
in which we allocate principal components based on the variance value of each class. We demonstrated the
superiority of L1-PCA versus L2-PCA and the benefits of optimized use of principal components, saving in
components where a small number of them is sufficient and adding more principal components where necessary
under a class variance criterion.



Figure 5. Two different subjects from the Aberdeen database and the applied noise patches.
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Figure 6. Comparison of common L1 (L2)-subspace, non-adaptive individual L1 (L2)-subspace, and adaptive individual L1 (L2)-
subspace classification on the Aberdeen database.

REFERENCES

1. M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition (CVPR), Maui, HI, June 1991, pp. 586-591.

2. N. Kwak, “Principal component analysis based on L1-norm maximization,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 30, pp. 1672-1680, Sep. 2008.

3. P. P. Markopoulos, G. Karystinos, and D. A. Pados, “Optimal algorithms for L1-subspace signal processing,”
IEEE Trans. Signal Process., vol. 62, pp. 5046-5058, Oct. 2014.

4. S. Kundu, P. P. Markopoulos, and D. A. Pados, “Fast computation of the L1-principal component of real-
valued data,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Process. (ICASSP), Florence, Italy, May
2014, pp. 8028-8032.

5. M. Johnson and A. Savakis, “Fast L1-eigenfaces for robust face recognition,” in Proc. IEEE Western NY
Image and Signal Process. Workshop, Rochester, NY, Nov. 2014, pp. 1-5.



6. M. McCoy and J. A. Tropp, “Two proposals for robust PCA using semidefinite programming,” Electron. J.
Statist., vol. 5, pp. 1123-1160, Jun. 2011.

7. A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few to many: Illumination cone models
for face recognition under variable lighting and pose,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 23, pp.
643-660, June 2001.

8. F. S. Samaria, A. C. Harter, “Parameterisation of a stochastic model for human face identification,” in Proc.
IEEE Workshop Applications of Computer Vision, Sarasota, FL, Dec. 1994, pp. 138-142.

9. [Online]. Available: http://pics.stir.ac.uk/2D_face_sets.htm.

http://pics.stir.ac.uk/2D_face_sets.htm.

	INTRODUCTION
	BACKGROUND
	L2-subspace Face Recognition
	L1-subspace Face Recognition

	PROPOSED METHOD
	Individual L1-subspace Face Representation
	Extension to Adaptive Individual L1-subspace Calculation

	EXPERIMENTAL RESULTS
	Extended Yale Face Database
	ORL Database
	Aberdeen Database

	CONCLUSION

