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Abstract—We consider the problem of principal-component

analysis of a given set of data samples. When the data set contains

faulty measurements/outliers, the performance of classic L2

principal-component analysis (L2-PCA) deteriorates drastically.

Instead, L1 principal-component analysis (L1-PCA) offers outlier

resistance due to the L1-norm maximization criterion it adopts

to compute the principal subspace. In this work, we present

an iterative re-weighted L1-PCA method (IRW L1-PCA) that

generates a sequence of L1-norm subspaces. In each iteration,

the data set comformity of each sample is measured by the L1

subspace calculated in the previous iteration and used to weigh

the data sample before the L1 subspace update. The approach

automatically suppresses outliers in each iteration resulting in in-

creasingly accurate subspace calculation. We provide convergence

analysis and compare the proposed algorithm against benchmark

algorithms in the literature. Experimental studies demonstrate

the superiority of the proposed IRW L1-PCA procedure.

Index Terms—Faulty data, feature extraction, L1-norm, ro-

bust principal component analysis, eigenvector decomposition,

outliers.

I. INTRODUCTION

Principal component analysis (PCA) is a prevalent method
for dimensionality reduction and low-rank subspace approx-
imation. Conventional L

2

-norm-based principal component
analysis (L

2

-PCA), however, is easily affected by “outlier”
values that are numerically distant from the nominal low-
rank signal. To deal with the problem of outliers in principal-
component design there has been a growing interest in robust
PCA methods [1]-[7]. In [1]-[4], subspace decomposition is
performed under an L

1

-error minimization criterion. In [5],
non-negative matrix factorization is performed via Manhattan
distance minimization (MahNMF), which robustly estimates
the low-rank part and the sparse part of a non-negative matrix.
The robust PCA method (RPCA) developed in [6] performs
low-rank sparse decomposition by minimizing a weighted
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sum of the nuclear-norm of the low-rank component and
the L

1

-norm of the sparse component. The GoDec algorithm
developed in [7] performs low-rank and sparse decomposition
as well, by alternatingly solving for the low-rank and sparse
components. An accelerated method is proposed in [7] via
bilateral random projection (BRP).

Recently, there has been a growing documented effort to
calculate robust subspaces by explicit L

1

projection maximiza-
tion [8]-[11]. The resulting principal components are called L

1

principal components. The work in [8] presented a suboptimal
iterative algorithm for the computation of one L

1

principal
component and [9] presented an iterative algorithm for subop-
timal joint computation of d � 1 L

1

principal components.
In [10], for the first time in the literature, algorithms for
exact calculation of L

1

principal components are developed.
Later, in [11] an approximate algorithm is developed for fast
computation of the L

1

principal components. The L
1

-PCA
method has been successfully applied to a wide range of
research fields such as direction of arrival (DoA) estimation
[12] and robust face recognition [13], [14]. Most recently,
compressed-sensed-domain L

1

-PCA methods were developed
for low-rank background scene and sparse foreground moving
objects extraction from compressed-sensed surveillance video
sequences [15], [16].

Nevertheless, existing L
1

-PCA methods in [8]-[16] adopt
“one-shot” processing. That is, for a given data set with
potential outliers, the L

1

-PCA algorithm is applied only once
to compute from the explicit data the L

1

subspace. For
severely contaminated data sets, such one-shot L

1

subspace
computation can still be away from the true nominal signal
subspace of interest.

In this paper, we propose an iterative re-weighted L
1

-
PCA method. Given a fixed data set that potentially contains
outliers, the procedure iteratively generates a sequence of
improved L

1

subspaces. In each iteration, nominal compliance
of each sample is inferred by its position relative to the L

1

subspace calculated in the previous iteration and translated to
a “weight.” Samples with higher weights tend to be nominal
samples and samples with lower weights are more likely to be
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the outliers. Weighted L
1

-PCA calculation is then carried out
in which the contribution of outlying samples in the data set is
suppressed resulting in an improved L

1

-subspace. The sample
weights converge as the iteration number increases and the
iterative algorithm terminates when the weights in the current
and previous iteration are deemed close enough.

The remainder of this paper is organized as follows. In
Section II, we introduce necessary background on regular
L
1

-PCA. In Section III, the proposed iterative re-weighted
L
1

-PCA algorithm is developed. In Section IV, experimental
studies are provided to demonstrate the effectiveness of the
proposed algorithm. Finally, a few conclusions are drawn in
Section V.

II. BACKGROUND ON L
1

-NORM PRINCIPAL-COMPONENT
ANALYSIS

Consider N real-valued samples x

1

,x
2

, ...,xN of dimen-
sion D that form the D ⇥N data matrix

X = [x

1

x

2

· · ·xN ]. (1)

In the common version of the low-rank approximation problem
(L

2

-PCA) one seeks to describe (approximate) the data matrix
X by a rank-r product PQ

T where P 2 RD⇥r, Q 2 RN⇥r,
r  min{D,N}. Given the observation data matrix X, L

2

-
PCA minimizes the sum of the element-wise squared error
between the original matrix X and its rank-r representation
PQ

T in the form of Problem PL2
1

defined below,

PL2
1

: (PL2 ,QL2) = arg min

P2RD⇥r,PTP=Ir
Q2RN⇥r

kX�PQ

Tk
2

. (2)

Problem PL2
1

is equivalent to

PL2
2

: PL2 = arg max

P2RD⇥r

PTP=Ir

kXT

Pk
2

(3)

the solution of which is given by the r dominant singular-value
left singular vectors of the original data matrix X.

By minimizing the sum of squared errors, L
2

principal-
component calculation becomes sensitive to extreme error
value occurrences caused by the presence of outlying samples
in the data matrix (samples that are numerically distant from
the nominal data, appear only few times in the data matrix and
are not to appear under normal system operation upon design).
Motivated by this observed drawback of L

2

-subspace signal
processing, subspace decomposition approaches that are based
on the L

1

norm were proposed for robust low-rank subspace
computation. Replacing the L

2

-norm in Problem PL2
2

by L
1

-
norm, L

1

-PCA calculates principal components in the form
of

PL1
: PL1 = arg max

P2RD⇥r

PTP=Ir

kXT

Pk
1

. (4)

PL1 in (4) is likely to be closer to the true nominal rank-r
subspace than L

2

-PCA. The r columns of PL1 in (4) are the
so-called r L

1

principal components that describe the rank-r
subspace in which X lies. As shown in [10], exact calculation
of the L

1

principal components in Problem PL1 can be recast

as a combinatorial problem. In short, when the rank of the
nominal signal is r = 1, Problem PL1 reduces to

pL1 = arg max

p2RD

kpk2=1

kXT

pk
1

, (5)

which can be reformulated as

max

p2RD

kpk2=1

kXT
pk

1

= max

p2RD

kpk2=1

max

b2{±1}N
b

T
X

T

p (6)

= max

b2{±1}N
max

p2RD

kpk2=1

p

T

Xb (7)

= max

b2{±1}N
kXbk

2

. (8)

The optimal solution for (8) can be obtained by exhaustive
search in the space of the binary antipodal for example, vector
b with complexity O(2

N�1DN).
When the rank of the nominal data is r > 1, problem PL1

can be rewritten as [10]

max

P2RD⇥r

PTP=Ir

kXT

Pk
1

(9)

= max

P2PD⇥r

PTP=Ir

max

B2{±1}N⇥r
tr(P

T

XB) (10)

= max

B2{±1}N⇥r
kXBk⇤ (11)

where k·k⇤ stands for nuclear norm. To find exactly the optimal
L
1

-norm projection operator PL1 in (9) we can perform the
following steps [10].
1) Solve (11) to obtain B

opt

.
2) Perform singular value decomposition (SVD) on XB

opt

=

U⌃V

T.
3) Return PL1 = U

:,1:rV
T.

If we solve (11) by exhaustive search, the overall com-
plexity of the above procedure for finding r L

1

princi-
pal components will be O(2

Nr
min{D2r,Dr2}). For any

fixed data dimension D, a polynomial-time algorithm is
developed in [10] to solve optimally (11) with complexity
O(N rank(X)r�r+1

), rank(X)  D. In [11], a fast approxi-
mation algorithm was proposed to solve (11) with complexity
O(min{ND2, N2D}+N2

(r + 2) +ND).

III. PROPOSED ITERATIVE RE-WEIGHTED L
1

PRINCIPAL
COMPONENT ANALYSIS

The regular L
1

-PCA problem in (4) seeks a rank-r subspace
from the data matrix X 2 RD⇥N by one-shot calculation.
Although the adopted L

1

-norm maximization is less affected
by outliers compared to L

2

-norm maximization in L
2

-PCA in
(3), the produced L

1

subspace PL1 can still be away from
the true nominal signal low-rank subspace. In this section,
we propose an iterative method that generates a sequence of
improved L

1

subspaces for the same data matrix X.
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A. Algorithm

We consider the calculation of r principal components
PL1 2 RD⇥r, D > r > 1. Initially, the direct L

1

subspace
is computed via (4) and denoted by P

(0)

L1
. Next, the distance

of each sample xn from subspace P

(0)

L1
is defined as the L

2

error between xn and its rank-r surrogate

d(1)n = kxn �P

(0)

L1
P

(0)

T

L1
xnk2, n = 1, ..., N. (12)

We expect large d(1)n if xn is an “outlier” and small d(1)n if xn

is a nominal sample. Therefore, the nominal-likeness (weight)
of each sample can be measured as the reciprocal of its L

2

distance from the subspace, i.e.,

w(1)

n = (d(1)n )

�1, n = 1, ..., N, (13)

followed by normalization,

ew(1)

n =

w(1)

n

NP
n=1

w(1)

n

, n = 1, ..., N. (14)

When computing the L
1

subspace, data samples with larger
nominal-likeness (weight) should contribute more and samples
with smaller nominal-likeness (weight) should be suppressed
such that the resulting calculated L

1

subspace is more accu-
rate. In this direction, we propose that each data sample xn is
weighed by ew(1)

n . We form a weight matrix

f
W

(1)

=

2

66664

ew(1)

1

0 0 · · ·
0 ew(1)

2

0 · · ·
...

0 0 · · · ew(1)

N

3

77775
(15)

and update the L
1

subspace by

P

(1)

L1
= arg max

P2RD⇥r

PTP=Ir

k(XfW(1)

)

T

Pk
1

. (16)

Generalizing, in the (k + 1)th iteration new weights are
computed using the L

1

subspace P

(k)
L1

computed at the kth
iteration, i.e.

d(k+1)

n = kxn �P

(k)
L1

P

(k)T

L1
xnk2, 1  n  N, (17)

w(k+1)

n = (d(k+1)

n )

�1, (18)

ew(k+1)

n =

w(k+1)

n

NP
n=1

w(k+1)

n

, (19)

f
W

(k+1)

=

2

66664

ew(k+1)

1

0 0 · · ·
0 ew(k+1)

2

0 · · ·
...

0 0 · · · ew(k+1)

N

3

77775
. (20)

Subsequently, the L
1

subspace at the (k + 1)th iteration is
updated to

P

(k+1)

L1
= arg max

P2RD⇥r

PTP=Ir

k(XfW(k+1)

)

T

Pk
1

. (21)

B. Convergence Analysis

To guarantee a convergent weight sequence for practical
algorithmic implementation, we modify the weight update
formula as follows. In the (k+1)th iteration, we first compute
the `

2

error (distance) for each sample as in (17). Then, we
define

u(k+1)

n = (d(k+1)

n )

�1 (22)

and update the weight based on u(k+1)

n by

w(k+1)

n =

8
><

>:

w(k)
n (1� �k

), if u(k+1)

n < w(k)
n (1� �k

),

u(k+1)

n , if w(k)
n (1� �k

)  u(k+1)

n  w(k)
n (1 + �k

),

w(k)
n (1 + �k

), if u(k+1)

n > w(k)
n (1 + �k

)

where 0 < � < 1 is a pre-defined parameter. Intuitively,
we avoid updating the weights too aggressively by restricting
the new weight w(k+1)

n to be within a small neighborhood
of the weight in the previous iteration w(k)

n . The size of
the neighborhood depends on �. Subsequently, w(k+1)

n is
normalized as in (19), followed by weight matrix construction
in (20). The convergence of the weight sequence can be
verified by

lim

k!1
�k

= 0, (23)

lim

k!1
(w(k+1)

n � w(k)
n ) = 0, (24)

lim

k!1
( ew(k+1)

n � ew(k)
n ) = 0. (25)

C. Stopping Criterion

In implementing the proposed iterative algorithm, we exit
the algorithm when the difference between the weight vectors
at the kth and (k+ 1)th iteration is smaller than a predefined
threshold ✏ > 0, that is,

kw(k+1) �w

(k)k < ✏, (26)

where w

(k)
= [w(k)

1

, w(k)
2

, · · · , w(k)
N ]

T and w

(k+1)

=

[w(k+1)

1

, w(k+1)

2

, · · · , w(k+1)

N ]

T .

IV. APPLICATIONS AND EXPERIMENTAL STUDIES

In this section, we assess the effectiveness of the pro-
posed iterative re-weighted L

1

-PCA (IRW L
1

-PCA) algorithm
through two experiments: (i) Dimensionality reduction of a 2-
dimensional Gaussian data set (artificial data), and (ii) video
surveillance (field data foreground extraction).

A. Dimensionality Reduction

We generate a nominal data set XD⇥N of N = 30

two-dimensional (D = 2) observation points drawn from

the Gaussian distribution N
 
0

2

,


10.5 13

13 30

�!
as shown in

Fig. 1. We assume that our data matrix is corrupted by
four additional outlier measurements, o

1

,o
2

,o
3

,o
4

, shown
in the bottom right corner of Fig. 1. For the corrupted data
matrix X

CRPT

= [X,o
1

,o
2

,o
3

,o
4

], we calculate and plot in
Fig. 1 the rank-1 subspace by L

2

-PCA, regular L
1

-PCA, as
well as the proposed IRW L

1

-PCA method with number of
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iterations k = 1, 4, 8, 15, 21 (� = 0.9). For reference purposes,
we also plot the true nominal-data maximum-variance direc-
tion, i.e., the dominant eigenvector of the covariance matrix
10.5 13

13 30

�
. We observe that the proposed IRW L

1

-PCA

approach offers better estimation of the principal component
than the L

2

and regular L
1

-PCA methods [10]. As the number
of iterations increases from k = 1 to k = 21, the IRW L

1

prin-
cipal component comes closer to the true rank-1 subspace. The
algorithm converges empirically at k = 21. To quantify the
impact of the outliers, we generate 1000 new independent eval-

uation data points from N
 
0

2

,


10.5 13

13 30

�!
. In Fig. 2, we

estimate the mean-square-fit-error (MSFE) E{kx� pp

T

xk2
2

}
by 1

1000

1000P
i=1

kxi �pp

T

xik2
2

for pL2(X
CRPT

), pL1(X
CRPT

),

and IRW pL1(X
CRPT

). Again, for reference purposes, we plot
the MSFE curve for the true nominal-data maximum-variance
direction. We observe that the MSFE value of the proposed
IRW L

1

component decreases rapidly as the iteration number
increases and converges toward the minimum at k = 21.
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IRW L
1
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Fig. 1. Training data matrix X2⇥30 corrupted by four outlier points
in bottom right with calculated rank-1 L2, regular L1, and IRW L1

principal components at iteration k = 1, 4, 8, 15, and 21.

B. Video Surveillance

Consider a sequence of surveillance video frames Xt 2
Rm⇥n with frame resolution of m ⇥ n pixels and time
index t = 1, ..., N . For a surveillance video sequence, the
background scene is usually static and the objective is to
extract foreground moving objects. In our experiment, we per-
form block-by-block IRW L

1

-PCA for low-rank background
modeling and foreground extraction. We divide each frame
Xt into J blocks X

j
t 2 Rmb⇥nb , j = 1, ..., J . We let

x

j
t 2 RD, D = mbnb, represent vectorization of X

j
t via

column concatenation. For each sequence of co-located blocks,
x

j
t , t = 1, ..., N , it is likely that the moving objects appear

only in a few of these blocks, therefore we can model the

1 2 4 6 8 10 12 14 16 18 20 21

Number of IRW L
1
-PCA iterations (k)
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M
e
a
n
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q
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a
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-f
it-

e
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o
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variance direction

L
2
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L
1
-PCA

IRW L
1
-PCA

Fig. 2. Mean square-fit-error of L2, regular L1, and IRW L1 principal
components calculated from corrupted training data set XCRPT

versus iteration index k.

static background scene as a low-rank component zjt and the
foreground moving objects as an outlying component sjt . That
is,

x

j
t = z

j
t + s

j
t , t = 1, ..., N. (27)

In matrix form representation of the jth block across N
frames, Xj , [x

j
1

, ...,xj
N ] 2 RD⇥N and

X

j
= Z

j
+ S

j . (28)

To extract the low-rank background information, we carry out
IRW L

1

-PCA on X

j and obtain the rank-1 L
1

subspace p

j
L1

at convergence. Afterwards, the background blocks can be
approximated by bZj

= p

j
L1
p

jT

L1
X

j and the foreground blocks
can be extracted as bSj

= X

j � bZj , j = 1, ..., J .
We test the method on the Airport video sequence with

96 frames, each of 144 ⇥ 176 pixels. We process N = 8

successive frames at a time. To mitigate the “blockiness”
artifact, we divide each frame into J = 370 overlapping
blocks of size 26 ⇥ 32 and apply the proposed IRW L

1

-
PCA method independently to each group of co-located blocks
across 8 frames. The final background and foreground scenes
are obtained by averaging the extracted background pixels (as
well as the foreground pixels) for which multiple results are
available.

Fig. 3 displays the background and foreground extracted at
multiple distinct time slots t = 5, 7, 66, 67 with r = 1 principal
component by the proposed IRW L

1

-PCA, regular L
1

-PCA
[10], and the robust PCA method of [6]. The results show that
both the regular L

1

-PCA and robust PCA method suffer from
severe “ghost” presence in the estimated background scene,
which results in problematic foreground extraction. In contrast,
IRW L

1

-PCA significantly mitigates the “ghost” effect in the
estimated background and offers a much clearer foreground
scene.
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Fig. 3. Airport sequence: Original frame [row (i)] of time slot t =
5, 7, 66, and 67; proposed IRW L1-PCA reconstructed background
and moving objects [rows (ii) and (iii)]; robust PCA [6] reconstructed
background and moving objects [rows (iv) and (v)]; regular L1-PCA
[10] reconstructed background and moving objects [rows (vi) and
(vii)].

V. CONCLUSION

In this work, we proposed an iterative re-weighted L
1

principal-component analysis algorithm to compute principal
subspaces from data sets that may contain outliers. Instead of
computing a “one-shot” L

1

subspace, the proposed procedure
iteratively computes a sequence of L

1

subspaces. In every iter-
ation, each data sample is weighed according to compliance to
nominal data behavior measured by the L

1

subspace computed
in the previous iteration. We evaluated the effectiveness of the
proposed IRW L

1

-PCA method experimentally and the results
showed significantly better performance than regular L

1

-PCA
and state-of-the-art robust PCA methods.
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