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ABSTRACT

We consider a video acquisition system where motion imagery is captured only by direct compressive sampling
(CS) without any other form of intelligent encoding/processing. In this context, the burden of quality video
sequence reconstruction falls solely on the decoder/player side. We describe a video CS decoding method that
implicitly incorporates motion estimation via sliding-window sparsity-aware recovery from locally estimated
Karhunen-Loeve bases. Experiments presented herein illustrate and support these developments.

Keywords: Compressed sensing, compressive sampling, Karhunen-Loeve basis, video, motion estimation, mo-
tion imagery, Nyquist theorem, sparse signals.

1. INTRODUCTION

Conventional signal acquisition schemes follow the general Nyquist/Shannon sampling theory: To reconstruct a
signal without error, the sampling rate must be at least twice as much as the highest frequency of the signal.
Compressive sampling (CS), also referred to as compressed sensing, is an emerging bulk of work that deals with
sub-Nyquist sampling of sparse signals of interest [1]-[3]. Rather than collecting an entire Nyquist ensemble of
signal samples, CS can reconstruct sparse signals from a small number of (random [3] or deterministic [4]) linear
measurements via convex optimization [5], linear regression [6],[7], or greedy recovery algorithms [8].

A somewhat extreme example of a CS application that has attracted much interest is the “single-pixel camera”
architecture [9] where a still image can be produced from significantly fewer captured measurements than the
number of desired/reconstructed image pixels. Arguably, a natural highly desirable next-step development may
be compressive video streaming. In this present work, we consider a video transmission system where the
transmitter/encoder performs nothing more than compressed sensing acquisition without the benefits of the
familiar sophisticated forms of video encoding. Such a set-up may be of particular interest, for example, in
problems that involve large wireless multimedia networks of primitive low-complexity, low-cost video sensors. In
such a case, the burden of quality video reconstruction falls solely on the receiver/decoder side.

The quality of the reconstructed video is determined by the number of collected measurements, which,
based on CS principles, should be proportional to the sparsity level of the signal. Therefore, the challenge of
implementing a well-compressed and well-reconstructed CS-based video streaming system rests on developing
effective sparse representations and corresponding video recovery algorithms. Several important methods for CS
video recovery have already been proposed, each relying on a different sparse representation. An intuitive (JPEG-
motivated) approach is to independently recover each frame using the 2-dimensional discrete cosine transform
(2D-DCT) [10] or a 2-dimensional discrete wavelet transform (2D-DWT). To enhance sparsity by exploiting
correlations among successive frames, several frames can be jointly recovered under a 3D-DWT [11] or 2D-DWT
applied on inter-frame difference data [12].

In standard video compression technology around us, effective encoder-based motion estimation (ME) is a
defining matter in the feasibility and success of digital video. In the case of CS-only video acquisition that we
study in this paper, ME can be exploited at the receiver/decoder side only. In current approaches [13],[14], a
video sequence is divided into key frames and CS frames. While each key frame is reconstructed individually
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using a fixed basis (e.g., 2D-DWT or 2D-DCT), each CS frame is reconstructed conditionally using an adaptively
generated basis from adjacent already reconstructed key frames.

In this work, we propose a new sparsity-aware video decoding algorithm for compressive video streaming
systems to exploit inter-frame similarities and pursue most efficient and effective utilization of all available
measurements. For each video frame, we operate block-by-block and recover each block using a Karhunen-Loève
transform (KLT) basis adaptively generated/estimated from previously reconstructed reference frame(s) defined
in a fixed-width sliding window manner. The scheme essentially implements motion estimation and compensation
at the decoder by sparsity-aware reconstruction using inter-frame KL basis estimation.

The rest of the paper is organized as follows. In Section 2, we briefly review the CS principles that motivate
our compressive video streaming system. In Section 3, the proposed sliding-window sparsity-aware video decoding
algorithm is described in detail. Some experimental results are presented and analyzed in Section 4 and, finally,
a few conclusions are drawn in Section 5.

2. COMPRESSIVE SAMPLING BACKGROUND AND FORMULATION

In this section we briefly review the CS principles for signal acquisition and recovery that are pertinent to our
CS video streaming problem. A signal vector x ∈ R

N can be expanded/represented by an orthonormal basis
Ψ ∈ R

N×N in the form of x = Ψs. If the coefficients s ∈ R
N have at most k non-zero components, we call x a

k-sparse signal with respect to Ψ. Many natural signals -images most notably- can be represented as a sparse
signal in an appropriate basis.

Traditional approaches to sampling signals follow the Nyquist/Shannon theorem by which the sampling rate
must be at least twice the maximum frequency present in the signal. CS emerges as an acquisition framework
under which sparse signals can be recovered from far fewer samples or measurements than Nyquist. With a
linear measurement matrix ΦP×N , P � N , CS measurements of a k-sparse signal x are collected in the form of

y = Φx = ΦΨs. (1)

If the product of the measurement matrix Φ and the basis matrix Ψ, A , ΦΨ, satisfies the Restricted Isometry
Property (RIP) [3], then the sparse coefficient vector s can be accurately recovered via the following linear
program

ŝ = argmin
s̃

‖s̃‖`1 subject to y = ΦΨs̃. (2)

Afterwards, the signal of interest x can be reconstructed by

x̂ = Ψŝ. (3)

In most practical situations, x is not exactly sparse but approximately sparse and measurements may be
corrupted by noise. Then, the CS acquisition/compression procedure can be formulated as

y = ΦΨs+ e (4)

where e is the unknown noise bounded by a known power amount ‖e‖`2 ≤ ε. To recover x, we can use `1
minimization with relaxed constraint in the form of

ŝ = argmin
s̃

‖s̃‖`1 subject to ‖y −ΦΨs̃‖`2 ≤ ε. (5)

Specifically, if the isometry constant δ2k associated with RIP satisfies δ2k <
√
2 − 1 [3], then recovery by (5)

guarantees
‖ŝ− s‖`2 ≤ c0‖s− sk‖`1/

√
k + c1ε (6)

where c0 and c1 are positive constants, and sk is the k-term approximation of s by enforcing all but the largest
k components of s to be zero.
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Figure 1. A simple compressed sensing (CS) video encoder system with quantization alphabet D.

Equivalently, the optimization problem in (5) can be reformulated as the following unconstrained problem

ŝ = argmin
s̃

‖y −ΦΨs̃‖2`2/2 + λ‖s̃‖`1 , (7)

where λ is a regularization parameter that tunes the sparsity level. The problem in (7) is a convex quadratic
minimization program that can be efficiently solved. Again, after we obtain ŝ, x can be reconstructed by
(3). As for selecting a proper measurement matrix Φ, it is known [3] that with overwhelming probability
probabilistic construction of Φ with entries drawn from independent and identical distributed (i.i.d.) Gaussian
random variables with mean 0 and variance 1/P obeys RIP provided that P ≥ c · k log(N/k). For deterministic
measurement matrix constructions, the reader is referred to [4] and references therein.

3. PROPOSED CS VIDEO DECODING SYSTEM

The CS-based signal acquisition technique described in Section 2 can be applied to video acquisition on a frame-
by-frame, block-by-block basis. In the simple compressive video encoding block diagram shown in Fig. 1, each
frame Ft, t = 1, 2, ..., is virtually partitioned into M non-overlapping blocks of pixels with each block viewed as
a vectorized column of length N , xm

t ∈ R
N , m = 1, ...,M , t = 1, 2, .... Compressive sampling of xm

t is performed
by random projection in the form of

ym
t = Φxm

t (8)

with a Gaussian generated measurement matrix ΦP×N . Then, the resulting measurement vector ym
t ∈ R

P is
processed by a fixed-rate uniform scalar quantizer. The quantized indices ỹm

t are encoded and transmitted to
the decoder.

In the CS video decoder of [10], each frame is individually decoded via sparse signal recovery algorithms with
fixed bases such as block-based 2D-DCT (or frame-based 2D-DWT). With a received (dequantized) measurement
vector ŷ and a block-based 2D-DCT basis ΨDCT, video reconstruction becomes an optimization problem as in
(7)

ŝ = argmin
s̃

‖ŷ −ΦΨDCTs̃‖2`2/2 + λ‖s̃‖`1 (9)

where the original video block x is recovered as

x̂ = ΨDCTŝ. (10)

However, such intra-frame decoding using a fixed basis does not provide sufficient sparsity level for the video
block signal. Consequently, higher number of measurements is needed to ensure a required level of reconstruction
quality. To enhance sparsity, in [11] the correlation among successive frames was exploited by jointly recovering
several frames with a 3D-DWT basis, assuming that the video signal is more sparsely represented in a 3D-DWT
domain. In [12], a sparser representation is provided by exploiting small inter-frame differences within a spatial
2D-DWT basis. Nevertheless, in all cases, these decoders cannot pursue/capture local motion effects which can
significantly increase sparseness and are well-known to be a critical attribute to the effectiveness of conventional
video compression. Below, we propose and describe a new motion-capturing sparse decoding approach.

The founding concept of the proposed CS video decoder is shown in Fig. 2. The decoder consists of an
initialization stage that decodes Ft, t = 1, 2, and a subsequent operational stage that decodes Ft, t ≥ 3. At the
initialization stage, F1 is first reconstructed using the block-based fixed DCT basis exactly as described in (9)
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Figure 2. Proposed CS decoder system (1st-order decoding algorithm).

Figure 3. KLT basis estimation illustration (1st-order decoding).

and (10). Then, we attempt to reconstruct each block of F2 based on the reconstructed previous frame F̂1. Our
sparsity-aware ME decoding approach is based on the fact that the pixels of a block in a video frame may be
satisfactorily predicted by using a linear combination of a small number of nearby blocks in adjacent (previous or
next) frame(s). In particular, for our set-up the blocks in F2 may be sparsely represented by a few neighboring

blocks in F̂1. We propose to use the KLT basis for this representation. For each block xm
2 in F2, m = 1, ...M ,

a group of neighboring blocks that lie in a window of a square w × w region centered at xm
2 are extracted from

F̂1. Then, the KLT basis for xm
2 , Ψm

2,KLT
, is formed by the eigenvectors of the correlation matrix of the extracted
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Figure 4. CS decoder of order 2.

blocks from F̂1. Fig. 3 illustrates the block extraction procedure. Given a block xm
2 to estimate/reconstruct

(block in bold of size
√
N ×

√
N in F2), one can find its co-located block x̂m

1 (block in bold of size
√
N ×

√
N

in F̂1). Neighboring blocks (other overlapping blocks of size
√
N ×

√
N in F̂1) di, i = 1, ..., B, can be extracted

from a w × w area carrying out one-pixel shifts in all directions. When, say for example, w equals three times
the block width

√
N and block xm

2 is well in the interior of F2, then the total number of available neighboring
blocks is B = (w −

√
N)2; for blocks near the edge of F2, B will be smaller accordingly.

Considering now all the extracted neighboring blocks as different realizations of an underlying vector stochas-
tic process, the correlation matrix can be estimated by the sample average

R̂m
2 =

1

B

B∑

i=1

did
T
i . (11)

We form the KLT basis for Frame 2, Block m, Ψm
2,KLT

, by the eigenvectors of R̂m
2 = QΛQT ,

Ψm
2,KLT = Q, (12)

where Q is the matrix with columns the eigenvectors of R̂m
2 and Λ is the diagonal matrix with the corresponding

eigenvalues. Next, we recover the sparse coefficients sm2 by solving

ŝm2 = argmin
s̃

‖ŷm
2 −ΦΨm

2,KLTs̃‖2`2/2 + λ‖s̃‖`1 (13)

and we reconstruct the video block xm
2 by

x̂m
2 = Ψm

2,KLTŝ
m
2 . (14)

After all M blocks are reconstructed, they are grouped again to form the complete decoded frame F̂2.

So far, during the initialization stage, we have carried out forward only frame F2 reconstruction accounting
for motion from the DCT reconstructed frame F1. For improved initialization, we may repeat the algorithm
backward and reconstruct again F1 using KLT bases generated from F̂2. This forward-backward approach iterates
for the initial two frames as shown in some detail in Fig. 2 until no significant further reconstruction quality
improvement can be achieved.

At the normal operational stage that follows, the decoder recovers the blocks of Ft, t ≥ 3, based on the KLT
bases estimated from F̂t−1. Since only one previous reconstructed frame is used as the reference frame in KLT
bases estimation, we refer to this approach as 1st-order sparsity-aware ME decoding.

To exploit the correlation within multiple successive frames and achieve higher ME effectiveness in decoding,
we may extend the 1st-order sparsity-aware ME decoding algorithm to an nth-order procedure where at the
operational stage each frame is recovered from the past n reconstructed frames. For illustration purposes, Fig.
4 depicts the order n = 2 scheme. At the initialization stage, F1 and F2 are first reconstructed with forward-
backward estimation as in 1st-order decoding. Then, F3 is decoded with KLT bases estimated from both F̂1
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(a) (b) (c)

Figure 5. Different decodings of the 11th frame of Highway: (a) Original; (b) using the 2D-DCT basis intra-frame decoder
(P = 0.625N); (c) using the order-5 sparsity-aware ME decoder (P = 0.625N).
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Figure 6. Rate-distortion studies on the Highway sequence.

and F̂2. After F̂3 is obtained, F1 is decoded again in the backward direction with KLT bases estimated from
both F̂2 and F̂3. The same 2nd-order decoding is performed in the forward direction for F4 and in the backward
direction for F2, so that each of the initial frames Ft, 1 ≤ t ≤ 4, has been reconstructed with implicit ME from
two adjacent frames (Fig. 4). In the subsequent operational stage, each frame Ft (t ≥ 5) is decoded by the two

previous reconstructed frames F̂t−1 and F̂t−2. The concept is immediately generalizable to nth-order decoding
with 2n initial frames F1, F2, ..., F2n.

A defining characteristic of the proposed CS video decoder in comparison with existing CS video literature
[10]-[17] is that the order-n sliding-window decoding algorithm utilizes the spatial correlation within a video frame
and the temporal correlation between successive video frames, which essentially results to implicit joint spatial-
temporal motion-compensated video decoding. The adaptively generated block-based KLT basis provides a much
sparser representation basis than fixed block-based basis approaches [10]-[12],[15] as demonstrated experimentally
in the following section.

4. EXPERIMENTAL RESULTS

In this section, we study experimentally the performance of the proposed compressive sampling video decoders
by evaluating the peak-signal-to-noise ratio (PSNR) (as well as the perceptual quality) of reconstructed video
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(a) (b) (c)

Figure 7. Different decodings of the 5th frame of Foreman: (a) Original; (b) using the 2D-DCT basis intra-frame decoder
(P = 0.625N); (c) using the order-5 sparsity-aware ME decoder (P = 0.625N).
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Figure 8. Rate-distortion studies on the Foreman sequence.

sequences. Two test sequences, Highway and Foreman, with CIF resolution 352 × 288 pixels and frame rate of
30 frames/second are used. Processing is carried out only on the luminance component.

At the encoder side, each frame is partitioned into non-overlapping blocks of 32 × 32 pixels. Each block is
compressively sampled using a P × N measurement matrix with elements drawn from i.i.d. zero-mean, unit-
variance Gaussian random variables. The captured measurements are quantized by an 8-bit uniform scalar
quantizer and then sent to the decoder.

At the decoder side, we choose the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm
[6],[7] for sparse recovery motivated by its low-complexity and satisfactory recovery performance characteristics.
In our experimental studies, four CS video decoders are examined: (i) fixed 2D-DCT basis intra-frame decoder
used as a reference benchmark [10]; (ii) order-1; (iii) order-2; and (iv) order-5 sparsity-aware ME decoding.

Fig. 5 shows the decodings of the 11th frame of Highway produced by the 2D-DCT basis intra-frame decoder
(Fig. 5(b)) and the order-5 CS decoder (Fig. 5(c)). It can be observed that the 2D-DCT basis intra-frame decoder
suffers much noticeable performance loss over the whole image, while the proposed order-5 sparsity-aware ME
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decoder demonstrates considerable reconstruction quality improvement∗.

Fig. 6 shows the rate-distortion characteristics of the four decoders (fixed 2D-DCT intra-frame, order-1,
order-2, and order-5 CS decoding) for the Highway video sequence. The PSNR values (in dB) are averages over
100 frames. Evidently, the proposed order-1 sparsity-aware ME decoder outperforms significantly the fixed basis
intra-frame decoder, especially at the low-to-medium bit rate ranges of interest with gains as much as 2dB. The
2nd-order and 5th-order decoders further improve performance by up to one additional dB.

The same rate-distortion performance study is repeated in Figs. 7 and 8 for the Foreman sequence. By Fig.
8, the proposed 1st-order sparsity-aware ME decoder again outperforms significantly the fixed basis intra-frame
decoder, with gains approaching 1.5dB at the low-to-medium bit rate range of interest. The performance is
enhanced by more than 0.5dB as the decoder order increases to five.

5. CONCLUSIONS

We proposed a sparsity-aware motion-accounting decoder for video streaming systems with plain compressive
sampling encoding. The decoder performs sliding-window inter-frame decoding that adaptively generates KLT
bases from adjacent previously reconstructed frames to enhance the sparse representation of each video frame
block, such that the overall reconstruction quality is improved at any given fixed compressive sampling rate.
Experimental results demonstrate that the proposed sparsity-aware decoders outperform significantly the con-
ventional fixed basis intra-frame CS decoder. The performance is improved as the number of reference frames
(what we call “decoder order”) increases with order values in the range two to five appearing as a good compro-
mise between computational complexity and reconstruction quality.
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