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ABSTRACT 

Compressed sensing (CS) is the theory and practice of sub­

Nyquist sampling of sparse signals of interest. Perfect re­

construction may then be possible with much fewer than the 

Nyquist required number of data. In this paper, we consider a 

distributed multi-view imaging system where each camera at 

a different location perfonns independent compressed sensing 

acquisition of the target scene. At the decoder, we propose a 

disparity-compensated total-variation (TV) minimization al­

gorithm to jointly reconstruct the multiple views. Experimen­

tal results show that the proposed joint decoding algorithm 

outperforms significantly independent-view decoding as well 

as disparity-compensated residue-view reconstruction algo­

rithm. 

Index Terms- Compressed sensing, multi-view imag­

ing, sparse representation, total-variation minimization, dis­

parity compensation 

1. INTRODUCTION 

Multi-view images are captured by a network of cameras dis­

tributed in a 3D scene. Compared to conventional 2D images, 

multi-view images offer a richer description of the captured 

scene because they convey both the texture and the 3D scene 

information. Multi-view imaging has found usage in applica­

tions such as surveillance, 3D television and robotics [1]. 

In multi-view imaging systems, it is feasible to measure 

the raw data at each sensor, but joint, collaborative com­

pression of that data among the sensors would require costly 

communication. Recently, inspired by distributed source cod­

ing (DSC) [2] and compressed sensing (CS) [3]-[5], CS based 

distributed multi-view imaging systems have been proposed. 

In such systems, each camera independently captures and 

compresses one view of the scene by taking a small number 

of (random [5] or deterministic [6]) linear measurements, 

and high quality reconstruction of the multi-view images is 

achievable by exploiting multi-view image sparsity at the 

decoder. Typically, joint signal sparsity model is established 

and the reconstruction problem can be solved via convex 

optimization [7]. 

In [8], distributed compressed sensing and joint decod­

ing algorithm is used for satellite image reconstruction. For 

two-view reconstruction scenario, [9] proposed to utilize the 

block discrete cosine transfonn (DCT) and the disparity­

compensated view difference as the sparse penalty. Although 

signal sparsity is increased, the algorithm did not achieve 

competitive reconstruction quality due to the poor DCT ba­

sis. In [10], the decoder predicts a single view from initially 

reconstructed neighbor view(s) via disparity compensation 

(DC), then the sparse residue is recovered by two-dimensional 

total-variation (2D-TV) minimization, and is added back to 

the prediction. Although the algorithm achieves superior re­

construction quality after a few iterations, it does not consider 

spatial sparsity in the residue-view recovery stage. 

In this paper, we propose a disparity-compensated multi­

view TV minimization algorithm to jointly recover all the 

views from independent compressive samples. Initially, each 

view is reconstructed individually via 2D-TV minimization. 

A group of disparity maps are then estimated from the ini­

tial reconstructions, and a prediction model is established in 

which each view is predicted by its neighbor view(s). In the 

joint decoding stage, all views are recovered simultaneously 

using the sum-up of each view's 2D-TV and each residue 

view's 2D-TV as the sparse constraint. 

The remainder of this paper is organized as follows. In 

Section 2, our simple CS encoder is introduced. In Section 

3, the proposed disparity-compensated joint-view TV mini­

mization decoder is developed. Experimental results and per­

fonnance analysis are presented in Section 4. Finally, a few 

conclusions are drawn in Section 5. 

2. A SIMPLE COMPRESSED SENSING ENCODER 

Fig. 1. Compressive sensing at the kth camera with quantiza­

tion alphabet V. 
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In this paper, we propose a practical CS multi-view image 

acquisition system that performs pure, direct CS encoding. In 

the simple encoder block diagram shown in Fig. 1, the kth 
view Xk of size m x n is viewed as a vectorized column 

Xk = V(Xk) E JRN, N = mn. Compressive sampling is 

performed by projecting Xk onto a P x N random measure­

ment matrix (I), 
(1) 

where (I) is generated by randomly permuting the columns 

of an order-q, q 2 N and multiple-of-four, Walsh-Hadamard 

(WH) matrix followed by arbitrary selection of P rows from 

the q available WH rows (if q > N, only N arbitrary columns 

are utilized). This class of WH measurement matrices has the 

advantage of easy implementation (antipodal ± 1 entries), fast 

transformation, and satisfactory reconstruction performance. 

To quantize the elements of the resulting measurement vector 

Yk E JRP (block Q in Fig. 1), in this work we follow a sim­

ple adaptive quantization approach of two codeword lengths. 

A positive threshold 7]k > 0 is chosen such that 1 % of the 

elements in Yk have magnitude above 7]k. For every measure­

ment vector Yb k = 1,2, ... , 16-bit uniform scalar quantiza­

tion is used for elements with magnitudes larger than 7]k and 

8-bit uniform scalar quantization is used for the remaining el­

ements. The resulting quantized values Yk are then indexed 

and transmitted to the decoder. 

3. DISPARITY-COMPENSATED JOINT DECODER 

3.1. Initial Decoding 

Initially, multi-view images are reconstructed independently 

from their individual de-quantized CS measurements h via 

2D-TV minimization [11], [12] namely, 

Xk = argmJn ( 11Yk - (l)xll� + aIIGXlle, ) , (2) 

where the linear transform matrix G operates on the vector­

ized image x = V(X) and generates a vector consisted of 

horizontal gradient values Xi,j - Xi,j-I and vertical gradient 

values Xi,j - Xi -I,j over all pixels in image X E JRmxn. 

3.2. Disparity Compensation 

After the initial reconstruction of all views Xb k = 1, ... , K 
are obtained, they are used to estimate a group of disparity 

maps. Let the kth view Xk be the base view, 1 < k :s: K, then 

the geometry relation between Xk and its left neighbor Xk-I 
can be described with a disparity map d�-\ where the sub­

script k represents the base view index, and the superscript 

k - 1 represents the reference view index. With the aid of 

d�-I, every pixel Xk( i, j) in Xk can be predicted by a match­

ing point in Xk-I in the following form 

Similarly, for 1 :s: k < K, the geometry relation between 

the base view Xk and its right reference view Xk+1 can be 

described with disparity map d�+I, such that every pixel 

xk(i , j) in the base view can be predicted by a matching 

point in its right neighbor Xk+1 in the form of 

�P ( " ) � (.. dk+l(' .)) xk t , J = Xk+1 t , J - k t , J . (4) 

In this work, we only consider the case that multi-view 

images are rectified. For efficient disparity estimation, we 

adopt a two-stage algorithm. In the first stage, a group of 

coarse disparity maps are generated via local block-matching. 

In the second stage, the coarse disparity maps are used to 

compute the mutual information, which is then considered as 

the matching cost in the semi-global stereo matching algo­

rithm [13] that further refines the disparity maps. 

After the disparity maps are obtained, a prediction model 

for each view in the group of multi-view images can be estab­

lished via DC as shown in Fig. 2. For 2 :s: k :s: K - 1, Xk 

can be predicted from its left and right adjacent views Xk-I 
and xk+l' The prediction for pixel Xk (i, j) in Xk is given by 

p .. 1 .. k-I.. 1 .. k+ I . . Xk(t , J) = 2Xk-l(t , J+dk (t , J))+2Xk+l(t , J-dk (t , J)) 
(5) 

For k = 1 and k = K, x�(i,j) can be predicted by 

xP(i .) = Xk+1 t , J - k t , J , { (.. dk+l(' .)) 
k , J  (.. dk-I (' .)) Xk-I t , J + k t , J , 

k = 1, 
k = K. (6) 

In matrix form, the predicted kth view x� with x� (i, j) as its 

(i, j) th element is given by 

k = 1, 
2 :s: k :s: K - 1, 
k=K, 

(7) 

where D�+I and D�-I are the DC operators that lead to the 

expressions in (5) and (6). 

�Dl 2 2 

�D2 2 J 
�D4 2 J 

Fig. 2. Illustration of disparity compensation (DC) when K = 
4. 
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3.3. Joint Decoding 

When adjacent views are highly correlated and disparity maps 

are accurate enough, the residue between original view Xk 
and its prediction x�, i.e., Xk - x� also has small 2D-TV. 

Hence, we propose to combine the 2D-TV of individual views 

and the 2D-TV of DC residues as the sparse-inducing penalty 

in the reconstruction problem. 

Consider a group of K views x = [xi, ... , xklT. The 

observed CS measurements at the decoder can be modeled as 

y = ix + n, (8) 

where y is the con catenation of K de-quantized measurement 

vectors h, k = 1, ... , K, i is the block diagonal matrix with 

K diagonal elements 

i = diag{ <I> <I> }, (9) 

and n is the quantization noise. The view residue after DC 

operation is 

fl I 

f2 -�D� 

fk 

fK 

-Di 
I 

_lDk-l 
2 k 

-�D� 

I _lDk+l 
2 k 

_DK-l 
K 

Xl 
X2 

Xk 

I XK 
"-v-'" >-..,.--' 

�f �D 
"" =x 

where D is the DC operator for the group of K views. If the 

disparity estimation is accurate enough, fk shall have sparse 

2D-TV, which can be utilized to enhance the sparse repre­

sentation for multi-view image reconstruction. The resultant 

reconstruction problem can be formulated as 

se = argmin Ily - ixll� + aIilGxlll + a211GDxlll, (10) 
x 

where G is the block diagonal matrix with the gradient oper­

ator G as the K diagonal elements 

G = diag{G G}. (11) 

At first, problem (10) is converted into an equivalent vari­

ant through variable splitting technique by introducing auxil­

iary variables wand u: 

X = argmin Ily - ixll� + aIilwlll + a211ulh (12) 
x 

subject to Gx = w, GDx = u. 

Then, the problem in (12) can be formulated as minimizing an 

augmented Lagrangian function, and solved by the alternating 

direction method (ADM) [14],[15]. 

4. EXPERIMENTAL RESULTS 

In this section, we experimentally study the performance of 

the proposed disparity-compensated joint multi-view image 

decoder by evaluating the perceptual quality as well as the 

peak signal-to-noise ratio (PSNR) of reconstructed images. 

Two data sets, Art and Doll, with a resolution of 370 x 463 
pixels are used. Each data set contains 7 rectified views. Pro­

cessing is carried out only on the luminance component. 

At our trivial, pure CS encoder side, each view is han­

dled as a vectorized column of length N = 171310 mul­

tiplied by a P x N randomized partial WH matrix <I>. 
The sensing matrix <I> is generated only once to encode 

all views in each data set. The elements of the captured 

P-dimensional measurement vector are quantized and then 

transmitted to the decoder. In our experiments, the CS ratio 

1J = 0.125,0.25,0.375,0.5,0.625 are used to produce the 

corresponding rates 1.01,2.02,3.03,4.04, and 5.05 bits per 

pixel (bpp) I. At the decoder side, all 7 views in each data 

set are jointly reconstructed by the proposed joint decoding 

algorithm. In our experimental studies, three reconstruction 

algorithms are examined: (i) the proposed DC joint decoder; 

(ii) the DC residue-view decoder [10]; and iii) the indepen­

dent decoder that recovers each individual view via 2D-TV 

minimization. 

(a) (b) 

(c) (d) 

Fig. 3. Reconstruction of the 3rd view of Art data set: (a) 

original view; (b) proposed DC joint decoder; ( c) DC residue 

decoder [10]; and (d) independent decoder (1J = 0.25). 

I Considering the quantization scheme described in Section 2, the bit rate 
can be calculated as (16 x O.OlP + 8 x O.99P)/N bpp. 
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Fig. 4. Rate-distortion studies of Art data set. 

(a) (b) 

(c) (d) 

Fig. 5. Reconstruction of the 3rd view of Doll data set: (a) 

original view; (b) proposed DC joint decoder; (c) DC residue 

decoder [10]; and (d) independent decoder (f = 0.25). 

Fig. 3 shows the decodings of the 3rd view of the Art 

data set. The decoders in comparison are the proposed DC 

joint-view decoder (Fig. 3(b)), the DC residue-view decoder 

[10] (Fig. 3( c)), and the independent 2D-TV decoder (Fig. 

3(d)). It can be observed that the texture details of the scene 

are well preserved with our proposed decoder, and are blurred 

with the independent view decoder. Although the perceptual 
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Fig. 6. Rate-distortion studies of Doll data set. 

quality differences between Fig. 3 (b) and (c) are not pro­

nounced in the pdf formatting, Fig. 4 shows quantitatively 

around 1.5 dB PSNR improvement of the proposed DC joint 

decoder compared with the DC residue decoder, and around 

4 dB PSNR improvement compared to the independent view 

decoder at median-to-high bit rates. Similar conclusions can 

be drawn from Figs. 5 and 6 for the Doll data set. 

5. CONCLUSIONS 

We proposed a joint reconstruction algorithm for distributed 

compressed-sensed multi-view images. Initially, each view 

is independently recovered via 2D-TV minimization. After­

wards, a set of disparity maps are estimated from the initial 

reconstructions, and utilized in the disparity-compensated TV 

minimization stage for joint-view reconstruction. Experimen­

tal studies demonstrate that our proposed decoding algorithm 

outperforms significantly the independent view decoder, as 

well as the disparity-compensated residue-view decoder. 
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