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Compressed-Sensed-Domain
L1-PCA Video Surveillance
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Abstract—We consider the problem of foreground and
background extraction from compressed-sensed (CS) surveillance
videos that are captured by a static CS camera. We propose, for the
first time in the literature, a principal component analysis (PCA)
approach that computes directly in the CS domain the low-rank
subspace of the background scene. Rather than computing the
conventional L,-norm-based principal components, which are
simply the dominant left singular vectors of the CS-domain data
matrix, we compute the principal components under an L; -norm
maximization criterion. The background scene is then obtained
by projecting the CS measurement vector onto the L; principal
components followed by total-variation (TV) minimization image
recovery. The proposed L;-norm procedure directly carries out
low-rank background representation without reconstructing
the video sequence and, at the same time, exhibits significant
robustness against outliers in CS measurements compared to
Lo -norm PCA. An adaptive CS-L; -PCA method is also developed
for low-latency video surveillance. Extensive experimental studies
described in this paper illustrate and support the theoretical
developments.

Index Terms—Background and foreground extraction,
compressed sensing, compressive sampling, convex optimization,
feature extraction, L; principle component analysis, singular value
decomposition, total-variation minimization, video surveillance.

1. INTRODUCTION

N VIDEO surveillance, video signals are captured by cam-
I eras and transmitted to a processing center where video
streams are monitored and analyzed for moving objects and/or
other anomalies. Since conventional video coding requires
high processing power, compressed-sensing (CS) based video
streaming is attracting significant interest to reduce the required
computational complexity and energy consumption. CS theory
deals with sub-Nyquist-rate sampling of sparse signals of inter-
est [1]-[3]. Rather than collecting an entire Nyquist ensemble
of signal samples, CS performs signal acquisition by a small
number of (random [3] or deterministic [4], for example) linear
measurements. Successful signal reconstruction relies on effec-
tive sparse signal representation and appropriate recovery algo-
rithms such as convex optimization [5], linear regression [6],
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[7], or greedy procedures [8]. Wireless video surveillance via
compressed sensing can capture and compress video signals si-
multaneously through simple linear operations, therefore highly
reducing data acquisition time and power consumption [9].

In video surveillance, of particular interest is the ability to
detect anomalies or moving objects that stand out from the
background. To tackle this problem, the usual approach is via
background subtraction. Basic non-statistical background mod-
eling methods estimate and update the background by running
average [10] or temporal median filtering [11] and classify a
new pixel as foreground if the distance between the estimated
background and the new pixel is above a predefined thresh-
old. Statistical approaches model each background pixel by a
probability density function (pdf) learned over a set of training
frames, such as running Gaussian average [12]. To account for
background containing animated textures (such as sea waves or
trees shaken by the wind), multimodel pdfs have been proposed,
for instance, the Gaussian mixture model (GMM) [13], [14] or
kernel density estimation (KDE) [15] that models the pdf of
a background pixel by the sum of Gaussian kernels centered
at the most recent n background values (with n in the order
of 100). A new pixel is then classified as foreground if its pdf
value falls below a threshold. Since each Gaussian kernel de-
scribes just one sample point, KDE has very high computational
complexity. Another method for multimodel pdf estimation is
mean-shift [16]-[18], which is an effective gradient-ascent tech-
nique able to detect the main modes of the true pdf directly from
the sample data. Due to its iterative nature, mean-shift also has
high computational complexity and is not immediately applica-
ble to modeling background pdfs at the pixel level. Sequential
KDE [19] reduces complexity by initializing the modes of the
background pdf with a mean-shift procedure and using mode
propagation to update the modes.

In addition to the above classical background subtraction
techniques, more sophisticated algorithms have been developed
in recent years for challenging video surveillance scenarios
[20]-[25]. In particular, the self-organizing background sub-
traction (SOBS) [20], multilayer codebook-based background
subtraction (MCBS) [22], and multibackground generation [23]
schemes are designed to accommodate dynamic scenes such
as moving backgrounds and gradual illumination variations.
Besides, algorithms developed in [24], [25] generate effective
background models for variable bit rate video-based traffic mon-
itoring systems.

Another line of research on background subtraction for
video surveillance is based on low-rank subspace approxima-
tion. In contrast to the aforementioned pixel-level background
modeling schemes, such schemes are block-level or image-level
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and extensively explore spatial correlations. The standard ap-
proach is Lo-norm based principal component analysis (Lo-
PCA), such as block-level one-dimensional PCA [26] or frame-
level two-directional two-dimensional PCA ((2D)?PCA) [27].
Ly-PCA, in general, seeks a low-rank subspace to represent the
background scene, but is easily affected by moving objects in
the foreground scene, i.e., “outliers” that are numerically distant
from the background. The reason is that Ly-PCA is calculated
based on squared-error metrics that can give highly exaggerated
values due to the squaring operation. In recent years, there has
been a growing interest in robust PCA methods to deal with the
problem of outliers in principal-component design [28]-[35].
In [28]-[31], subspace decomposition is performed under an
L1 -error minimization criterion. In [32], non-negative matrix
factorization is performed via Manhattan distance minimization
(MahNMF), which aims at robustly estimating the low-rank
part and sparse part of a non-negative matrix in the presence of
outliers. The robust PCA method developed in [33] performs
low-rank background and sparse foreground decomposition by
minimizing a weighted sum of the nuclear-norm of the low-rank
component and the ¢;-norm of the sparse component. Such a
robust PCA idea is also adopted in DECOLOR [34], which in
addition uses Markov random-field (MRF) modeling to improve
the accuracy of detecting contiguous outliers. A CS version of
robust PCA (CS-RPCA) is developed in [35] for CS surveil-
lance videos, but offers good reconstruction quality only when
a large number of frames is available (introducing, therefore,
large latency to the decoding monitoring system). Overall, the
robustness of all aforementioned methods comes at high compu-
tational cost due to the employed convex optimization programs.
Recently, there has been a growing documented effort to cal-
culate robust subspace components by explicit L; projection
maximization [36]-[38]. The resulting principal components
are called L, principal components. The work in [36] presented
a suboptimal iterative algorithm for the computation of one Iy
principal component and [37] presented an iterative algorithm
for suboptimal joint computation of d > 1 L principal compo-
nents. In [38], for the first time in the literature, algorithms for
exact calculation of L; principal components are developed.
While the algorithms for optimal L;-PCA in [38] find suc-
cessful applications in the original signal space, in this work
we propose for the first time a direct CS-measurement-domain
L,-PCA algorithm and apply the procedure to compressed-
sensed surveillance video processing. For a surveillance video
sequence, the low-rank property is preserved in the CS domain
if each frame of the video is captured by the same compressed-
sensing matrix. Hence, L;-PCA can be performed directly on
the collected CS measurement vectors. Since the CS measure-
ment vectors lie in a reduced dimensional space compared to the
original pixel-domain data, the computational complexity for
CS-L;-PCA is dramatically lower. In the experimental studies
that we present in this paper, we not only demonstrate that CS-
L,-PCA followed by regular CS image recovery can success-
fully extract the background scene from a surveillance video, but
also illustrate the advantages of CS-L;-PCA over CS-L,-PCA
when CS measurements are corrupted by outliers/faulty data.
Furthermore, we develop an adaptive method based on the pro-
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posed CS-L;-PCA scheme which utilizes the most recently ex-
tracted background information to update the low-rank subspace
with only a few new frames, therefore enabling low-latency
video surveillance.

The remainder of this paper is organized as follows. In Sec-
tion II, we present our notation and establish the building blocks
of our proposed procedure; that is, exact computation of L, -PCs
and compressed-sensed image recovery based on total-variation
(TV) minimization. In Section III, the proposed CS-L;-PCA al-
gorithm is developed and the overall foreground and background
separation scheme is described in detail. Extensive experimental
results and performance analysis are presented in Section IV.
Finally, a few conclusions are drawn in Section V.

II. BUILDING BLOCKS OF PROPOSED ALGORITHM
A. Exact Computation of Ly Principal Components

Consider an observation data matrix X € R” *¥ that con-
sists of a low-rank component L € R” ¥ and a perturbation
matrix E € RP %V je.

X=L+E. (1)

Ly-PCA refers to the problem of seeking the best rank-d (d <
min{ D, N}) representation of L by solving

P2 (Ry,,S.,) = arg min [X — RS,
ReR? ¢ RTR=1,
S eRN xd
(2)

which is equivalent to the Lo projection (energy) maximization
problem

Ly . _ T
Py? Ry, —argRér]llggcxd [IX* R|2. (3)

RTR=1,

The optimal Rz, solution (same in both P2 and PL?) is simply
the d dominant-singular-value left singular vectors of the data
matrix X.

When the perturbation matrix E may contain extreme outlier
values (faulty measurements in X), L;-PCA in the following
form pursues a more robust subspace representation of L than
Ly-PCA

Pl R, =arg max ||XTRJ;. 4)
RERD xd

RTR=1,

Indeed, in the presence of faulty measurements/outliers in
X,R, in (4) is likely to be closer to the correct true sub-
space than Ry, in (3). The d columns of Ry, in (4) are the
so-called d L, principal components that describe the rank-d
subspace in which L lies. As shown in [38], exact calculation of
the L, principal components in Problem %! can be recast as a
combinatorial problem. In short, when the rank of the nominal
signal is d = 1, Problem P reduces to

phi irp, =arg max ||XTI‘||1 (5)
reRP

[Irll2=1
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and we can rewrite PL1 as

max b’ X'r (6)

max [|[XTr|; = max ]
rcRP rcR? be{£1}¥
[[rfla=1 fIrfl2=1
= max max r’ Xb (7
be{+1}¥ reR?
[[rfl2=1
= max [ XDb]z. (8)
be {1}V

The optimal solution for (8) can be obtained by exhaustive
search in the space of the binary antipodal vector b. Since
[Xb|l; = (b’ XTXb)!/2 = (=b"XTX(~b))/2, if b* is an
optimal solution, then —b* is also an optimal solution. Hence,
we can always set, the first, say, coordinate of b to b(1) = 1 and
the complexity for exhaustive search on the other N — 1 coor-
dinates of b is 2V ~!. Computation of || Xb)||s needs DN mul-
tiplications, therefore the overall complexity for solving P! is
2N-IDN.

When the rank of the nominal signal is d > 1, the problem
PL1 can be solved by

max | XTRJ; )
R cRP xd
RTR=1,
= max max tr(RTXB) (10)
R ERU xd B E{il}“‘v xd
RTR=I,
= max [ XB]. (11
B e (£ 1}V xd
where || - || stands for nuclear norm. By Proposition 4 of [38],

to find exactly the optimal L;-norm projection operator Ry, in
(4) we can perform the following steps:

1) solve (11) to obtain By ;

2) perform singular value decomposition (SVD) on

XB,pt = UXVT; and

3) return Ry, = U. 1., VT,

The complexity of the above algorithm is dominated by Step
1, which includes the exhaustive search on the binary matrix
B *? with complexity O(2¥?) and SVD per iteration of com-
plexity O(min{D?d, Dd?}). Therefore, the overall complexity
for finding d L, principal components via exhaustive search is
O(2V4min{D?d, Dd*}). For any fixed data dimension D, a
polynomial-time algorithm is developed in [38] to solve opti-
mally (11) with complexity O(N**#k(X)d=d+1) rank(X) < D.
In [39], a fast greedy approximation algorithm was proposed
to solve (11) with complexity O(min{ N D?, N>D} + N?(d +
2) 4+ ND).

B. Compressed-Sensed Video Recovery via Total-Variation
(TV) Minimization

In this section, we briefly review video frame acquisition
by compressive sampling and recovery using sparse gradient
constraints (TV minimization). If we consider the ¢th frame
X; € R™*™" of the video sequence and x; € RP, D = mn,
represents vectorization of X; via column concatenation, then
CS measurements of X; are collected in the form of

yt:@xt, t:1,27 (12)

with a linear measurement matrix ®p . p, P < D. Under the
assumption that images are mostly piece-wise smooth, it is nat-
ural to consider utilizing the sparsity of the spatial gradient of
X, for CS frame reconstruction [5], [40]-[46]. If xz j denotes
the pixel in the ith row and jth column of X;, the horizontal
and vertical gradients at xﬁ ; are defined, respectively, as

t t .
Tiiv1 — Ty g <n
Dyii[Xi] =4 T
0, J=n
and
Tiyy =y, i<m
Dyi[X¢] = T :
0, T=m

The discrete spatial gradient of X, at pixel xf ; canbe interpreted
as the 2D vector

13)

D;[X,] = (Dh;ij [Xt]>

Dy [X4]

and the anisotropic 2D-TV of X, is simply the sum of the
magnitudes of this discrete gradient at every pixel

TVop (1) £ > (1D [Xe| + [ Dy [Xe]))
ij
= DDAl - (14)
ij
To reconstruct X, we can solve the convex program
X; = argmin TVap (x;) subjectto y; = ®Px;. (15)

However, in practical situations the measurement vector y;
may be corrupted by noise. Then, CS acquisition of x; can be
formulated as

yi = &% + 1y (16)

where n; is the noise vector. To recover x;, we can use 2D-TV
minimization as in (15) and formulate the following uncon-
strained optimization problem

~ . 1
X, = arg II)l(lIl[,U,TVQD (x¢) + §||yt — @xt\\i] (17)

where (1 is a non-negative weight controlling the sparsity level.

III. CS-DOMAIN L{-PCA FOR COMPRESSED-SENSED
SURVEILLANCE VIDEO

A. CS Surveillance Video Acquisition

In this paper, we consider a practical CS surveillance video ac-
quisition system that performs pure, direct compressed sensing
of each video frame. In the simple compressive video encoding
block diagram shown in Fig. 1, each frame X; of size m X n
is viewed as a vectorized column x; € R”, D = mn, where
t is the frame index. Compressive sampling is performed by
projecting x; onto a P x D (P < D) measurement matrix ®

yt:@xt, t:172, (18)
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Input Video P
Frames Vectorization | X, €RP Measurement | y eR
» Matrix ¢ ———»
X, eRmxn Vec() D=mxn
Fig. 1. Compressed-sensing (CS) video encoder.

where ® is generated by randomly permuting the columns of an
order-k, k > D and multiple-of-four, Walsh-Hadamard (WH)
matrix followed by arbitrary selection of P rows from the &
available WH rows (if £ > D, only D arbitrary columns are
utilized). This class of WH measurement matrices has the ad-
vantage of easy implementation (antipodal £ 1 entries), fast
transformation, and satisfactory reconstruction performance as
we will see later on. A richer class of matrices can be found in
[47], [48]. For practical implementation, ® is generated once
and fixed for all frames in the video sequence. The resulting
CS measurement vectors y;,t = 1,2,..., are then transmitted
to the decoder.

B. L,-PCA for Background Extraction

We organize an ensemble of N CS measurement vectors

Y1,¥2,---,yn inmatrix formY £ [y; y» ... yn]modeled
by

Y= X+O0 (19)

— ®(L+E)+0 (20)

= YL +®E+O (21)

where X = [x; X3 ... Xy] is the matrix consisting of the N

corresponding video frames. If the utilized video frames are rel-
atively time-lapsed (non-successive) such that their foreground
scenes contain moving objects with low correlations, X can be
viewed as a sum of the low-rank background L and the sparse
moving objects E. Assuming that L is a rank-d matrix, the CS-
domain observed data matrix Yy, £ ®L is also of rank d and
represents the compressed-sensed background scene. To deal
in addition with the practical issue of possible faulty data, we
assume that the observed CS measurements may be corrupted
by outliers O due to acquisition failures. By applying L;-PCA
to Y, we extract a background-scene subspace basis

RL]—arg max HYTRH1 (22)

RTR I,{

The complexity of solving (22) is O(2¥? min{P?d, Pd*}) b
the exhaustive search algorithm and O(N**"k(Y)d=d+1) by the
polynomial-time algorithm [38]. Compared to pixel-domain L, -
PCA computation described in (9), the complexity is signifi-
cantly reduced since the vector length is reduced from D to P
due to compressed sensing. By projecting the observed CS mea-
surements Y onto Ry, we can obtain the compressed-sensed
low-rank component

Yi =Ry, RLY. (23)

Afterwards, the background scene can be reconstructed by per—
formlng CS recovery on the columns of YL , 1.e., yL Yt
1,2,...,N. Here, we propose and use TV minimization
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introduced in Section II of the following form:

Ezargrr}inuTVgD(ét) *Hth ®0)3. (24

For comparison purposes, in parallel to the above develop-
ments, we introduce Ls-norm based CS-domain PCA calcula-
tion (SVD) by

R, =arg max HY R|>. (25)
Re
RTR I,,
Similar to (23), the background scene can be obtained by pro-

jecting Y onto the Ly principal components
Y{? =Ry, RLY (26)

followed by TV minimization as in (24). Since Lo-PCA is
sensitive to outlier values, the performance of CS-Ly-PCA is
anticipated to be inferior to CS-L;-PCA in the presence of
faulty/corrupted data and sensitive to the selected rank value d.

C. Moving Objects Extraction

To extract the sparse moving objects in the foreground, we
perform frame-by-frame CS reconstruction in the form of

-~ . 1
%, = argmin | TV (%) + 3 [lyr — @3 27)
With the recovered video frames X — X1 X2 ... Xn] €
RP %N the sparse foreground can be recovered as
& =% (28)

fort=1,2,..., N.

D. Adaptive CS-L;-PCA

To find an accurate CS-domain low-rank subspace represen-
tation of the background scene by solving (22) [or (25)], low
correlation among the moving objects across CS frames y; to
y n isrequired. At the same time, low-latency video surveillance
requires background and foreground separation shortly after the
CS measurements are received. Therefore, at each time slot at
the monitoring decoder, the CS measurements of only a small
number of successive frames can be assumed available for pro-
cessing. In this case, a slowly moving object may not change
position significantly and thus may be captured as part of the
background. In this section, we introduce a method to improve
the accuracy of the calculated CS-domain low-rank background
subspace via recursive/adaptive CS-frame processing.

Assume that & background frames are already identified by
processing preceding frames. Their CS-domain representations
calculated by (22), (23) form a matrix defined by

SL ~L ~L ~L
Yile 200 Yib yii € RV¥E (29
We then collect new CS measurements Y = [yr+1 Yii2

- yiin] € RPXN to form a current group of N frames
and solve the following combined problem:

L T
Ry, adapt = arg R]énﬂgx ||[YLIpre "Rl1.  (30)
RTR=1,
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TABLE I
COMPLEXITY ANALYSIS

CS-L,-PCA

O(min{P?N,PN?})

CS-L1-PCA
Ry, by (22) 02N min{P?d, Pd*}) exhaustive search [38] or
Ry, by (25) O(Nrank(Y)d=d+1y polynomial-time [38] or
O(min{NP? ,N2P}+ N%(d + 2) + N P) “fast” [39]
Y11 by 23) O(2PNd)

Y12 by 26)

7, by (24)
%/ by 27)

O(4Pmn x max iteration)

O(2PNd)

O(4Pmn x max iteration)

Afterwards, the background scene can be reconstructed/updated
by projecting the columns of Y onto the adaptive L; principal
components Ry, adapt of (30) followed by TV minimization
CS image recovery. Initially, Ry, aqap¢ may be an inaccurate
approximation of the CS-domain low-rank subspace of the back-
ground. As the adaptation proceeds, Rz, adapt becomes a pro-
gressively better representation of the pursued subspace. Fur-
thermore, as the background changes, Ry, adapi follows the
changes accordingly. Hence, adaptive CS-L;-PCA as described
not only reduces latency, but also allows the computed subspace
to adapt quickly to changes in the video background.

E. Complexity Analysis

The CS-L1-PCA method described in Section III-B requires:
(i) Computation of the CS-domain L; principal components
R, by (22); (ii) projection of the observed CS measurements
Y onto Ry, by (23); (iii) reconstruction of the background
frames from ?f ' via TV minimization by (24); and (iv) recov-
ery of the foreground by (27) and (28). For CS-Ls-PCA, the
L, principal components are computed by (25), followed by
similar steps as those for CS-L;-PCA. Detailed computational
complexity of every step is presented in Table I." The complex-
ity of the adaptive CS-L;-PCA algorithmic version described in
Section III-D is given by replacing in Table I N by N + k where
k represents the number of pre-processed preceding frames.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE EVALUATION

In this section, we demonstrate the effectiveness of the
proposed algorithmic developments on a wide variety of test
surveillance sequences frequently used in the literature. Table 11
lists the utilized sequences and describes their properties. The
sequences not only differ in object size and object number,
with both indoor and outdoor environments presented, but also
present well-known challenges for video surveillance systems,
including:

1) light changes (the background learning should adapt to

sudden illumination changes);

2) bootstrapping (background should be accurately extracted

even in the absence of a complete and free of moving
objects training set at the beginning of the sequence); and

!'As a representative example of experimental relative computational time,
when CS-L;-PCA and CS-Ls-PCA are executed on an Intel i5-2550K
3.40 GHz platform with input the PETS2001 video sequence (see Table II),
the expended time per frame is 1.805 sec and 1.741 sec, respectively.

TABLE II
VIDEO SEQUENCE BENCHMARKS

Sequence Sampled | Sequencqd Image | Background Object| Object

Title Frame Type Size Property | Size | Number]
PETS2001 Outdoor |120 x 160|  Static Small Few
Airport Indoor |144 x 176| Static |Medium| Many
Daniel_light Indoor |120 x 160 Hizminanoe Large Few

Change

Fountain Outdoor |128 x 160/ Dynamic | Small |Medium

WaterSurface Outdoor |128 x 160| Dynamic | Large | Few

3) dynamic background (the moving objects should be cor-
rectly detected even when part of the background scene is
moving).

In the following, it is seen by qualitative and quantitative re-
sults that the proposed CS-L; -PCA approach can cope with the
above mentioned issues in background extraction and achieve
successful state-of-the-art moving object extraction in various
types of videos taken with static CS cameras.

A. Non-Adaptive CS-Li-PCA Background Extraction

We first perform experiments to illustrate and evaluate the
non-adaptive CS-L;-PCA background extraction approach de-
veloped in Sections III-A—-C. We demonstrate that CS-L;-PCA
outperforms CS-Ly-PCA in both absence and presence of CS
measurement outliers, therefore the 11 -norm metric in (4), (22)
appears more appropriate than the Lo-norm metric in (3), (25) in
identifying a low-rank subspace for background scene represen-
tation. In this manuscript, we include results for two of the test-
ing sequences, PETS2001 and Airport. For each video sequence,
N = 10 frames are selected to form a video volume. Each frame
is compressed-sensed independently using the same randomly
permutated partial Walsh-Hadamard matrix. The number of CS
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Fig. 2. PETS2001 sequence (clean CS measurements): CS-L;-PCA recon-
structed background and moving objects (row (i) and (ii), respectively) and
CS-Ly-PCA reconstructed background and moving objects (row (iii) and (iv),
respectively) with d = 1,2, or 3 principal components (columns (a), (b), and
(c), respectively).

(v)

(iii)

(iv)

(@) () © @ (@

Fig. 3. PETS2001 sequence (75% outliers in CS measurements of three ran-
domly selected frames): CS-L;-PCA reconstructed background and moving
objects (row (i) and (ii), respectively) and CS-Ly-PCA reconstructed back-
ground and moving objects (row (iii) and (iv), respectively) with d = 1,2, 3,4,
or 5 principal components (columns (a), (b), (c), (d), and (e), respectively).

measurements per frame is 37.5% of the total number of pixels
in the video frame.

Figs. 2-5 display the extracted background scenes and fore-
ground moving objects for the two testing sequences. In par-
ticular, Fig. 2 displays results for the representative PETS2001
frame shown in Table II when the CS measurements do not
contain outliers. Rows (i) and (ii) are the results of CS-L;-
PCA? background and foreground, respectively, extraction with

2For L1 -PCA calculation, the fast algorithm developed in [39] is adopted.
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(i)

(iii)

(iv)

() (b) (©

Fig. 4. Airport sequence (clean CS measurements): CS-Lj-PCA recon-
structed background and moving objects (row (i) and (ii), respectively) and
CS-Ly-PCA reconstructed background and moving objects (row (iii) and (iv),
respectively) with d = 1,2, or 3 principal components (columns (a), (b), and
(c), respectively).

®) © ()

Fig.5. Airport sequence (50% outliers in CS measurements of three randomly
selected frames): CS-L1-PCA reconstructed background and moving objects
(row (i) and (ii), respectively) and CS-L-PCA reconstructed background and
moving objects (row (iii) and (iv), respectively) with d = 1,2, 3,4, or 5 prin-
cipal components (columns (a), (b), (c), (d), and (e), respectively).

d=1,2, and 3 principal components (columns (a), (b), and
(c), correspondingly). Rows (iii) and (iv) repeat the study for
CS-L,-PCA. It is observed that in the absence of outliers, both
CS-L;-PCA and CS-L,-PCA correctly extract the background
and the moving objects with one principal component (d = 1).
When d increases (rank mismatch), CS-L;-PCA maintains su-
perior performance, while CS-Ly-PCA rapidly deteriorates.
Fig. 3 repeats the study of Fig. 2 for the same data set with
corrupted CS measurements. In the experiment, 75% of the CS
measurements of three randomly selected frames are corrupted
by outliers.? The presence of outliers in three frames modifies/

3 If the ith CS measurement of the tth frame, y; (i (7), is selected to be corrupted
by an outlier, then in the experiments y; (¢) is replaced by —3.5 max |y (7)].
1<t<N
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increases the effective SVD rank of the background from d = 1
to 4. Naturally, when we use d = 1, both L, - and L, -PCA cannot
recover the background/foreground scenes. When d > 2, L4 -
PCA shows remarkable resistance to outliers and recovers the
background and the moving objects well with L; rank choice
d = 2 or above (d = 3,4, or 5). On the other hand, L,-PCA
needs specifically d = 4 principal components (number of cor-
rupted frames plus one) to recover the low-rank outlier corrupted
background scene and its performance decreases quickly when
d > 4.

For increased credibility of the study, a similar experiment is
performed on the Airport sequence (Figs. 4 and 5). InFig. 5, 50%
of the CS measurements of three randomly selected frames are
corrupted by outliers as in the study of Fig. 3. Similar conclusion
to the studies of Figs. 2 and 3 can be drawn. CS-L;-PCA offers
superior robustness in rank selection and background/moving
objects extraction in both clean and outlier corrupted video
sequences.

B. Adaptive CS-L,-PCA Background Extraction

Next, we compare the adaptive CS-L;-PCA background ex-
traction scheme developed in Section III.D with non-adaptive
CS-L;-PCA and three state-of-the-art video surveillance proce-
dure from the literature (MahNMF [32], DECOLOR [34], and
CS-RPCA [35]).

For each test sequence in Table II, we initialize the adap-
tive CS-L;-PCA process with the first Ny = 20 compressively
sensed frames. The most recent k < Ny = 20 extracted CS-
domain background representations are grouped to form the
matrix Y{',. € R”** in (29). Then, new CS measurements
are collected over the next N = 5 successive frames, with two of
them corrupted by outlier Values as in Figs. 3 and 5. We append
the new five CS frames to Y . and solve (30) to obtain the
new principal components R, 7adapt ;(23) and (24) are solved to
update the background/foreground scenes. We continue, subse-
quently, the process with a “sliding-forward window” of N = 5
successive frames (again two of them always corrupted by out-
lier values).

Fig. 6 displays the background and foreground extracted at
multiple distinct time slots ¢ = 27, 30, 39,43, 47 of PETS2001
with d = 2 principal components by non-adaptive CS-L;-PCA
[rows (ii) and (iii)], adaptive CS-L;-PCA with k = 5 [rows (iv)
and (v)], and adaptive CS-L;-PCA with £ = 15 [rows (vi) and
(vii)]. It is observed that the adaptive methods (k = 5, 15) gen-
erate better background and foreground scenes compared to the
non-adaptive method. Since PETS2001 is a relatively easy se-
quence with static background, small object number and size,
and somewhat low correlation among consecutive frames, adap-
tive CS-L,-PCA methods with £ = 5 and k£ = 15 have similar
performance [rows (iv)—(vii)]. However, when applied to chal-
lenging sequences, adaptive CS-L;-PCA with a higher k value
shows appealing performance improvement compared to that
with a small k£ value as seen in Figs. 7-10. Specifically, Fig. 7
shows the results for the Airport sequence that contains multiple
moving objects and requires “bootstrapping”, i.e., object-free
frames are unavailable at the beginning of the sequence to train

() B

(iii)

" - - -

t=27 43 47

Fig. 6. PETS2001 sequence: original frame [row (i)] of time slot ¢ =
27,30,39,43, and 47; non-adaptive CS-L1-PCA reconstructed background
and moving objects [rows (ii) and (iii)]; adaptive CS-L;-PCA reconstructed
background and moving objects £ = 5 [rows (iv) and (v)]; adaptive CS-L -
PCA reconstructed background and moving objects k = 15 [rows (Vi)
and (vii)].

(i)
(ii)
(iil)
(iv)
v)
(vi)

(vii)

t=33 36 43 51 61

Fig. 7. Airport sequence: original frame [row (i)] of time slot t =
33,36,43,51, and 61; non-adaptive CS-L;-PCA reconstructed background
and moving objects [rows (ii) and (iii)]; adaptive CS-L;-PCA reconstructed
background and moving objects k = 5 [rows (iv) and (v)]; adaptive CS-L; -
PCA reconstructed background and moving objects k = 15 [rows (vi)
and (vii)].
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0]

(ii)

(iil)

(iv)

v)

(vi)

(vii)

t=26 30 43 48 93
Fig. 8. Daniel_light sequence: original frame [row (i)] of time slot ¢ =
26,30,43,48, and 93; non-adaptive CS-L1-PCA reconstructed background
and moving objects [rows (ii) and (iii)]; adaptive CS-L;-PCA reconstructed
background and moving objects k = 5 [rows (iv) and (v)]; adaptive CS-L -

PCA reconstructed background and moving objects k= 15 [rows (Vi)
and (vii)].

(iv)

G

=

v)
(vi)
(vii)
t=38 41 43 51 ;557
Fig. 9. WaterSurface sequence: original frame [row (i)] of time slot ¢ =

38,41,43,51, and 55; non-adaptive CS-L;-PCA reconstructed background
and moving objects [rows (ii) and (iii)]; adaptive CS-L1-PCA reconstructed
background and moving objects k = 5 [rows (iv) and (v)]; adaptive CS-L; -
PCA reconstructed background and moving objects k = 15 [rows (Vi)
and (vii)].

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 3, MARCH 2016

(ii)

(iv)

(vi)

(vii)

t=23 28 30 35 38

Fig. 10. Fountain sequence: Original frame [row (i)] of time slot ¢ =
23,28,30,35,and 38; non-adaptive CS-L;-PCA reconstructed background
and moving objects [rows (ii) and (iii)]; adaptive CS-L;-PCA reconstructed
background and moving objects k£ = 5 [rows (iv) and (v)]; adaptive CS-L; -
PCA reconstructed background and moving objects k = 15 [rows (vi)
and (vii)].

the low-rank background subspace. Fig. 8 tests the algorithm on
the Daniel _light sequence with sudden illumination change due
to light switching. Fig. 9 shows the results on the WaterSurface
sequence with a slow moving person and dynamic background.
Fig. 10 is the Fountain sequence with multiple moving objects,
as well as dynamic background. For all these challenging se-
quences, the proposed adaptive CS-L;-PCA method performs
significantly better than its non-adaptive counterpart, in that the
“ghost” phenomena in the extracted background scenes are ef-
fectively removed or mitigated. Performance is improving as we
move on from kK = 5to k = 15.

For increased credibility of our experimental studies and con-
clusions, we also carry out quantitative analysis. Binary masks of
three sample frames are generated for each of the five sequences
by thresholding the adaptive CS-L;-PCA extracted foreground
images and different accuracy metrics are calculated such as
Recall, Precision, Fy, and Similarity ([20] and [21]-[25]) using
the generated binary masks and ground truth (Tables ITII-VII).
Recall, also known as detection rate, gives the percentage of
detected true positives (detected true foreground object pixels)
as compared to the total number of true positives in the ground
truth

tp

Recall & ——
tp+ fn

(€19}

where #p is the total number of true positives, fn is the total
number of false negatives, and (tp + fn) indicates the total
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TABLE III

BINARY OBJECT MASKS AND ACCURACY METRICS FOR PETS2001

= -~ '—1-:-
M d

4

TABLE IV
BINARY OBJECT MASKS AND ACCURACY METRICS FOR Airport

Sampled e T Sampled
frames frames
Foreground CS-L1-PCA
Foreground
Truth Ground
- -
CS-L1-PCA
Recall 0.890 0.895 0.900 CS-L1-PCA ]
Precision 0.859 0.756 0.787 Recall 0.916 0.891 0.877
Similarity 0.776 0.695 0.724 Precision 0.735 0.733 0.797
Fy 0.874 0.820 0.840 Similarity 0.688 0.672 0.717
- 7 0815 0.804 0.835
Recall 0.909 0.833 0.691
Precision 0.915 0.795 0.785 MahNMF [32]
— Recall 0.481 0.428 0.683
Similarity 0.838 0.685 0.581 —
) 0912 0313 0735 Precision 0.596 0.747 0.873
Similarity 0.363 0.374 0.621
- Fy 0.533 0.544 0.766
DECOLOR [34]
Recall 0.968 1.00 0.969
Precision 0.795 0.684 0.730 DECOLOR [34]
Similarity 0.774 0.684 0.713 Recall 0.509 0.507 0.617
I 0.873 0.812 0.833 Precision 0.513 0.535 0.871
Similarity 0.343 0.352 0.565
Fi 0.511 0.521 0.722
CS-RPCA [35]
Recall 0.802 0.796 0.707
Precision 0.954 0.895 0.832 CS-RPCA [35]
Similarity 0.772 0.728 0.618 Recall 0457 0435 0347
L2 Dis7l 0E 0764 Precision 0.529 0.598 0.944
Similarity 0.325 0.331 0.340
Fi 0.490 0.497 0.508

number of foreground object pixels present in the ground truth.
Recall alone is not enough to compare different methods and
is generally used in conjunction with Precision, also known as
positive prediction, that gives the percentage of detected true
positives as compared to the total number of foreground object

pixels detected by the method

Precision £

tp
tp+ fp

(32)

Here, fp is the total number of false positives and (tp + fp)
indicates the total number of detected foreground pixels. More-
over, we consider the F| metric, also known as Figure of Merit
or F-measure, that is the weighted harmonic mean of Precision

and Recall

» 2 *Recall * Precision

Recall + Precision

(33)

Such measure allows to obtain a single value that can be used to
“rank” different methods. Finally, we consider the pixel-based
Similarity measure defined as

tp

tp+ fn+ fp

We compare these quantitative metrics for the proposed adap-
tive CS-L; -PCA algorithm (k = 15) with three state-of-the-art
approaches, MahNMF [32], DECOLOR [34], and CS-RPCA
[35]. To implement MahNMF [32] and DECOLOR [34] which
are pixel-domain methods, we first obtain the pixel-domain re-
construction of each frame from its CS measurements by (27).
Then, both algorithms are applied to each group of twenty
recovered non-corrupted frames. The binary foreground ob-
ject masks and accuracy metrics are shown in Tables III-VII.

Similarity £ (34)
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TABLE V
BINARY OBJECT MASKS AND ACCURACY METRICS FOR Daniel_Light

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 3, MARCH 2016

TABLE VI
BINARY OBJECT MASKS AND ACCURACY METRICS FOR WaterSurface

Because DECOLOR models the continuity prior of the sparse
foreground objects, it can offer higher Recall values compared
to adaptive CS-L;-PCA for certain frames. However, it sacri-
fices in Precision. On average, MahNMF has higher Precision
than DECOLOR, but due to lack of adaptivity it performs poorly
for highly correlated frames, such as WaterSurface in which the
object is moving slowly across frames. In addition, the pixel-
domain iterative matrix factorization in MahNMF leads to the
highest computation time among all schemes in comparison. To
place our comparison studies in a broader context, we also con-
trast our findings against traditional low-rank and sparse ma-
trix decomposition for compressed-sensed surveillance video
processing, i.e., CS-RPCA in [35]. Since CS-RPCA cannot ac-
commodate outliers in CS measurements, we apply CS-RPCA
to non-corrupted CS measurements of the same set of video
frames studied for the other three approaches. The results show
that the detected foreground objects have many false negatives

Sampled Sampled
frames frames
CS-L1-PCA ' CS-L1-PCA n ! =
Foreground
Foreground
Ground _
. B Truth
m
CS-L1-PCA
Recall 0.704 0.795 0.648 CS-L1-PCA
Precision 0.991 0.970 0.765 Recall 0.757 0.764 0.799
Similarity 0.700 0.776 0.540 Precision 0.962 0.986 0.958
F 0.823 0.874 0.702 Similarity 0.735 0.755 0.772
F 0.847 0.861 0.871
By
MahNMF [32] '
Rec.a.ll 0.670 0.746 0.533 MahNMF [32] o
Precision 0.988 0.976 0.984
— Recall 0.245 0.332 0.676
Similarity 0.665 0.733 0.529 —
2 0.799 0846 0,692 Precision 0.573 0.822 0.959
Similarity 0.207 0.310 0.657
- F1 0.343 0.473 0.793
DECOLOR [34]
Recall 0.061 0.998 0.337
Precision 0.983 0.627 0.915 DECOLOR [34]
Similarity 0.061 0.626 0.327 Recall 0.756 0.766 0.114
F 0.115 0.770 0.493 Precision 0.892 0.930 0.995
Similarity 0.693 0.724 0.114
I3 0.819 0.840 0.205
CS-RPCA [35] A
Recall 0.298 0.560 0.177
Precision 0.990 0.984 0.758
CS-RPCA [35
Similarity 0.297 0.555 0.167 Recall[ 1 0375 0373 0.100
B 458 ik G25i Precision 0.885 0932 0.498
Similarity 0.266 0.268 0.098
F 0.420 0.422 0.178

even when all CS measurements are received correctly. The rea-
son is that convex-optimization-based foreground/background
scene recovery relies on a clear, strong low-rank structure across
the compressed-sensed data, which is not satisfied when only
a moderate number of frames is considered (twenty frames in
our experiment). Indeed in [35], 100 frames are considered for
successful low-rank background scene recovery from the CS
measurements.

For all five sequences, among all methods in the compari-
son the proposed adaptive CS-L;-PCA procedure achieves the
highest average F and Similarity value (which are considered
as most comprehensive accuracy measures). In addition, the
gray-scale foreground scenes extracted by adaptive CS-L;-PCA
(row (ii) in Tables III-VII) impressively display object details
for visually recognizing the moving objects. To supplement the
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TABLE VII
BINARY OBJECT MASKS AND ACCURACY METRICS FOR Fountain

\\ a X
A d
Sampled :
frames ]
CS-Ll-PCA ._-
Foreground
Truth
CS-L;1-PCA —nn
Recall 0.845 0.678 0.750
Precision 0.936 0.895 0.913
Similarity 0.798 0.628 0.700
F1 0.888 0.771 0.824
MahNMF [32] —-n
Recall 0.790 0.433 0.666
Precision 0.970 0.977 0.967
Similarity 0.771 0.429 0.651
F1 0.871 0.600 0.789
DECOLOR [34] —-n
Recall 0.932 0.358 0.829
Precision 0.729 0.978 0.769
Similarity 0.692 0.355 0.663
F1 0.818 0.524 0.798
CS-RPCA [35] —-n
Recall 0.761 0.534 0.698
Precision 0.945 0.944 0.947
Similarity 0.729 0.518 0.672
F1 0.843 0.682 0.804

experimental studies, we provide sample videos of the detected
Airport and WaterSurface foreground objects in gray-scale for-
mat alongside the corresponding original video sequences. The
video streams clearly demonstrate the performance superiority
of the proposed adaptive CS-L;-PCA procedure against Mah-
NMF [32], DECOLOR [34], and CS-RPCA [35]. For each se-
quence, it is observed that the proposed method detects well and
consistently over time the foreground objects, while the other
three methods have fluctuating performance and may even miss
the entire object in certain frames. Finally, the receiver operat-
ing characteristic (ROC) and area under curve (AUC) metrics
[49] are provided for the Airport and WaterSurface sequences
in Fig. 11. We compare the ROC and AUC metrics of three
schemes, adaptive CS-L;-PCA (k = 15), non-adaptive CS-L; -
PCA (k = 0), and MahNMF [32]. The results show that the

True Positive Rate
True Positive Rate
o
o

02 04 08 08 1
False Positive Rate

False Positive Rate

(a) (b)

Fig. 11.  ROC curves and AUC values of (a) sample frame 3 in Table IV for
the Airport sequence and (b) sample frame 1 in Table VI for the WaterSurface
sequence.

proposed adaptive CS-L;-PCA (k = 15) procedure provides
the highest AUC value for both sequences.*

V. CONCLUSION

We proposed a compressed-sensing-domain L;-norm
maximization principal-component-analysis scheme for
compressed-sensed surveillance video processing. The al-
gorithm computes a low-rank subspace via L;-PCA to
represent the background scene directly in the CS domain
and enjoys significantly lower computational complexity
than pixel-domain L;-PCA. Background reconstruction is
then performed by projecting the CS measurement vectors
onto the L; principal components followed by regular CS
image recovery (for example, total-variation minimization).
Experiments demonstrate that (i) the CS-L;-PCA algorithm
performs better than Lo-norm based CS domain PCA when
the CS measurements are corrupted by outliers and (ii) even
in clean CS data operation, CS-L;-PCA offers exceptional
performance and robustness in background subspace-rank
selection compared to CS-Lo-PCA. An adaptive CS-L;-PCA
method is developed as well for low-latency video surveillance
in which previous extracted background frames are utilized
to more effectively update the background subspace for new
frames. Experiments show that the adaptive CS-L;-PCA per-
forms better than its non-adaptive counterpart especially when
the number of involved previous background frames increases.
Finally, qualitative and quantitative results demonstrate the
effectiveness of the adaptive CS-L;-PCA method for different
type of surveillance videos compared to state-of-the-art surveil-
lance video systems in the literature. In the context of future
research, more advanced algorithms may be developed under
the CS-L;-PCA framework to deal with challenges in video
surveillance such as detecting moving objects with static parts,
removing shadows cast by objects to more accurately describe
the object shape, and addressing the camouflage problem.

“4Since the operating points at high false positive rates (FPR) are unavailable
for the DECOLOR [34] and CS-RPCA [35] algorithms, we do not compare the
ROC and AUC metrics of those two methods.
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