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Abstract
Compressed sensing (CS) is the theory and practice of sub-Nyquist sampling of sparse sig-
nals of interest. Perfect reconstruction is possible with much fewer than the Nyquist required
number of data samples. In this work, we consider a variable block-size CS architecture
for fast compression of depth maps for three-dimensional video (3DV) applications. While
existing CS-based depth map coding methods encode depth maps with equal block size,
the proposed algorithm partitions a depth map into smooth and edge blocks of variable
sizes via rate-distortion optimized quad-tree decomposition. CS is then performed on edge
blocks, and eight-bit encoding is performed on smooth blocks. At the decoder, high quality
depth map reconstruction is achieved by minimizing the spatial total-variation. Experimen-
tal results show that at a small extra expense of encoder complexity, the proposed variable
block-size compressed sensing has enhanced significantly the rate-distortion performance
over existing low-complexity CS-based depth map coding algorithms.

Keywords Compressed sensing · Depth map · Quad-tree decomposition · Rate-distortion
optimization · Three-dimensional video · Total-variation

1 Introduction

Recent advance in display and camera technologies has enabled three-dimensional video
(3DV) applications such as 3D television and stereoscopic cinema. In order to provide the
“look-around” effect that audiences expect from a realistic 3D scene, a vast amount of
multiview video data needs to be stored or transmitted, leading to the desire of efficient
compression techniques. One proposed solution is to encode several selected views of the
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same scene captured from different viewpoints along with the corresponding depth (dispar-
ity) maps. With texture video sequences and depth map sequences, an arbitrary number of
intermediate views can be synthesized at the decoder side using depth image-based render-
ing (DIBR) techniques [20]. Depth maps, therefore, are considered as an essential coding
target for 3DV applications. Typically, depth maps can be well approximated as piecewise
smooth signals, with relatively constant depth areas separated by sharp edges where each
smooth depth region may correspond to an object at a different depth. Many existing meth-
ods have utilized these characteristics for high efficiency depth map coding. For instance,
linear functions are constructed to effectively represent smooth areas [17], shape-adaptive
wavelet transform is developed for explicit encoding of the locations of major edges [16],
and edge adaptive transforms are developed to avoid filtering across edges and to create
small coefficient values [19].

While all aforementioned methods rely on encoders of high complexity, new low
complexity depth map encoders are recently developed under compressed sensing (CS)
framework. CS is an emerging body of work that deals with sub-Nyquist sampling of sparse
signals of interest [3–5]. Rather than sampling signals at the Nyquist rate, CS collects only
a few (random [4] or deterministic [8]) linear measurements, and the computational bur-
den for successful reconstruction of the original high dimensional signal is shifted to the
receiver side. The receiver relies on effective sparse representations of the original signal
and appropriate recovery algorithms such as convex optimization [2], linear regression [7,
21], or greedy recovery algorithms [22]. Since depth maps contain piecewise smooth areas
with very few texture details, their pixel gradients along horizontal and vertical directions
are highly sparse, therefore CS can be considered for fast depth map encoding, while high
quality decoding is achievable at the decoder with gradient-sparsity constraint. Such a setup
may be of particular interest in problems where low-complexity encoding is required and
increased decoder complexity is affordable. A typical example is large wireless sensor net-
works for 3D surveillance, where power-limited cameras need to be deployed to capture 3D
scenes which are sent to a central server or remote viewer for off-line processing.

In existing CS-based depth map coding methods, the depth image is partitioned into
blocks of equal size for CS acquisition. Although low-complexity encoding is achieved,
the sampling procedure is still highly redundant since there are large smooth or uniform
areas of irregular shapes. In this present work, we propose a variable block-size CS archi-
tecture which partitions the smooth and edge areas of a depth map into blocks of variable
sizes via rate-distortion (RD) optimized quad-tree decomposition. CS is then performed
on edge blocks with partial 2D DCT sensing matrix, and eight-bit encoding is performed
on smooth blocks for enhanced coding efficiency. At the decoder, high quality depth map
reconstruction is achieved by exploiting the sparsity of the pixel domain gradient.

The remainder of this paper is organized as follows. In Section 2, we briefly review the
related work on CS-based depth map coding. In Section 3, the proposed variable block-size
CS depth map coding architecture is proposed with corresponding reconstruction algorithm.
Experimental results and performance analysis are presented in Section 4. Finally, a few
conclusions are drawn in Section 5.

2 Related work

An existing CS-based depth map coding algorithm [18] proposed to compress a single depth
map via a random subsampling matrix of the Fourier transform basis, and reconstruct the
depth map by applying the pixel-domain total-variation (TV) constraint and the Fourier
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transform domain sparsity constraint. Interestingly, Duan et al. [6] reveals the fact that when
TV constraint is imposed, it is possible to reconstruct the depth image from its partial 2D
DCT samples with much higher quality than pure inverse partial 2D DCT. In such scenario,
the partial 2D DCT sensing matrix offers much higher coding efficiency than random sens-
ing matrices adopted in general CS community. The drawback of random sensing matrices
for compression purposes is that they generate CS measurements of high entropy and lead to
low coding efficiency. Meanwhile, the TV constraint at the decoder ensures the smoothness
of the depth map and preserves the discontinuities at the edges at the same time. Never-
theless, the algorithm in [18] was designed only for single depth map compression rather
than for depth map sequences, and the algorithm in [6] is based on fixed block size CS
acquisition, hence redundant sampling occurs for large smooth areas with trivial depth value
variations.

On the other hand, graph-based transform (GBT) has also been proposed for CS-based
depth map coding [10]. In such scheme, partial Hadamard transform is used as the sensing
matrix and GBT is constructed per depth image block as the sparse basis. Although the GBT
provides more effective sparse representation for depth maps than other orthogonal basis
such as 2D DCT, the construction of block-adaptive GBT increases encoder complexity,
and the side information needed to specify the GBT at the decoder heavily increases the
required transmission bandwidth. In our preliminary work [15], quad-tree decomposition is
utilized to partition a depth map into uniform blocks of variable sizes and small edge blocks
of a fixed size. Lossless eight-bit encoding is then applied to each uniform block and only
the edge blocks are encoded with CS. Such scheme improves coding efficiency compared
to equal block-size CS encoding by avoiding repeated sampling of large uniform areas of
irregular shape where all pixels have exactly the same intensity value.

In this paper, an improved variable block-size CS encoder is proposed for depth map cod-
ing based on RD optimized quad-tree decomposition. Rather than decomposing a depth map
block based on its uniformness as in [15], the encoder computes the encoded bit rate and
estimated reconstruction distortion of the original block, as well as the total bit rate and total
estimated reconstruction distortion of its four sub-blocks. A Lagrangian functional is then
utilized to determine the total cost of the block in both decomposed and non-decomposed
cases so as to select the best coding mode. Such RD optimized quad-tree decomposition
results in smooth and edge blocks of variable sizes, which provides more flexibility than
compressively sampling edge blocks of one fixed size in [15].

3 Proposedmethods

3.1 Variable block-size intra-frame CS encoder

We first introduce an intra-frame depth map encoder based on variable block-size CS (VCS).
In general, each depth image is virtually partitioned into non-overlapping macro blocks Z of
equal size n×n, which are then encoded individually using the proposed variable block-size
CS. As shown in Fig. 1, via an L-level bottom-up RD optimized quad-tree decomposition,
each macro block Z is first decomposed into smooth blocks of size ns ×ns and edge blocks
of size ne ×ne, where ns, ne ∈ {n×21−� | � = 1, 2, ..., L}. To enhance coding efficiency, a
smooth block can be approximated as a uniform region represented by a single value, which
still preserves the quality of the synthesized views. Meanwhile, accurate representation of
edges in depth maps is more important because errors in edge information may lead to
significant quality degradation in the synthesized views. Hence, we propose to encode an
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Fig. 1 Intra-frame variable block-size CS encoder

edge block with CS followed by entropy coding, and reconstruct it via edge preserving
convex optimization at the decoder side. In particular, if the standard deviation of all the
pixel intensity values in one block does not exceed a threshold η, the block is determined
as a smooth block and encoded with eight-bit representation which stands for the average
intensity value over all pixels in the block. For each edge block X, CS is performed in the
form of

y = �(X), (1)

where �(·) is the so-called partial 2D DCT sensing operator that generates the top P

frequency components of the zig-zag scanned 2D DCT coefficients. Then, the resulting
measurement vector y ∈ R

P is processed by a scalar quantizer with certain quantization
parameter (QP), and the quantized indices ỹ are entropy encoded using context-adaptive
variable length coding (CAVLC) as in standard video coding and transmitted to the decoder.

The advantage of such CS depth map encoder lies in the RD optimized quad-tree decom-
position. To obtain a global optimal quad-tree decomposition of the depth map, we adopt an
L-level bottom-up tree pruning technique. The guiding principle is to parse the initial full
tree from bottom (the Lth level) to top (the 1st level) and recursively prune leaf nodes (i.e.
merge blocks) of the tree according to a decision criterion. The bit rate and distortion calcu-
lation of a leaf node X� on the �th level is shown in Fig. 2. If X� is determined as a smooth
block, its bit rate is 8 and its distortion is approximated as 0. Otherwise, its bit rate is the
number of bits after CS acquisition, quantization and entropy coding, and its distortion is
estimated by the sum absolute difference (SAD) between the original block and the block
recovered from de-quantization Q−1 and inverse partial 2D DCT CS operation �−1(·).

The tree pruning criterion for the bottom (Lth) level leaf nodes Xj
L, j = 1, 2, 3, 4 that

share the same parent node is shown in Fig. 3. The bit rates and distortions of the chil-
dren nodes are first computed as Rj

L and Dj
L, j = 1, 2, 3, 4 with intra-frame rate and

distortion computation (IRDC) as depicted in Fig. 2. Afterwards, the bit rate and distortion

Fig. 2 I frame rate and distortion computation (IRDC) of an �th level leaf node X� ∈ R
n�×n�
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Fig. 3 Pruning criterion for I frame Lth level leaf nodes Xj
L ∈ R

nL×nL , j = 1, 2, 3, 4

of the parent node XL−1 are computed as RL−1 and DL−1. The RD optimized quad-tree
decomposition criterion then refers to the minimization of the cost function J = D + λR.
For computational simplicity, we use a fixed Lagrange multiplier λI for I frame, and com-
pute the non-decomposed cost as JnL−1 = DL−1 + λIRL−1, and the decomposed cost as

JsL−1 =
4
∑

j=1
Dj

L + λI
4
∑

j=1
Rj

L. If J
n
L−1 > JsL−1, then a “1” is transmitted to indicate Xj

L,

j = 1, 2, 3, 4 are not merged, and ˜RL−1 =
4
∑

j=1
Rj

L, ˜DL−1 =
4
∑

j=1
Dj

L are stored as the opti-

mal rate and distortion at the parent node XL−1. Otherwise, a “0” is transmitted to indicate
the children nodes are merged into one parent node, and ˜RL−1 = RL−1, ˜DL−1 = DL−1 are
stored as the optimal rate and distortion at XL−1.

For 1 ≤ � ≤ L−2, the tree pruning criterion for (�+1)th level node Xj

�+1, j = 1, 2, 3, 4
is depicted in Fig. 4. First, the bit rate and distortion of the parent node X� are computed as
R� and D� via IRDC, then the optimal bit rates and distortions of its four children blocks
which were stored previously as the results of higher level node pruning are summed as
4
∑

j=1

˜Rj

�+1 and
4
∑

j=1

˜Dj

�+1. Next, the non-decompopsed cost is computed as Jn� = D� + λIR�,

Fig. 4 Pruning criterion for I frame (� + 1)th level leaf nodes Xj

�+1 ∈ R
n�+1×n�+1 , 1 ≤ � ≤ L − 2, j =

1, 2, 3, 4
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Fig. 5 Intra-frame TV minimization decoder

and the decomposed cost is computed as Js� =
4
∑

j=1

˜Dj

�+1 + λI
4
∑

j=1

˜Rj

�+1. If J
n
� > Js�, X

j

�+1,

j = 1, 2, 3, 4 are not merged, otherwise they are merged into one parent node X�. Again,
the resultant optimal bit rate ˜R� and distortion ˜D� are stored at node X� for later use in the
�th level node pruning.

Such RD optimized block decomposition algorithm described in Figs. 2 – 4 is performed
recursively from the Lth level all the way up to the first level of the tree. The resulting
bit stream is transmitted as the “quad-tree map” to inform the decoder of the tree pruning
structure for successful decoding.

3.2 Total-variationminimization reconstruction

At the decoder, the reconstruction of each macro block is performed independently. As
described in Fig. 5, the decoder first reads the bit stream along with the binary quad-tree
map to identify smooth and edge blocks. For smooth blocks, a simple eight-bit decoding
is carried out. For edge blocks, the decoder performs entropy decoding to obtain the quan-
tized partial 2D DCT coefficients (or CS measurements) ỹ. The elements of ỹ are then
de-quantized to form vector ŷ. Since depth map blocks containing edges have sparse spatial
gradients, they can be reconstructed via pixel-domain 2D TV1 minimization in the form of

̂X = argmin
X

TV2D(X) (2)

subject to ||̂y − �(X)||�2 ≤ ε. (3)

The reconstructed smooth blocks and edge blocks are re-grouped thereafter to form the
decoded macro block ̂Z.

3.3 Extension of inter-frame variable block-size CS coding

So far, we have carried out intra-frame only depth map coding. To exploit temporal correla-
tion among successive frames, we now extend the proposed VCS to inter-frame depth map
coding. Since we are targeting at a low-complexity 3DV encoder, some powerful coding
tools in standard video coding such as the high complexity motion estimation and delay-
sensitive I-B-P coding structure are not considered in this context. Instead, simple frame
difference is taken as the residual signal for fast inter-frame coding. At the encoder, the
sequence of depth maps is divided into groups of pictures (GOP) with I-P-P-P structure. For
each GOP, the intra-frame RD optimized quad-tree decomposition is applied to every macro

1The mathematical expression of pixel-domain 2D total-variation is defined as in [13, 14].
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Fig. 6 P frame rate and distortion computation (PRDC) of an �th level leaf node X� ∈ R
n�×n�

block of the I frame. For the subsequent P frames, a modified RD optimized quad-tree
decomposition is performed.

As shown in Fig. 6, to compute the bit rate and distortion of a P frame �th level leaf node
X�, it is first classified as a smooth block or an edge block, and its co-located block in the
previous frame recovered from inverse partial 2D DCT CS operation �−1(·) is extracted
as Xp

� . A smooth block is further classified as a SKIP block if its mean intensity value is
the same as that of Xp

� , otherwise it is classified as a non-SKIP block. A SKIP block is not
encoded, and the encoder only transmits one bit to indicate the SKIP mode. For a non-SKIP
block, the bit rate is R = 9, including the one-bit indicator and eight-bit representation of
its mean intensity value. For an edge block X�, it is first predicted by Xp

� and the residual
block Xr

� = X� − Xp
� is encoded with the CS operator �(·), quantized, entropy encoded,

and the resulting number of bits is the bit rate. To calculate the distortion, de-quantization
is performed followed by inverse CS operation, adding back the reference block Xp

� and
SAD computation. The pruning criterion for the P frame leaf nodes on all levels of the tree
is similar to the I frame leaf node decomposition shown in Figs. 3 and 4, with all the IRDC
modules replaced by the P frame rate and distortion computation (PRDC) module depicted
in Fig. 6.

To generalize, the inter-frame encoding procedure is shown in Fig. 7. Denote the kth

P frame after the I frame Ft as Ft+k , then a macro block Zt+k ∈ R
n×n in Ft+k can be

considered as the input of the RD optimized quad-tree decomposition algorithm. Zt+k is
first partitioned into smooth blocks and edge blocks of variable sizes, while each smooth
block is either skipped or encoded with eight bits, for an edge block Xt+k , its residual Xr

t+k

is compressed using partial 2D DCT sensing matrix to form a residual measurement vector
yr
t+k . Afterwards, y

r
t+k is quantized, encoded with CAVLC and transmitted.

Fig. 7 Inter-frame variable block-size CS encoder
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Fig. 8 Inter-frame variable block-size CS decoder

For reconstruction at the decoder, details are shown in Fig. 8. Every SKIP block is
decoded as a uniform block with all pixel intensities the same as the mean of its co-located
block Xp

t+k in the reference frame, and for every non-SKIP smooth block, eight-bit decod-
ing is performed. For edge block Xt+k , the de-quantized residual CS measurement vector
ŷr
t+k is added to the CS encoded reference signal to approximate the CS measurement vector

ŷt+k = �(Xp
t+k) + ŷr

t+k . (4)

Since the CS acquisition of Xt+k can be formulated as

yt+k = �(Xt+k)

= �(Xp
t+k + Xr

t+k)

= �(Xp
t+k) + yr

t+k

= �(Xp
t+k) + ŷr

t+k + nr
t+k

= ŷt+k + nr
t+k, (5)

where nr
t+k is the noise due to the quantization of yr

t+k , the pixel block Xt+k can be
reconstructed via pixel-domain TV minimization in the form of

̂Xt+k = argmin
X

TV2D(X) (6)

subject to ||̂yt+k − �(X)||�2 ≤ ε. (7)

Finally, the reconstructed smooth blocks and edge blocks are re-grouped to form the
decoded macro block ̂Zt+k .

4 Experimental results and performance analysis

In this section, we evaluate the performance of the proposed VCS depth map coding system
by comparing the perceptual quality of the decoded depth maps, the RD performance of the
synthesized view and the computational complexities of VCS to other depth map coding
schemes with low-complexity encoders.

4.1 Experiment set-up

Two test video sequences, Kendo and Balloons, with a resolution of 1024 × 768 pixels are
used. For both sequences, 40 frames of the depth maps of view 1 and view 3 are compressed
using the proposed VCS encoder, and the reconstructed depth maps at the decoder are
used to synthesize the texture video sequence of view 2 with the View Synthesis Reference
Software (VSRS) [23].
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In our experimental studies, the macro block size is n = 128, and a five-level (L = 5) RD
optimized quad-tree decomposition is implemented, resulting in smooth and edge blocks of
size n�×n�, n� ∈ {8, 16, 32, 64, 128}. The standard deviation threshold used for smooth and
edge block classification is determined empirically as η = 2, and the Lagrangian multiplier
for I frame and P frame are λI = 1 and λP = 3.5, respectively. The CS ratio for each edge
block is fixed at P�

n2�
= 0.375, where P� is the number of CS samples for the �th level edge

block. Four quantization parameters QP = {24, 28, 32, 36} are used to generate different bit
rates. To reconstruct edge blocks from partial 2D DCT CS measurements, TVAL3 software
[9, 12] is employed to solve the TV minimization problems in (2) and (6).

The proposed VCS depth map coding system is examined with GOP size T = 20 with
I-P-P-P coding structure. For comparison studies, we include three existing low-complexity
depth map encoders: i) quad-tree partitioned inter-frame CS encoder without RDO (QCS
[15]); ii) equal block-size inter-frame CS encoder with TV minimization decoding (ECS
[6]); and iii) intra-frame CS encoder based on partial Hadamard sensing matrix with GBT
sparsifying basis (Intra GBT [10]). For fair comparison, CAVLC is used as the entropy
coding scheme for all four encoders. To solve the �1 minimization problem in the GBT-
based algorithm, �1-magic software [1] is utilized.

4.2 Perceptual quality and RD performance

Figure 9 shows the different reconstructions of the 8th frame of Kendo view 1 depth map
sequence produced by the proposed VCS (Fig. 9c), the QCS (Fig. 9d), the ECS (Fig. 9e),

(a) (b) (c)

(d) (e) (f)

Fig. 9 Different reconstructions of the 8th frame of Kendo depth map 1: a original Kendo depth image; b
magnified view of the marked area; c marked area coded with VCS, T = 20 at 0.0787 bpp and 48.8784 dB
of PSNR; d with QCS, T = 20 at 0.073 bpp and 46.4534 dB of PSNR [15]; e with ECS, T = 20 at 0.1475
bpp and 44.4933 dB of PSNR [6]; and f with Intra GBT at 0.233 bpp and 44.1326 dB of PSNR [10]
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and the Intra GBT (Fig. 9f) systems. It can be observed that the ECS system as well as
the Intra GBT system suffer noticeable performance loss around the edge areas, while the
proposed VCS system and the QCS system demonstrate considerable reconstruction quality
improvement. Although the perceptual quality difference between VCS and QCS decoding
is minor due to the pdf formatting of the present article, VCS actually provides 2.43 dB
higher PSNR than QCS decoding at similar bit rates as explained in the figure captions.

Figure 10 shows the rate-distortion characteristics of the Kendo sequence. The bit-rate
indicates the average bits per pixel (bpp) of the encoded depth map sequences from view 1
and view 3, and the peak signal-to-noise ratio (PSNR) of the luminance component of syn-
thesized view 2 is computed between the rendered view using compressed depth sequences
and using the ground-truth depth sequences. Evidently, for a fixed PSNR, VCS with TV
minimization (VCS, TVmin) outperforms QCS with gains as much as 0.02 bpp. In addition,
both VCS and QCS outperform significantly the ECS and GBT coding schemes. To justify
the superiority of TVminimization decoding over the direct inverse partial 2D DCT, we also
provide the RD curve of VCS encoder with inverse partial 2D DCT decoder (VCS, i2D-
DCT). It can be observed that with the same bit rates, VCS with TV minimization decoding
improves the PSNR by 0.5 to 1.6 dB compared to inverse partial 2D DCT decoding.

The same perceptual quality evaluation and rate-distortion performance study are per-
formed in Figs. 11 and 12 for the Balloons sequence. Similar conclusions can be drawn
that our proposed VCS encoder with TV minimization decoding outperforms the other
low-complexity depth map encoders.
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Fig. 10 Rate-distortion studies on the synthesized view 2 of the Kendo sequence
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Fig. 11 Different reconstructions of the 2nd frame of Balloons depth map 1: a original Balloons depth image;
b magnified view of the marked area; c marked area coded with VCS, T = 20 at 0.1037 bpp and 46.21 dB
of PSNR; d with QCS, T = 20 at 0.1160 bpp and 46.0555 dB of PSNR [15]; e with ECS, T=20 at 0.1495
bpp and 41.8531 dB of PSNR [6]; and f with Intra GBT at 0.2725 bpp and 41.2059 dB of PSNR [10]
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Fig. 12 Rate-distortion studies on the synthesized view 2 of the Balloons sequence
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Table 1 Encoder complexity per n × n macro block

Encoder Block type Block size Complexity (or upper bound)

VCS edge n

2�−1 × n

2�−1 , 1 ≤ � ≤ L ≤ (r + 1)n3
∑L

�=1 2
1−�

QCS edge n

2L−1 × n

2L−1 ≤ (r + 1)n321−L

ECS arbitrary n

2L−1 × n

2L−1 (r + 1)n321−L

4.3 Encoder complexity

The computational cost of the proposed bottom-up RD optimized VCS encoder is analyzed
as follows and summarized in Table 1. We consider the encoder complexity for an n × n

macro block. For an �th level sub-block of size n

2�−1 × n

2�−1 , the partial 2D DCT CS operation

with compressive sampling ratio r = P�

( n

2�−1 )2
takes (r + 1)

(

n

2�−1

)3
multiplications. Since

there are 4�−1 sub-blocks of size n

2�−1 × n

2�−1 on the �th level, the total complexity for the

partial 2D DCT CS operation on the �th level is (r + 1)n321−� per n × n macro block.
For QCS in [15], partial 2D DCT is applied to only edge blocks on the Lth level, thus the
encoder complexity per n × n macro block is upper bounded by (r + 1)n321−L. In the
proposed VCS encoder in this work, the complexity of the encoder is upper bounded by
(r + 1)n3

∑L
�=1 2

1−� multiplications per n × n macro block due to the RD optimization on
all L levels.

Although the encoder complexity of VCS is increased compared to QCS and ECS, a lot
of blocks on each level of the tree are classified as smooth blocks in the RD optimization
process for which the CS operations are avoided. As shown in Table 2, the actual number
of edge blocks per frame averaged over 40 frames of the Balloons depth map 1 sequence
of each level of the tree is less than the total number of blocks on that tree level, especially
when the block size becomes smaller, leading to a practical encoder complexity much lower
than the upper bound in Table 1. Hence, VCS is indeed a low-complexity encoder compared
to the H.264 standard video coding which requires sophisticated motion estimation.

4.4 Decoder complexity

The complexity of decoder for the proposed VCS encoder lies in the TV minimization algo-
rithm for edge blocks. As elaborated in [11], the TV minimization algorithm relies on two
nested iterations to minimize an augmented Lagrangian cost function. If the number of inner
and outer iterations are K and N , respectively, then the total cost for TV minimization is

O
(

N(K + 1)(r + 1)( n

2�−1 )
3
)

per n

2�−1 × n

2�−1 edge block . Therefore, the decoder complex-

ity can be summarized in Table 3. Although VCS with TV minimization (VCS, TV min) is

Table 2 Average number of edge blocks per frame of Balloons depth map 1 sequence

tree level � 1 2 3 4 5

block size 128 × 128 64 × 64 32 × 32 16 × 16 8 × 8

number of edge blocks 41 139 414 1118 2682

total number of blocks 48 192 768 3072 12288
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Table 3 Decoder complexity per n × n macro block

Decoder Block type Block size Complexity

VCS, TV min edge n

2�−1 × n

2�−1 , 1 ≤ � ≤ L O
(

N(K + 1)(r + 1)n3
)

QCS, TV min edge n

2L−1 × n

2L−1 , O
(

N(K + 1)(r + 1)n321−L
)

ECS, TV min arbitrary n

2L−1 × n

2L−1 O
(

N(K + 1)(r + 1)n321−L
)

VCS, i2D-DCT edge n

2�−1 × n

2�−1 , 1 ≤ � ≤ L O
(

(r + 1)n3
)

more complex than VCS with inverse 2D DCT (VCS, i2D-DCT) due to iterative decoding,
it provides much better reconstruction quality as shown in the RD curves in Figs. 10 and 12.

5 Conclusions

We proposed a low-complexity variable block-size CS architecture for depth map coding.
In particular, a five-level bottom-up quad-tree decomposition is developed using recursive
rate-distortion optimization to partition the depth map into smooth and edge blocks of vari-
able sizes. While each smooth block is encoded using efficient eight-bit approximation that
results to negligible distortion, the edge blocks are encoded with partial 2D DCT CS oper-
ator. At the decoder, total-variation minimization which enforces sparse gradient constraint
is utilized for CS encoded edge block reconstruction. Experimental results demonstrate that
the proposed VCS depth map coding greatly enhances the RD performance of the non-RD
optimized quad-tree partitioned CS coding, the equal block-size CS coding, and the intra-
frame GBT based CS coding at a small extra expense of encoder complexity. Moreover, TV
minimization decoding provides better depth map reconstruction quality than direct inverse
2D DCT decoding. In terms of future work, motion information can be exploited at the
decoder to further enhance the signal sparsity, hence leading to better reconstruction quality.
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