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ABSTRACT 

 
Recent advances in deep learning have achieved great success in fundamental computer vision tasks such as classification, 

detection and segmentation. Nevertheless, the research effort in deep learning-based video coding is still in its infancy. 

State-of-the-art deep video coding networks explore temporal correlations by means of frame-level motion estimation and 

motion compensation, which require high computational complexity due to the frame size, while existing block-level inter-

frame prediction schemes utilize only the co-located blocks in preceding frames, which did not consider object motions. 

In this work, we propose a novel motion-aware deep video coding network, in which inter-frame correlations are 

effectively explored via a block-level motion compensation network. Experimental results demonstrate that the proposed 

inter-frame deep video coding model significantly improves the decoding quality under the same compression ratio. 

 

Keywords: artificial intelligence, convolution neural network, computer vision, deep learning, motion prediction, 

structural similarity index, video coding, video compression 

 
1. INTRODUCTION 

 
Online videos now account for 80% of all web traffic. With this abundant increase in video data all around and the rise of 

the technology to stream these videos, it is becoming increasingly important to compress and process this video data 

efficiently. Machine learning is bringing in new solutions in almost every industry which now includes issues relating to 

image and video compression. Traditional video codecs have been in place for a while, however, advances in machine 

learning is gearing up to bring a change in that. Due to the increased amount of video content that is being created and 

uploaded by users, a high transmission bandwidth is desired for streaming videos. Machine learning is providing effective 

algorithms to reduce the bit rate while maintaining the quality of video streaming. One key issue is to train a network that 

predicts a frame from neighboring frames despite the object motions. In this work, we propose a deep learning-based video 

compression framework which uses both intra- and inter-frame correlations. First, we train an intra-frame compression 

network to compress all the odd frames. Second, we train a prediction network that predicts each even frame by the decoded 

preceding and next odd frames, implicitly exploring inter-frame motions. Finally, a residue compression network is trained 

to compress the residue between the target even frame and its prediction. We adopt block-level processing to reduce the 

computational complexity. We showcase our results in terms of the structural similarity (SSIM) index between the decoded 

frames and the ground truth for different compression ratios. 

 

The rest of the paper is organized as follows: Section 2 focuses on the existing models and methods being used for video 

compression while Section 3 elaborates on our proposed model in detail. Section 4 showcases the experimental setup along 

with the results of the models tested on commonly used video sequences. Finally, Section 5 concludes our paper.  

 

2. RELATED WORK 

 
In conventional video coding [1], there are two approaches: intra-frame compression and inter-frame compression. While 

intra-frame compression only considers data redundancy within a single frame, inter-frame compression takes into 

consideration the correlation among successive frames, uses the previous or future reference frames to predict the current 

frame, and only compresses the residue between the target frame and the prediction. Since residual data contains much 

less energy than the original video frame, encoding it requires much less resources and hence the coding efficiency can be 

improved. 
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Recently, deep learning methods, especially the convolutional neural networks (CNN), have been introduced showcasing 

a new direction for image and video compression [2]. For image compression, the method in [3] adopted CNN  as a pre-

processing scheme to reduce the original image to a smaller-scale representation, followed by traditional image 

compression/decompression, then an additional CNN performs super-resolution to reconstruct the image at the original 

scale. For video coding, most works adopted conventional video coding concepts in their deep learning frameworks. In 

[4]-[6], several modules in conventional video codecs such as intra-frame prediction, residue coding, motion estimation, 

motion vector encoding and decoding, and motion compensation are replaced by CNN modules. The method in [7] realized 

scalable video coding by using iterative residue coding and generated a sequence of coarse-to-fine predictions of the target 

image block.  

 

Besides, existing deep learning-based video coding schemes can be categorized into frame-based and block-based 

schemes. For frame-based video coding, a spatial-temporal prediction through CNN is adopted in [8] as a post-processing 

scheme to enhance the quality of versatile video coding (VVC) compressed videos. The method in [9] also performed 

post-processing to enhance the quality of intra-frame coding, using a multi-stage progressive generative adversarial 

network (GAN). In [6], motion prediction and compensation were performed between the current frame and the 

reconstructed previous frame, through CNN structures. In [10], an IBBBIBBB coding structure is adopted, in which the I-

frames were encoded and decoded using a regular CNN, and the intermediate B frames were generated by hierarchical 

interpolation. The method in [11] is based on GAN, and proposed a latent-space linear interpolation for inter-frame 

prediction. The generator then produces the corresponding pixel-domain frames from the interpolated latent variables. For 

these aforementioned schemes, since the entire frame is predicted, the computational complexity is high. For block-based 

video coding, in [7], the co-located blocks from decoded previous frames and the decoded neighbor blocks in the current 

frame are extracted as the reference blocks and serve as the input of a prediction network, hence both inter-frame and intra-

frame prediction is utilized; in [12], co-located blocks from the decoded previous four frames were extracted as the 

reference blocks and serve as the input of a generative network to extrapolate the target block in the current frame. In these 

two methods, although the complexity is lower than predicting the entire frame, only co-located blocks from the reference 

frames were used, which ignores the motion among successive frames. 

 

 
3. PROPOSED NETWORK 

 
The proposed framework involves three convolutional neural networks: an intra-frame compression network, an inter-

frame motion-aware prediction network and a residue compression network. The overall architecture is shown in Fig. 1. 

We consider a video sequence as a series of frames: 𝑇 = {𝐹1, 𝐹2, … , 𝐹𝑁}, where 𝑁 is the number of frames in that sequence. 

As shown in Fig. 1, if we’re predicting a frame 𝐹𝑡 for some time slot 𝑡 then we first compress the previous and next frame 

𝐹𝑡−1 and 𝐹𝑡+1 respectively for some compression ratio. Then the decoded frames �̂�𝑡−1 and �̂�𝑡+1 become the input of the 

prediction network. This prediction network uses the previous and next decoded frames to generate a prediction 𝐹𝑡
𝑃for the 

current frame 𝐹𝑡. This prediction is subtracted from the original target frame 𝐹𝑡 to get the residue. The residue is then 

compressed and reconstructed using the residue network to get �̂�𝑡
𝑟. The final decoding �̂�𝑡 is the addition of the prediction 

and the decoded residue. Table 1 shows the input and output shape and configuration in each network layer for the 

compression net and the residue compression net. Table 2 shows the structure of the prediction net. 

 

3.1 Compression net 

 

The first network is a compression network which encodes and decodes each frame for some compression ratio, as shown 

in Fig. 2. The input to this network would be some set of frames 𝑇 =  {𝐹1, 𝐹2, … , 𝐹𝑁} and the output would be the set of 

decoded frames �̂�1 , �̂�2 , … , �̂�𝑁 . This network is block-based where the input and output block size are both 16 × 16 × 3.  

The encoder input is a 16 × 16 × 3 block with the red, green, and blue color channels, which is compressed to a certain 

final shape depending on the compression ratio used. The filters used, as can be seen in Table 1, are 5 × 5 filters which 

capture features of each frame by convolutions. The decoder input is the new shape 
16

𝑆1
×

16

𝑆2
× 𝑐 where 𝑐 is the number of 

channels in the encoder output and S1and S2 are the strides, the value of which depends on the compression ratio being 

used. The number of channels is one of the following {1, 2, 3} and the strides are picked from {2, 4, 8}. The output of the 

decoder is a reconstructed block of size 16 × 16 × 3. 
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                    Figure 1. The architecture of the proposed motion-aware deep video coding network.  

 
 

 

 

 

 

 

 

 

 

 

Figure 2. The architecture of the compression net and the residue net. The compressed block size is 
16

𝑆1
×

16

𝑆2
, 

where 𝑆1 and 𝑆2 are the strides depending on the compression ratio used. The number of channels (𝑐) =  1, 2, 
or 3 for the encoder output. The final output of the decoder is the reconstructed block in the current frame. 

          Table 1. The structure of the compression net and the residue compression net for compression ratio 
1

24
. 

 

 
Layer type/ stride Filter shape Output shape Parameters # 

  16x16x3 (Input Block)  

E
n

co
d

e
r 

Conv / Stride = 4 5x5 4x4x128 9,728 

Conv / Stride = 1 5x5 4x4x64 204,864 

Conv / Stride = 1 5x5 4x4x2 3,202 

D
e
c
o

d
e
r 

TransConv / Stride = 1 5x5 4x4x64 3,264 

TransConv / Stride = 1 5x5 4x4x128 204,928 

TransConv / Stride = 4 5x5 16x16x3 9,603 

 Total:   432,388 
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Figure 3. The architecture of the prediction net. The reference blocks of the previous and the next decoded 

frames predict the target block of the current frame. 

         Table 2. The structure of the prediction net. 

 

 

Layer Type/ Stride Filter Shape Output Shape Parameters # 

  16x16x3 (Input Block 1)  

  16x16x3 (Input Block 2)  

B
ra

n
ch

 1
 

Conv1 / Stride = 2 5x5 8x8x8 608 

Conv2 / Stride = 1 5x5 8x8x16 3,216 

Conv3 / Stride = 1 5x5 8x8x32 12,832 

Conv4 / Stride = 1 5x5 8x8x64 51,264 

Conv5 / Stride = 1 5x5 8x8x128 204,928 

B
ra

n
ch

 2
 

Conv 6/ Stride = 2 5x5 8x8x8 608 

Conv7 / Stride = 1 5x5 8x8x16 3,216 

Conv8 / Stride = 1 5x5 8x8x32 12,832 

Conv9 / Stride = 1 5x5 8x8x64 51,264 

Conv10 / Stride = 1 5x5 8x8x128 204,928 

 
Concatenate: Conv5,    

Conv10 
 8x8x256  

F
u

sio
n

 

Conv / Stride = 1 5x5 8x8x128 819,328 

Conv / Stride = 1 5x5 8x8x256 819,328 

Conv / Stride = 1 5x5 8x8x3 19,203 

 Total:     2,203,683 

 
The loss function adopted to train the compression network is the mean-squared-error (MSE) as defined in equation (1) 

where 𝐵𝑡,𝑚 is the 3D-tensor representing the 𝑚th block at time slot 𝑡 which is compressed and �̂�𝑡,𝑚 is the decoded output 

from the compression net. 𝑁𝐵 is the number of pixels in the block.  

 

                                                                           𝐿𝐶𝑁 =
1

3𝑁𝐵
‖𝐵𝑡,𝑚 − �̂�𝑡,𝑚‖

𝐹

2
                                                                       (1) 

       

3.2 Prediction net 

 

The second network is the prediction network. We aim at predicting the 𝑚th block in the 𝑡th frame 𝐵𝑡,𝑚 ∈ ℝ8×8×3 by two 

larger reference blocks �̂�𝑡±1,𝑚 ∈ ℝ16×16×3 in the decoded previous and next frame (�̂�𝑡−1 and �̂�𝑡+1), both centered at 𝐵𝑡,𝑚. 

In this way implicit motion compensation is carried out. Fig. 3 depicts the structure of this network: it has two branches of 

5 layers each. Branch 1 takes the reference block from the decoded previous frame as the input, and Branch 2 takes the 

reference block from the decoded next frame as the input. The strides of the first layer in Branch 1 and Branch 2 are 2. 
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The filters used, as can be seen in Table 2, are 5 × 5  filters which capture features from each reference block by 

convolutions. Each branch generates an intermediate output of dimension 8 × 8 × 128. The two intermediate outputs are 

then concatenated channel-wise and processed by the final fusion module. The fusion module has 3 layers and generates 

the final predicted block 𝐵𝑡,𝑚
𝑃 ∈ ℝ8×8×3. Using such block-wise motion-aware prediction, the prediction procedure for the 

𝑡th frame 𝐹𝑡 as shown in Fig. 1 can be described as 

 

                                                            𝐹𝑡
𝑃 = Fusion{Branch1( �̂�𝑡−1) ⊕ Branch2( �̂�𝑡+1)},                              (2) 

 

where ⊕ stands for channel-wise concatenation. The loss function adopted to train our prediction network is the mean-

squared-error (MSE) as defined in equation (3) where 𝐵𝑡,𝑚 is the 3D-tensor representing the original 𝑚th block in the 𝑡th 

frame and 𝐵𝑡,𝑚
𝑃  is the 3D-tensor representing the output of the prediction net for that block.  

                                                                            𝐿𝑃𝑁 =
1

3𝑁𝐵
‖𝐵𝑡,𝑚 − 𝐵𝑡,𝑚

𝑃  ‖
𝐹

2
                                                                     (3) 

       

3.3 Residue net 

 
The third network is the residue network which encodes and decodes the residue between the prediction of the current 

frame and the original current frame.  It has the same encoder and decoder structure as the compression net, shown in Fig. 

2. We take a set of frames 𝑇 =  {𝐹1, 𝐹2, … , 𝐹𝑁} and their predictions from the prediction net 𝑃 = {𝐹1
𝑃, 𝐹2

𝑃 , … , 𝐹𝑁
𝑃} as 

obtained by equation (2). The input to the residue net is the residue which is calculated using equation (4) and hence, 

would be R = 𝑇 − 𝑃 = {𝐹1
𝑟 , 𝐹2

𝑟 , … , 𝐹𝑁
𝑟}. Again, this is a block-based method in which the input residue block size is 

16 × 16 × 3. 

 
𝐹𝑡

𝑟 = 𝐹𝑡 − 𝐹𝑡
𝑃      (4) 

 

The residue goes through the residue net and is compressed to a certain shape depending on the compression ratio used. 

The output of the decoder is the reconstructed residue block of size 16 × 16 × 3. This decoded residue is added back to 

the prediction as shown in equation (5) to generate the final decoding of the current frame 𝐹𝑡.  

 

�̂�𝑡 = 𝐹𝑡
𝑃 + �̂�𝑡

𝑟       (5) 

 
The loss function adopted to learn the residue network is defined in equation (6) where 𝐵𝑡,𝑚

𝑟 = 𝐵𝑡,𝑚 − 𝐵𝑡,𝑚
𝑃  is the residue 

between the original 𝑚th block of the 𝑡th frame 𝐵𝑡,𝑚 and its prediction 𝐵𝑡,𝑚
𝑃 . This residue is compressed and �̂�𝑡,𝑚

𝑟  is the 

decoded residue block at the output of the residue net.  

 

                                                                          𝐿𝑅𝑁 =
1

3𝑁𝐵
‖𝐵𝑡,𝑚

𝑟 − �̂�𝑡,𝑚
𝑟 ‖

𝐹

2
                                                                        (6) 

 

     

4. EXPERIMENTAL RESULTS AND ANALYSIS 
 

In this section, we evaluate the performance of our proposed deep video coding network on three video sequences 

commonly used in industrial video coding standards.  

 
4.1 Dataset 

 

Three video sequences: BQ Mall, Basketball Drill, and Party Scene are used in the experiment. Each frame in all three 

video sequences has a resolution of  480 × 832 pixels. For each video sequence, the first 100 frames were included in the 

training set. 80% of the training set was used for training and 20% for validation. The next 100 frames were used for 

testing.  

 

 

 

Proc. of SPIE Vol. 11395  113950B-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 03 May 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4.2  Implementation Details 

 

We adopted block-based processing. For the compression net and residue compression net, we divide the frames into 

16 × 16 × 3 blocks, and each block is individually compressed and decompressed. The compression ratios are listed in 

Table 3. For the prediction net, the size of the target blocks to predict is 8 × 8 × 3, and the size of the reference blocks is 

16 × 16 × 3.    
 

Table 3. Compression ratios used in the experiments.   
 

Encoder Input Shape Encoder Output Shape Compression Ratio 

𝟏𝟔 × 𝟏𝟔 × 𝟑 4 × 4 × 1 
1

48
 0.021 

𝟏𝟔 × 𝟏𝟔 × 𝟑 4 × 4 × 2 
1

24
 0.042 

𝟏𝟔 × 𝟏𝟔 × 𝟑 8 × 4 × 2 
1

12
 0.083 

𝟏𝟔 × 𝟏𝟔 × 𝟑 8 × 4 × 3 
1

8
 0.125 

𝟏𝟔 × 𝟏𝟔 × 𝟑 8 × 16 × 1 
1

6
 0.167 

 

 

4.3 Evaluation Metric 

 
To evaluate the performance of the proposed motion-aware deep video coding network, we calculate the SSIM between 

the decoded frames and the ground truth frames. The SSIM is defined in equation (7) where 𝑥 is the ground-truth pixel 

value and 𝑦 is the decoded pixel value, respectively; 𝜇𝑥 and 𝜇𝑦 are the average of 𝑥 and 𝑦, respectively; 𝜎𝑥
2 and 𝜎𝑦

2 are 

the variances of 𝑥 and 𝑦, respectively; 𝜎𝑥𝑦 is the covariance of 𝑥 and 𝑦 and finally, 𝑐1 and 𝑐2 are variables used to stabilize 

the division with a weak denominator. 

 

                                                                   SSIM(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
                                                            (7) 

 
In Figs. 4-6, we compare the perceptual quality of the decoded frames by our proposed scheme, the intra-frame 

compression network and the intermediate prediction net. Fig. 4 shows the results of the BQ Mall video sequence at a 

compression ratio of 1/12. We observe that our proposed method (Fig. 4 (d)) achieved the highest SSIM value compared 

to the compression net (Fig. 4 (b)) and the intermediate prediction result (Fig. 4 (c)). Similar results can be observed in 

Figs. 5 and 6 for the Basketball Drill and Party Scene video sequences, respectively. We also show enlarged regions of 

these video sequences to further emphasize the perceptual quality improvement in our results as can be seen in Figs. 7-9. 

With the same compression ratio, the proposed motion-aware prediction and residual coding produces (Figs. 7-9 (d)) much 

clearer decoded scenes with more texture details, as compared to the intra-frame compression net (Figs. 7-9 (b)) and the 

intermediate prediction result (Figs. 7-9 (c)). 

 

    
(a) (b) (c) (d) 

 

Figure 4. The perceptual quality of the BQ Mall video sequence at the compression ratio 1/12:  (a) the original 

frame; (b) the result of the compression net with SSIM = 0.84; (c) the result of the prediction net with SSIM = 

0.82; and (d) the result of the residue network which is our final decoding with SSIM = 0.89. 
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(a) (b) (c) (d) 

Figure 5. The perceptual quality of the Basketball Drill video sequence at the compression ratio 1/12: (a) the 

original frame; (b) the result of the compression net with SSIM = 0.90; (c) the result of the prediction net with 

SSIM = 0.89; and (d) the result of the residue network which is our final decoding with SSIM = 0.93. 

 

    
(a) (b) (c) (d) 

Figure 6. The perceptual quality of the Party Scene video sequence at the compression ratio 1/12: (a) the original 

frame; (b) the result of the compression net with SSIM = 0.73; (c) the result of the prediction net with SSIM = 

0.71; and (d) the result of the residue network which is our final decoding with SSIM = 0.84. 

 
 

    
(a) (b) (c) (d) 

Figure 7. The enlarged region of the BQ Mall video sequence at the compression ratio 1/12:  (a) the original 

frame; (b) the result of the compression net with SSIM = 0.84; (c) the result of the prediction net with SSIM = 

0.82; and (d) the result of the residue network which is our final decoding with SSIM = 0.89. 

 
 

    
(a) (b) (c) (d) 

Figure 8. The enlarged region of the Basketball Drill video sequence at the compression ratio 1/12: (a) the 

original frame; (b) the result of the compression net with SSIM = 0.90; (c) the result of the prediction net with 

SSIM = 0.89; and (d) the result of the residue network which is our final decoding with SSIM = 0.93. 

 

    
(a) (b) (c) (d) 

Figure 9. The enlarged region of the Party Scene video sequence at the compression ratio 1/12: (a) the original 

frame; (b) the result of the compression net with SSIM = 0.73; (c) the result of the prediction net with SSIM 

= 0.71; and (d) the result of the residue network which is our final decoding with SSIM = 0.84. 
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Finally, we showcase the SSIM curves versus different compression ratios in Fig. 10 for the three video sequences. Again, 

it is observed that the final decoding (Final Decoding) of our proposed scheme achieves the highest SSIM values for all 

compression ratios. 

(a) BQ Mall (b) Basketball Drill (c) Party Scene

Figure 10: The SSIM versus compression ratios for (a) the BQ Mall video sequence; (b) the Basketball Drill 

video sequence; and (c) the Party Scene video sequence. 

5. CONCLUSION

In this paper, we propose a new deep learning framework for video frame compression and reconstruction using three 

networks: compression, prediction and residue network. While the odd-number frames are compressed by intra-frame 

coding, the proposed prediction net predicts the target blocks in even-number frames by reference blocks in the decoded 

previous and next odd frames. Since the reference blocks involve a larger spatial area than the target block, implicit inter-

frame motion compensation is performed. Our experimental studies demonstrated the effectiveness of the proposed model, 

in terms of higher SSIM values and better visual quality compared to intra-frame coding and the intermediate prediction 

result. 
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