
Improving Program Slicing with Dynamic Points-To Data

Markus Mock
Department of Computer
Science & Engineering

University of Washington
Seattle, WA 98195-2350

mock@cs.washington.edu

Darren C. Atkinson
Department of Computer

Engineering
Santa Clara University

Santa Clara, CA 95053-0566

atkinson@engr.scu.edu

Craig Chambers and
Susan J. Eggers

Department of Computer
Science & Engineering

University of Washington
Seattle, WA 98195-2350

{chambers,eggers}@cs.washington.edu

ABSTRACT
Program slicing is a potentially useful analysis for aiding program
understanding. However, slices of even small programs are often
too large to be generally useful. Imprecise pointer analyses have
been suggested as one cause of this problem. In this paper, we
use dynamic points-to data, which represents optimal or optimistic
pointer information, to obtain a bound on the best case slice size
improvement that can be achieved with improved pointer precision.
Our experiments show that slice size can be reduced significantly
for programs that make frequent use of calls through function point-
ers because for them the dynamic pointer data results in a consid-
erably smaller call graph, which leads to fewer data dependences.
Programs without or with only few calls through function point-
ers, however, show only insignificant improvement. We identified
Amdahl’s law as the reason for this behavior: C programs appear
to have a large fraction of direct data dependences so that reduc-
ing spurious dependences via pointers is only of limited benefit.
Consequently, to make slicing useful in general for such programs,
improvements beyond better pointer analyses will be necessary. On
the other hand, since we show that collecting dynamic function
pointer information can be performed with little overhead (average
slowdown of 10% for our benchmarks), dynamic pointer informa-
tion may be a practical approach to making slicing of programs
with frequent function pointer use more successful in reality.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.3.4 [Programming Lan-
guages]: Processors; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Program Analysis

General Terms
Languages, Measurement, Experimentation

Keywords
Program Slicing, Points-To Analysis, Dynamic Analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2002/FSE-10,November 18–22, 2002, Charleston, SC, USA.
Copyright 2002 ACM 1-58113-514-9/02/0011 ...$5.00.

1. INTRODUCTION
Program slicing [11, 15, 33] has been proposed as an approach

to aid program understanding tasks. For example, a backward pro-
gram slicer computes the set of statements that may have affected
the value of a given variable, which may aid programmers dur-
ing debugging. Possible other applications of slicing are software
maintenance, testing, and reverse engineering [7, 10, 11, 32, 33].
With such applications in mind, a variety of program slicing tools
have been developed, many of these for the widely used C program-
ming language [5, 7, 13, 14, 31].

Although in theory program slicers make several program under-
standing tasks easier, their usefulness in practice has been limited,
because existing program slicers frequently produce slices that are
quite large. Various reasons have been proposed to explain this
phenomenon. For example, some slicers use context-insensitive
data-flow analyses, which analyze procedures equally regardless of
their call site. As a consequence, data-flow information for multi-
ple calls to the same function is shared, resulting in more imprecise
analysis results, which may lead to a larger slice size.

Another culprit may be the pointer analysis algorithms used in
the slicing tool. Flow-sensitive and context-sensitive algorithms
potentially produce the most precise results, but due to their com-
plexity (O(n3) or worse, wheren is the number of lines of code)
they generally do not scale well, limiting their applicability to rel-
atively small programs. However, slicing would be most beneficial
for large programs that cannot be easily understood without the
use of tools. Therefore, existing slicers typically use pointer analy-
ses that trade precision for better performance to enable slicing of
complex programs. These analyses are typically not fully flow- or
context-sensitive [9, 28, 30, 34].

The pointer imprecision problem is particularly severe for C pro-
grams, which use pointers extensively to simulate call-by-reference
semantics, to emulate object-oriented dispatch via function point-
ers, to avoid the expensive copying of large objects, to implement
list, tree, or other complex data structures, and as references to
objects allocated dynamically on the heap. Therefore, imprecise
pointer analyses will result in conservative assumptions about data
dependences in a program, contributing to a larger slice size.

The pointer analysis used by existing slicers is usually imple-
mented as apoints-toanalysis. Points-to analysis determines, for
each variable in the program, the set of locations (i.e., variables,
procedures, and heap locations) to which a given variable may
point at a particular program point. The resultingpoints-to sets
are used by the subsequent data-flow analysis to resolve pointer
dereferences.

Traditionalstatic points-to analyses compute an approximation
of the set of objects to which a pointer may point. They are conser-

vative in the sense that their results must be correct for any input
and execution path of the program. In addition, for the C program-
ming language they have to make various conservative assumptions
when analyzing a program, for instance, because of C’s weak type
system.

An alternative way of gathering points-to data is to perform a
dynamicpoints-to analysis. A dynamic points-to analysis records
the targets of program pointers during actual program execution,
by instrumenting the program source with calls to an appropriate
data-capturing routine. Since dynamic points-to sets only capture
the targets of pointers during a particular program execution, they
are in general unsound (i.e., optimistic). However, with a sufficient
number of program inputs and execution runs, the dynamic sets
are likely close to optimal. Moreover, any sound points-to analy-
sis and a (generally infeasible) optimal points-to solution mustat
leastcontain the targets present in a dynamic points-to set. There-
fore, dynamic points-to sets can be used to obtain an approximate
lower bound on the points-to sets. A recent study [23] showed
that the typically observed dynamic points-to sets are 10–100 times
smaller than the points-to sets computed by Das’s highly-scalable
One-Level Flow algorithm [9], which generally produces results as
precise as Andersen’s well-known algorithm [2]. Andersen’s algo-
rithm, in turn, has been shown [17] to be of comparable precision as
some other well-known pointer analysis algorithms [17, 24]. Mock
et al. [23] additionally showed that the majority of program vari-
ables point to only a single logical location during execution with
the SPEC-provided test inputs.1 Although more expensive flow-
sensitive algorithms [26] can obtain much better average points-to
sets than the scalable analyses used in [23], they still do not in gen-
eral yield points-to sets as small as the dynamic sets.

Since the dynamic sets are a lower bound for the results of any
sound static analysis, we can use them to obtain an upper bound on
the potential improvement of slice sizes that might be achieved by
using more precise pointer analysis algorithms in slicing. To com-
pute this bound, we modified theSprite program slicing tool [5,
6] to accept dynamic points-to data fromTumi, which is a mod-
ification of the Calpa instrumentation tool [21, 22]. We chose to
use applications from the SPEC 2000 benchmark suite to perform
our experiments, since SPEC benchmarks are of considerable size,
cover a wide range of tasks (e.g., simulations, group theoretic com-
putations, graphics, databases, word processing) and they are actu-
ally used in practice.2 In addition, we used several benchmarks that
have been used by other researchers in the evaluation of their slic-
ing studies [15, 17, 18]. We instrumented, executed, and collected
data for our benchmarks and constructed a variety of slices on the
source code using the dynamic points-to data.

Our results were bimodal, and depended on the degree of func-
tion pointer use in the program. Programs that contained many
(static) call sites that call procedures through function pointers had
significantly smaller slice sizes. Their improvement in slice size
was due to the reduced call graph that resulted from using the dy-
namic points-to information for call sites. On the other hand, pro-
grams which made no or only infrequent use of calls through func-
tion pointers saw little improvement in slice size, typically just a
few percent. At the root of this counter-intuitive behavior, we found
that a large fraction of dependences in these programs were direct,

1A logical location is either a program variable or a heap alloca-
tion site. There may be multiple instantiations of a single logical
variable in the case of local variables and multiple distinct objects
allocated at the same memory allocation (heap) site.
2Applications are submitted to the SPEC consortium and selected
based on their relevance and representativity of actual computing
practice.

i.e., not pointer-induced, and therefore their potential improvement
from better pointer information is limited by Amdahl’s Law. In
more detail, our paper makes the following contributions:

• We compute an upper bound on the reduction in slice size
that can be obtained by improved pointer information for a
wide range of realistic applications. While other researchers
have compared slice sizes obtained with pointer analyses of
different precision [17], our study is the first to establish an
upper bound of possible slice size reduction by improved
pointer information.

• We show that programs with many call sites that make calls
through function pointers experience a significant reduction
in slice size, when dynamic pointer information is used. The
smaller slices are due to the much more compact call graphs
that dynamic pointer information produces. For the programs
in our test suite and the inputs used to obtain their dynamic
pointer data, we were able to verify that the reduced call
graph is not simply a consequence of bad code coverage, but
is a much better (though somewhat optimistic) approxima-
tion of the possible call relationships present in the programs.
Since the precision of analyses of object-oriented programs
is often limited by an imprecise call graph,3 these analyses,
as well as program slicing for object-oriented programs, such
as those written in Java, may also benefit from our technique.

• Despite dramatically smaller points-to sets, programs with-
out many calls through function pointers see little reduction
in slice size. We found that the C programs in our test suite
contain a large fraction of direct data dependences. There-
fore, the effectiveness of removing (even a very large number
of) spurious dependences that arise from imprecise pointer
information, is limited. While we can claim that this is the
case only for the benchmarks in our study, we believe that
it is likely to apply to many other C programs as well, based
on the variety of applications that the programs in our bench-
mark suite represent.

• Finally, since reductions in slice size only occur on programs
for which the dynamic points-to data results in a more com-
pact call graph, program instrumentation can be restricted
to collect dynamic points-to data only for function pointers.
We show that this restricted form of profiling results in only
minimal slowdowns ranging from 2–30%. This makes the
construction of a better (though optimistic) call graph a prac-
tical technique, that can be harnessed by all software tools
that would improve from better call graph information, in-
cluding, but not limited to, program slicers.

The rest of this paper is organized as follows. Section 2 and Sec-
tion 3 describe our program slicing tool,Sprite, and the instrumen-
tation framework with which we obtained the dynamic points-to
data. We present our experimental setup in Section 4 and discuss
the results in Section 5. Section 6 contains related work, and we
conclude in Section 7.

2. PROGRAM SLICING
We used a modification of version 3.0 of theSpriteprogram slic-

ing tool [3, 5], a research prototype developed for slicing C pro-
grams, to compute program slices that are based on both the static

3In general, the possible targets of object-oriented method calls can
only be approximated very imprecisely by static analysis, resulting
in an imprecise call graph.

and dynamic points-to data. Currently, Sprite computes only back-
ward program slices.

Sprite first constructs the control-flow graph (CFG) of the pro-
gram. TheCFG consists of basic blocks of three-address state-
ments, each of which represents a single computation such as a
simple addition or pointer dereference. Steensgaard’s static points-
to analysis [30] is then performed over theCFG to compute equiv-
alence classes of memory locations that are used as points-to sets
during slice computation. Although Sprite can perform a slight
modification of the points-to analysis that distinguishes the fields
of structures, this modification was not used since previous results
found it yielded little improvement in program slices and negatively
impacted performance during slicing [5]. To compute a program
slice, Sprite computes a maximum-fixed-point solution to the data-
flow equations given in [5] using an iterative, convergence algo-
rithm. After slice computation is complete, Sprite reports the num-
ber of source code lines included in the slice and can highlight the
included lines within a user interface.

Most default options to Sprite were used during the experiments.
The sole exception was that the names of functions that performed
custom memory allocation (e.g.,xmalloc in find) were speci-
fied to increase the precision of the points-to analysis. We gen-
erally computed context-insensitive slices in our experiments, be-
cause previous work had shown that context-sensitive slices are not
much smaller and require significantly more time to compute [4,
8]. However, to rule out context-sensitivity as a factor influencing
our results, in Section 5.3 we also computed some context-sensitive
slices.

3. DYNAMIC POINTS-TO DATA
We used a slightly modified version of the instrumentation tool

Tumi [23] to generate the points-to data used in this study. The
dynamic points-to sets are obtained in three steps. First, a static
points-to analysis is run on the application source code. For each
pointer and dereference point, it computes a conservative approx-
imation of the set of logical locations (variables, procedures, or
memory allocation sites) a pointer may point to. Then the applica-
tion is instrumented, inserting code that associates the run-time ad-
dresses of pointers with the run-time addresses of potential pointer
targets (identified by the static points-to analysis of the first step).
Finally, the instrumented application is compiled, and executed on
some representative input. Upon termination, the instrumentation
code will save the set of logical locations that were referenced
at each instrumented pointer use, thereby producing a dynamic
points-to set for each pointer use. In this process the address match-
ing step is essential: since distinct run-time addresses may refer to
the same logical location, simply recording the pointer addresses is
not sufficient to construct the set of logical locations pointed-to at
run time. More details can be found in [23] and in [20].

The dynamic points-to data is flow-sensitive, since it is collected
per pointer dereference point in the program. For the experiments
reported in Section 5, we also produced flow-insensitive dynamic
points-to sets as follows. For each pointer variablep, the dynamic
points-to sets of all program points that dereferencedp were com-
bined (using set union), producing the set of objectsp pointed to
during execution, regardless of where the pointer was dereferenced.

3.1 Generating Points-To Data
To obtain the dynamic points-to sets for the applications in this

study, we used the SPEC-provided test inputs, which are meant to
exercise the programs’ functionality. We chose to use the test in-
puts, since they allow us to gather the points-to sets faster. We also
found that running the applications on the larger reference data sets

produced virtually unchanged points-to data, possibly because the
reference inputs execute the same parts of the application only more
often. For the non-SPEC programs, we either used the examples
and test suites provided with the applications or performed repre-
sentative tasks, such as searching through all files in a directory hi-
erarchy or scanning a large volume of text. Instrumentation slowed
down the applications by 1 to 2 orders of magnitude, causing the
test inputs to finish within minutes or hours, well within the time
scale of computing actual slices. Moreover, the points-to data can
be reused across different slices of the same application, thereby
amortizing the cost of generating the dynamic points-to data.

3.2 Instrumentation for Function Pointers
Since our results in Section 5.4 show that slices of programs that

include many calls through function pointers can be considerably
improved by using dynamic points-to data exclusively for the call
sites, we would like to be able to gather the function addresses with
minimal slowdown. Fortunately, unlike run-time addresses of vari-
ables, procedure addresses do not change at run-time. Therefore
the expensive mapping from run-time addresses to compile-time
names (performed while the program is executing) is not necessary.
Instead, we have to capture only the addresses of the functions that
are invoked at call sites that use function pointers.

To instrument these call sites, we created a lightweight instru-
mentation version of Tumi, which collects only the run-time ad-
dresses of function pointers. During execution, this lightweight in-
strumentation stores those addresses in a per-call-site hash-table.
When the program finishes, the contents of the table are saved to
disk, and later translated to procedure names (using, for instance,
the Unix toolnm) to obtain the points-to sets for the executed call
sites. This lightweight instrumentation resulted in much smaller
slowdowns, ranging from 0.6% formesa to 30% forgap, with a
geometric mean of 10.3%. These degradations are comparable to
the slowdowns imposed by standard profiling tools such asgprof
or pixie. With this technique, therefore, function pointer data can
be collected efficiently with minimal run-time overhead.

4. EXPERIMENTS
This section describes our workload, the choice of slicing crite-

ria, and how we generated the actual slicing results.

4.1 Workload
For our experiments, we chose to instrument and slice programs

in the SPEC 2000 benchmark suite, along with programs used by
other researchers in their slicing experiments. We chose to use pro-
grams from the SPEC benchmark suite because they are of con-
siderable size, perform a variety of different computations (from
graphics, compression, spell checking, mathematical computations
to simulation), and are actually used in practice (they are submit-
ted to the SPEC consortium). Unfortunately, there is no consen-
sus on what a typical C application looks like, so we had to use
what we believe to cover a good range of actual computing prac-
tice. We chose to use in addition some applications that have been
used in previous slicing work for comparison purposes. Unfortu-
nately, many of the programs used in previous slicing experiments,
were either no longer available, too small, or not interesting with
respect to points-to information because even the flow-insensitive
static points-to analyses we compare against in our paper were able
to produce very precise points-to data because of the simplicity of
the programs.

Table 1 shows the programs used with their sizes and the num-
ber of executable lines (i.e., lines that actually perform some com-
putation). The slices computed by Sprite include only executable

Source
Lines

Executable
Lines

Reachable
Functions

Executed
Functions

Slicing
Criteria Origin Description

art 1,270 545 22 18 837 SPEC 2000 image recognition, neural networks
equake 1,513 670 24 19 1,111 SPEC 2000 seismic wave propagation simulator
mcf 1,909 635 24 21 880 SPEC 2000 combinatorial optimization
bzip2 4,639 1,246 63 21 1,579 SPEC 2000 compression
gzip 7,757 1,864 62 26 1,546 SPEC 2000 compression
ispell 8,020 2,742 107 33 1,617 GNU (v3.1.20) spell checking
parser 10,924 4,414 297 230 6,223 SPEC 2000 word processing
diff 11,755 3,285 110 27 2,110 GNU (v2.7) file comparison
ammp 13,263 5,614 161 46 5,146 SPEC 2000 molecular dynamics
vpr 16,973 5,954 255 163 7,993 SPEC 2000 circuit placement and routing
less 18,305 4,371 328 117 1,879 GNU (v358) text file viewing
twolf 19,748 11,304 167 104 13,816 SPEC 2000 placement and global routing
vortex 52,633 23,245 643 518 31,324 SPEC 2000 object-oriented database
grep 13,084 3,674 108 39 3,520 GNU (v2.4.2) pattern matching
find 13,122 3,004 96 37 740 GNU (v4.1) filesystem searching
mesa 49,701 21,069 770 130 7,270 SPEC 2000 graphics
burlap 49,845 16,608 189 123 5,293 FELT (v3.05) finite element solver
gap 59,482 19,998 826 356 15,245 SPEC 2000 group theory interpreter

Table 1: Sizes and descriptions of the programs used in the experiments. An executable line is any line of source code that performs a
computation during runtime. In particular, declarations, blank lines, and comments are excluded. Italicized programs use function
pointers heavily and are therefore listed together.

lines of code; therefore, the slice sizes reported in Section 5 re-
fer to the number of executable lines included in the slice. The
last five programs use function pointers heavily (discussed in detail
in Section 5.4), and are therefore listed together. We gathered the
dynamic-points to sets as described in Section 3.1.

4.2 Slicing Criteria
Ideally, slicing criteria, (i.e., pairs of the form(statement,

variable)), would be chosen that might be used by a software
engineer during debugging (since Sprite computes a backward pro-
gram slice). However, since we are unfamiliar with the bench-
marks, we instead elected to exhaustively generate slicing crite-
ria for each program, i.e., we generated all possible(variable,
statement) pairs for the program, with the only restriction that
variable is referenced instatement. This ensures results that are
not biased because of a particular choice of slicing criteria.4 We
then restricted the initial slicing criteria to come from only those
functions that were actually executed during some points-to profil-
ing run to ensure the availability of dynamic pointer information.

Table 1 shows the number of possibly reachable functions in
each program and the number of functions executed during the in-
strumentation runs, along with the number of criteria used in the
experiments. The percentage of executable functions of the to-
tal (statically) reachable functions varies widely for the programs,
demonstrating that the code coverage of the inputs is sometimes
quite poor (e.g., formesa for which only about 17% of the reach-
able functions were executed). This means that some of the test
cases provided with the applications need improvement. The set
of reachable functions was constructed using a call graph extractor
that uses Steensgaard’s [30] points-to analysis to account for the
effects of function pointers.

4.3 Experimental Procedure
The following steps were performed for each program in our test

suite:

4Other slicing work has typically glossed over this point; for in-
stance, [17] and [27] do not describe in detail what criteria were
used in their experiments.

1. Instrument each program to record the pointer dereferences
at run time using Tumi.

2. Execute the program on its provided test input, recording the
raw dynamic points-to information. For each executed deref-
erence point, its position in the program and the set of target
logical locations is written out to disk.

3. For each pointer, compute the flow-insensitive data by merg-
ing the referenced objects across all points that dereferenced
the pointer, as described in Section 3.

4. Using the static data, the flow-sensitive dynamic data, and the
flow-insensitive data, perform program slices using Sprite on
the generated criteria, recording information such as the final
size of the slice in lines and the sizes of the incoming data-
flow sets for each basic block.

5. Compute average sizes and reductions in slice size.

5. RESULTS

5.1 Data-Flow Analysis
We measured two quantities during slice computation: derefer-

ence size and data-flow set size. The dereference size is the size of a
pointer’s points-to set at the time of its dereference. When a state-
ment of the form*p = x or x = *p is visited during slicing, the
size of the dereference set ofp is recorded by Sprite. (Since Sprite
uses an iterative algorithm, a single program point may be visited
many times; however, the points-to set and hence the dereference
size do not change.) We used this quantity to measure the num-
ber of data-flow facts (e.g., variables) present at a program point.
We also measured the size of the incoming data-flow set of a basic
block. Upon visiting each block, the size of the set is recorded by
Sprite. This quantity gives an indication of the amount of data-flow
information being propagated during analysis.

We then computed averages over all slices of these two quan-
tities for each program in our test suite. Figure 1 shows the im-
provements in each of these measurements from using the flow-
insensitive dynamic points-to data (computed as explained in Sec-

ar
t

eq
ua

ke
m

cf
bz

ip2 gz
ip

isp
ell

pa
rs

er
dif

f
am

m
p

vp
r

les
s

tw
olf

vo
rte

x
gr

ep
fin

d
m

es
a

bu
rla

p
ga

p

1

2

10

20

100

200

1000

Im
pr

ov
em

en
t F

ac
to

r

dereference size improvement
data−flow set size improvement
slice size improvement

Improvement with Dynamic Pointer Data
(flow−insensitive dynamic data)

Figure 1: Improvement in average dereference size, set size, and slice size for slices computed using dynamic data.

tion 3). The improvements from using flow-sensitive points-to data
are similar (within 1–5% for the dereference size and 1–2% for the
data-flow set size) and are not shown.

The reduction in dereference size is typically an order of mag-
nitude or more, ranging from a factor of only 1.4 forequake to a
factor of close to 700 formesa. However, the reduction in data-flow
set size is less, sometimes substantially so. This drop implies that
although we have introduced fewer data-flow facts into the analy-
sis at statements involving pointers, that decrease does not yield an
equal decrease in the amount of data-flow information being prop-
agated during analysis.

5.2 Slice Size
Table 2 presents the average slice size for each program, in-

cluding the results obtained using flow-sensitive dynamic points-
to data. The data shows that using the flow-sensitive points-to
data instead of the flow-insensitive data has virtually no effect on
slice size. Since for the majority of the dereference points the
flow-sensitive dynamic points-to sets were identical to the flow-
insensitive sets, this was unsurprising. Furthermore, this indicates
that (at least for the applications in our benchmark suite) there may
be limited benefits of using flow-sensitive pointer analysis in gen-
eral, which appears to be consistent with the way pointers are typ-
ically used in C programs (passing pointers to large structures, for
instance).

Figure 1 also presents the improvement in average slice size
when using dynamic pointer data. The data shows that our ap-
plications fall into two categories. For the first category, the im-
proved pointer data results in only insignificant improvement. All
of the applications in the second category, however, which com-
prises all the applications that use function pointers heavily (grep,
find, mesa, burlap, andgap), showed a considerable reduction
in slice size. Note that the figure shows improvement inaver-
ageslice size, i.e.,(1

nΣstatici)/(1
nΣdynamici). Since a slice with

dynamic points-to data is guaranteed to be never larger than the
corresponding slice with static points-to data, comparing the static
average slice size with the average slice size with dynamic data
gives an indication of the overall improvement in slice size with
dynamic points-to data. As an alternative measure, we also looked

at the pairwise data and computed the average percent reduction in
slice size, i.e.,1nΣ [(statici−dynamici)/statici]. The measurements
showed the same general trends and are therefore omitted from the
paper. The data is available in a technical report [20].

5.3 Slices of Programs With Little Function
Pointer Use

In order to explain the lack of improvement for programs with
little function pointer usage, we wanted to isolate and eliminate
factors, such as context-sensitivity and control dependences, that
might influence slice size. As discussed in Section 2, previous work
indicated that increasing context-sensitivity yields only a small im-
provement in slice size. However, context-sensitivity and points-to
set size are not orthogonal, and any such improvement could be
magnified by using more precise points-to data. Therefore, we
performed slices with increased context-sensitivity as practical.5

Comparisons between the improvements in slice size for our origi-
nal (context-insensitive) slices and the slices with increased sensi-
tivity are shown in Figure 2. As the figure demonstrates, increas-
ing context-sensitivity has little effect on the improvement in slice
size. In fact, the slices with static data and slices with dynamic data
generally improved about the same when context-sensitivity was
enabled.

Another possible factor that might explain the general lack of
improvement in slice size for the programs in the first category
are control dependences. For example, more precise points-to data
might eliminate a data dependence between two statementsA and
B, but A may still be included in the slice becauseB is control-
dependent uponA. To assess the impact of control dependence on
our slices, we modified Sprite to ignore intraprocedural control de-
pendences when computing slices. The effects of ignoring control
dependences on slice size are shown in Figure 2. The graph demon-
strates that the slice size reduction resulting from slicing with dy-
namic pointer data was only slightly higher when ignoring control

5We were able to perform fully context-sensitive slices only for
the smaller applications. For the medium-sized applications we
were able to compute 2-CFA results (i.e., context-sensitive for call
depths of up to 2 [29]). Forvortex even computing 1-CFA results
ran out of memory.

Static Dynamic
(flow-insensitive)

Dynamic
(flow-sensitive)

art 59.6 57.1 57.1
equake 168.4 164.8 164.8
mcf 56.8 45.3 45.3
bzip2 73.0 58.5 58.5
gzip 54.0 42.0 42.0
ispell 242.2 185.5 185.5
parser 195.9 186.9 186.7
diff 228.3 171.2 171.2
ammp 339.0 247.0 247.0
vpr 117.0 100.5 100.3
less 536.9 394.3 393.8
twolf 335.6 237.9 237.9
vortex 3,449.3 3,240.3 3,240.3
grep 527.8 183.2 183.2
find 460.8 47.4 45.7
mesa 3,267.3 288.3 288.3
burlap 5,291.6 369.6 369.4
gap 7,758.1 3,133.5 3,006.7

Table 2: Average number of lines in a slice for slices computed
using the static and dynamic points-to sets.

dependences. Five of the applications (bzip2, ispell, diff, less,
andtwolf) show significant improvement; however, the factor of
improvement is still much less than what might be expected when
using points-to data that is 10 to 100 times better. Therefore, al-
though control-dependences have some effect on any improvement
that can be gained from better pointer information, they cannot to-
tally account for any lack of substantial improvement in all of the
applications in the first category.

Since neither context-sensitivity nor the effects of control depen-
dence explain the limited improvements gained by using dynamic
points-to data for the applications with little function pointer use,
we decided to look at the data dependences that are present regard-
less of the quality of pointer information. Therefore, we modified
Sprite to construct a data-dependence graph that could be used to
compute a program slice. (Ordinarily, Sprite uses an iterative algo-
rithm to compute a maximum fixed point solution as discussed in
Section 2.) In the data-dependence graph, an edge links a use of a
program variable to definitions that reach that use. Once the graph
is constructed, a program slice can be computed (ignoring con-
trol dependences) by simply performing graph reachability [15].
Smaller points-to sets should lead to fewer dependences between
statements and therefore fewer edges in the graph. Figure 3 shows
the number of edges in the data-dependence graph computed using
both the static and dynamic points-to data.6 The number of depen-
dences decreases significantly for most programs. Onlyart and
equake show little reduction, which is not unexpected given that
they use pointers only to create and access arrays, not to create and
manipulate complex structures.

Not all edges in the data-dependence graph are due to the ef-
fects of pointers. Direct dependences are those dependences that
arenot induced by pointer dereferences. These edges are always
present regardless of the precision of the points-to sets. Figure 3
also shows the number of direct dependences between statements.
Figure 4 shows this same data but with edges classified as direct
edges, dynamic pointer edges, and edges present only when using
the static data.

6vortex is not shown in the figure because the computation of the
data dependence graph ran out of memory. It is also omitted from
Figure 4 for the same reason.

ar
t

eq
ua

ke

m
cf

bz
ip

2

gz
ip

isp
el

l
pa

rs
er

di
ff

am
m

p

vp
r

le
ss

tw
olf

0

0.5

1

1.5

2

2.5

Im
pr

ov
em

en
t F

ac
to

r

increased context−sensitivity
without control dependences
original (context−insensitive)

Improvement in Slice Size for Various Parameterizations
(flow−insensitive dynamic data)

Figure 2: Improvement in average slice size for slices with in-
creased context-sensitivity, for slices computed without control
dependences, and for context-insensitive slices. The bars la-
beledoriginal refer to the context-insensitive slices with dy-
namic points-to data including both control dependences and
data dependences.

As the figures indicate, for the smaller programs such asgzip,
the majority of the dependences are direct. For the medium-sized
programs such asvpr, approximately 33% of the dependences are
direct. Consequently, any benefits from the more precise points-to
data are immediately diminished by Amdahl’s Law [1]. Amdahl’s
Law states that regardless of how much a part of a program that
accounts for a fractionf of the execution time is improved, the
overall speedup will never exceed a factor of 1/(1− f). Similarly,
regardless of how much we improve pointer-induced data depen-
dences, this improvement will never exceed the limit imposed by
the fraction of direct dependences present in the program. For in-
stance, forvpr the data dependence edge improvement could be
at most a factor of 3.2 even though its average dynamic points-to
set is 100 times smaller than the static points sets. Since the data
dependence edges largely determine the final slice, slice size im-
provement through better pointer information is ultimately limited
by the fraction of direct dependences present in the program. Our
results show that for the C programs in our benchmark suite, di-
rect dependences make up a large fraction of all data dependences.
Consequently, even our optimal (or optimistic) pointer information
improved slice size only insignificantly. Given the wide range of
applications that our benchmark programs represent, we strongly
believe that a large fraction of direct dependences is likely to be
found in many C programs in general, similarly limiting the effec-
tiveness of more precise pointer information for reductions in slice
size in those cases.

5.4 Slices of Programs with Heavy Function
Pointer Use

For the programs in our benchmark suite that use function point-
ers heavily, we found that slices with dynamic data decreased by
a factor of 2.5 forgap to 14.3 forburlap. To ascertain that this
improvement is in fact due to improved function pointer data, we
applied dynamic pointer information selectively in the following

ar
t

eq
ua

ke

m
cf

bz
ip

2

gz
ip

isp
el

l
pa

rs
er

di
ff

am
m

p

vp
r

le
ss

tw
olf

1

10

100

1000

10000

100000

1000000

total edges using static data
total edges using dynamic data
direct edges

Number of Data Dependences
(flow−insensitive dynamic data)

Figure 3: Number of data dependences computed using static
and dynamic points-to data. Also shown is the number of direct
(non-pointer-induced) dependences.

way. In addition to the slices with dynamic data for all pointers, we
computed slices where we used dynamic data only for the function
pointers and static data for the pointer variables, and slices where
we used static data for the function pointers but dynamic data for
variables. As shown in Figure 5, using the dynamic data only for
the function pointers accounts for 48% to 91% of the improvement
achieved by using dynamic data for all pointers. On the other hand,
using the dynamic data only for the variables achieves only little re-
duction in slice size, demonstrating that most of the benefit derives
from the improved call graph.

To estimate how much of the additional improvement is due to
the optimistic nature of our dynamic pointer data, we used the fol-
lowing simple static techniques to obtain a better bound for the
possible improvement due to better function pointer data. First,
we enabled the filtering of the points-to sets for function pointers
based on the their prototypes, i.e., all procedures in a points-to set
whose prototype do not match the required prototype at the call site
are eliminated from the static points-to sets.7 For cases in which
prototype filtering failed to reduce the points-to set size, we ex-
amined the source code of each application by hand to determine
the approximate points-to sets for function pointers. To specify
this information to Sprite, we specified a lexical pattern for filter-
ing the static points-to data. For example, forfind, we specified
a pattern indicating that any call through a function pointer named
“parse_function” resolved to any function whose name began
with “parse_”. Table 3 shows the resulting slice sizes using pro-
totype or lexical filtering and the slice sizes for applying dynamic
data universally, and selectively to only function pointers.

With the exception ofgap, for which we were unable to come
up with good lexical filters because of the complexity of and our
unfamiliarity with the program, we found that the slice sizes ob-
tained with dynamic function pointer data were generally closer
to the sizes resulting from filtered static points-to data than to the
much larger slices obtained by using the static points-to data alone.
For instance, forburlap the average filtered slice size was 1,128,

7This is sound for programs obeying the ANSI C rules. In general,
however, it may be unsound.

am
m

p

ar
t

bz
ip

2

eq
ua

ke

gz
ip

m
cf

pa
rs

er

tw
olf vp

r0

20

40

60

80

100

P
er

ce
nt

ag
e

direct edges dynamic pointer edges remaining pointer edges

Classification of Data Dependences
(flow−insensitive dynamic data)

Figure 4: Classification of data dependences showing the num-
ber of direct edges, dynamic pointer edges, and remaining
pointer edges (additional pointer edges present using the static
points-to data but not present using the dynamic points-to
data).

whereas the static slice size was 5,292, and the slice size with dy-
namic function pointer data was 461, i.e., the slices with static data
were on average 4.7 times larger than the filtered slices, but the
slices with dynamic function pointer data were only a factor of 2.4
too optimistic. Forgrep andmesa the dynamic slices were partic-
ularly close to the results obtained with filtering, indicating that the
dynamic slices are not too optimistic. Forfind the slices with dy-
namic function pointer information turned out to be very optimistic.
The reason is the poor code coverage of the test cases provided with
thefind tool (Table 1 shows that only 37 of the 96 reachable func-
tions were executed), so that of the potentially called functions at
call sites only a few were exercised when gathering the dynamic
points-to data. Since good test cases that exercise all parts of a pro-
gram should be part of any sound software development practice,
we expect that using dynamic points-to data for function pointers
will work well in practice, as long as good test cases for the pointer
data generation are available.

6. RELATED WORK
In work closest to ours, Liang and Harrold [18] describe a slic-

ing algorithm that reuses slicing information computed in previous
slices to speed up the slicing computation of subsequent slices. For
their slicing algorithm they find that decreased points-to set size re-
sults in faster slicing times. In a separate study [17] they describe
their pointer analysis algorithm (namedFICS) in detail and apply
it in their slicing tool. They show that the precision of FICS is
comparable to Andersen’s algorithm, and they perform slices with
several pointer algorithms. However, while they also compare slice
size for different pointer algorithms, their comparison of slice sizes
compares only different static algorithms whose precision is fairly
close, whereas our slices with dynamic data represent a true bound
on any possible improvement from better pointer information.

The effects of context-sensitivity both on pointer-analysis and
program slicing are examined by Horwitz et al. [16]. In practice,
fully context-sensitive analyses are simply not feasible and there-

gr
ep

fin
d

m
es

a

bu
rla

p

ga
p0

20

40

60

80

100

P
er

ce
nt

ag
e

2.9 9.7 11.4 14.3 2.5

dynamic function pointer data / dynamic variable data
dynamic function pointer data / static variable data
static function pointer data / dynamic variable data

Classification of Improvements with Dynamic Data
(flow−insensitive dynamic data)

Figure 5: Classification of improvements in slice size for slices
using dynamic data. For each application, the factor of im-
provement using dynamic data for both function pointers and
variables is shown.

fore recent work has focused on providing analyses that are approx-
imately context-sensitive [4] or on attempting to recover precision
without adversely affecting performance [19]. Both Horwitz et al.
and Liang and Harrold [19], however, find that context-sensitivity
generally provides little improvement in slice size; in [19] most
programs improve only by a few percent, and the best improvement
is 23%. Our dynamic data is context-insensitive; however, since the
majority of program variables point to only a single object, there is
little motivation for increasing context-sensitivity of the points-to
analysis, and in our context-sensitive slice experiments we found in
fact only small improvement of slice size due to context-sensitivity.

In recent years, much work has been done to improve the preci-
sion and efficiency of pointer analyses. Horwitz [28] and Das [9]
provide algorithms to improve the precision of points-to analyses,
the latter achieving the precision of Andersen’s [2] algorithm while
running almost as fast as Steensgaard’s algorithm [30]. Rountev
and Chandra [25] use a technique calledvariable substitutionto
replace a set of program variables that are guaranteed to have the
same points-to sets with a single variable, which reduces the size
of the problem and greatly improves efficiency. Ryder et al. [26]
present a flow-sensitive, interprocedural modification side-effects
analysis, and show that it in many cases flow-sensitive pointer anal-
ysis is feasible with good results. However, none of the mentioned
techniques reduce the size of the resulting points-to sets as much as
using dynamic points-to data or even the combination of dynamic
data supplemented with static data.

There has been much work done looking at poor points-to in-
formation as the source of imprecision in subsequent analyses. A
recent experiment showed that distinguishing the individual fields
of a structure, as opposed to treating the structure as a single ob-
ject, yielded significantly better results for some compiler opti-
mizations [12]. One study [27] examined the effects of improved
points-to information on compiler analyses such as live variable
analysis as well as program slicing. The final results improved only
marginally in the case of program slicing. Bent et al. [8] demon-
strated the importance of accurate library modeling on program

Static Filtered Dynamic
(func. ptrs.)

Dynamic
(all)

grep 527 223 222 183
find 460 253 63 47
mesa 3,267 639 596 288
burlap 5,292 1,128 461 370
gap 7,758 7,747 3,433 3,133

Table 3: Average slice sizes for slices with static data, prototype
or lexically filtered static data for function pointers, dynamic
data applied to function pointers only, and dynamic data ap-
plied to both function pointers and variables.

slicing. However, in all cases, the sizes of the slices were gener-
ally too large to be useful in aiding program understanding.

7. CONCLUSIONS
Program slicing is a potentially useful analysis for aiding pro-

gram understanding. Precise slices are most useful to the software
engineer, since smaller slices mean less code to examine. In this
paper, we looked at improving the precision of program slicing by
using dynamic points-to data. Since dynamic points-to sets are a
lower bound on the results of any sound static pointer analysis, we
can use them to provide a lower bound on slice size. We found that
more precise points-to information did indeed result in less propa-
gated data-flow information during slice computation, as expected.
However, the effects on slice size were bimodal.

First, for programs with many calls through function pointers, we
found a significant improvement in slice size. Even though some
fraction of this improvement was due to the optimistic nature of
the pointer information, we were able to verify for our benchmarks
that a large fraction of the improvement is in fact realizable in prac-
tice by combining the dynamic data with some simple inspection
techniques. Moreover, for applications of slicing where soundness
is not key, e.g., debugging, unmodified dynamic pointer data can
be used directly. Since we show that dynamic function pointer
data can be collected with little overhead, this may be a practical
technique to improve slices for programs that use function point-
ers frequently. Moreover, this technique may be useful for slicing
of object-oriented programs as well, since object-oriented dispatch
shares some of the characteristics of function pointer calls in C.
Since small points-to sets for function pointers resulted in consid-
erable reductions slice size, exploring static pointer analyses that
produce particularly precise results for function pointers is another
interesting area of future research.

Second, for programs with few calls through function pointers,
there was only little improvement in slice size. We found that this
counter-intuitive result is due to Amdahl’s law. C programs appear
to contain many direct data dependences so that removing any spu-
rious data dependences via function pointers is of generally little
effect.

For this latter class of programs, our results suggest that ad-
vances other than improved pointer analysis are necessary in or-
der to improve the quality of slices. Since algorithmic improve-
ments like context-sensitive slicing or optimal points-to informa-
tion showed little general improvement of slice sizes, requiring the
user to make certain assertions about program properties, e.g., that
the source code observes ANSI type rules, may turn out to be the
best (maybe only) way towards practically useful program slicing
in this case.

8. REFERENCES
[1] G. M. Amdahl. Validity of the single processor approach to

achieving large scale computing capabilities. InProceedings
of the AFIPS 1967 Joint Computer Conference, pages
483–485, Atlantic City, NJ, Apr. 1967.

[2] L. O. Andersen.Program Analysis and Specialization for the
C Programming Language. Ph.D. dissertation, University of
Copenhagen, Department of Computer Science, May 1994.

[3] D. C. Atkinson.The Design and Implementation of Practical
and Task-Oriented Whole-Program Analysis Tools. Ph.D.
dissertation, University of California, San Diego,
Department of Computer Science & Engineering, Apr. 1999.

[4] D. C. Atkinson and W. G. Griswold. The design of
whole-program analysis tools. InProceedings of the 18th
International Conference on Software Engineering, pages
16–27, Berlin, Germany, Mar. 1996.

[5] D. C. Atkinson and W. G. Griswold. Effective
whole-program analysis in the presence of pointers. In
Proceedings of the 6th ACM International Symposium on the
Foundations of Software Engineering, pages 46–55, Lake
Buena Vista, FL, Nov. 1998.

[6] D. C. Atkinson and W. G. Griswold. Implementation
techniques for efficient data-flow analysis of large programs.
In Proceedings of the 2001 International Conference on
Software Maintenance, pages 52–61, Florence, Italy, Nov.
2001.

[7] L. Beltracchi, J. R. Lyle, and D. R. Wallace. Using a program
slicing CASE tool for evaluating high integrity software
systems. InProceedings of the 1996 American Nuclear
Society International Topical Meeting on Nuclear Plant
Instrumentation, Control, and Human-Machine Interface
Technologies, pages 1033–1039, University Park, PA, May
1996.

[8] L. Bent, D. C. Atkinson, and W. G. Griswold. A comparative
study of two whole programs slicers for C. Computer
Science Technical Report CS2001-0668, University of
California, San Diego, Department of Computer Science &
Engineering, Apr. 2001.

[9] M. Das. Unification-based pointer analysis with directional
assignments. InProceedings of the 2000 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 35–46, Vancouver, BC, June 2000.

[10] M. A. Francel and S. Rugaber. The value of slicing while
debugging. InProceedings of the 7th International Workshop
on Program Comprehension, pages 151–169, Pittsburgh, PA,
May 2001.

[11] K. B. Gallagher and J. R. Lyle. Using program slicing in
software maintenance.IEEE Trans. Softw. Eng.,
17(8):751–761, Aug. 1991.

[12] R. Ghiya, D. Lavery, and D. Sehr. On the importance of
points-to analysis and other memory disambiguation
methods for C programs. InProceedings of the 2001 ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 47–58, Snowbird, UT, June 2001.

[13] GrammaTech, Inc. Codesurfer user guide and reference
manual.

[14] M. J. Harrold and N. Ci. Reuse-driven interprocedural
slicing. InProceedings of the 20th International Conference
on Software Engineering, pages 74–83, Kyoto, Japan, Apr.
1998.

[15] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs.ACM Trans. Prog. Lang. Syst.,

12(1):26–60, Jan. 1990.
[16] S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural

dataflow analysis. InProceedings of the 3rd ACM
Symposium on the Foundations of Software Engineering,
pages 104–115, Washington, DC, Oct. 1995.

[17] D. Liang and M. J. Harrold. Efficient points-to analysis for
whole-program analysis. InProceeedings of the 7th
European Software Engineering Conference and ACM
Symposium on the Foundations of Software Engineering,
pages 199–215, Toulouse, France, Sept. 1999.

[18] D. Liang and M. J. Harrold. Reuse-driven interprocedural
slicing in the presence of pointers and recursion. In
Proceedings of the 1999 International Conference on
Software Maintenance, pages 421–432, Oxford, England,
Aug. 1999.

[19] D. Liang and M. J. Harrold. Light-weight context recovery
for efficient and accurate program analyses. InProceedings
of the 2000 International Conference on Software
Engineering, pages 366–375, Limerick, Ireland, June 2000.

[20] M. Mock, D. C. Atkinson, C. Chambers, and S. J. Eggers.
Gathering dynamic points-data and its incorporation in a
program slicing tool for C programs. School of Engineering
Technical Report COEN-2002-03-16, Santa Clara University,
Department of Computer Engineering, Mar. 2002.

[21] M. Mock, M. Berryman, C. Chambers, and S. J. Eggers.
Calpa: A tool for automating dynamic compilation. In
Proceedings of the 2nd Workshop on Feedback-Directed
Optimization, pages 100–109, Haifa, Israel, Nov. 1999.

[22] M. Mock, C. Chambers, and S. J. Eggers. Calpa: A tool for
automating selective dynamic compilation. InProceedings of
the 33rd Annual Symposium on Microarchitecture, pages
291–302, Monterey, CA, Dec. 2000.

[23] M. Mock, M. Das, C. Chambers, and S. J. Eggers. Dynamic
points-to sets: A comparison with static analyses and
potential applications in program understanding and
optimization. InProceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, pages 66–72, Snowbird,
UT, June 2001.

[24] H. D. Pande, W. A. Landi, and B. G. Ryder. Interprocedural
def-use associations for C systems with single level pointers.
IEEE Trans. Softw. Eng., 20(5):385–403, May 1994.

[25] A. Rountev and S. Chandra. Off-line variable substitution for
scaling points-to analyis. InProceedings of the 2000 ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 47–56, Vancouver, BC, June
2000.

[26] B. G. Ryder, W. Landi, P. Stocks, S. Zhang, and R. Altucher.
A schema for interprocedural side effect analysis with
pointer aliasing.ACM Trans. Prog. Lang. Syst.,
23(2):105–186, Mar. 2001.

[27] M. Shapiro and S. Horwitz. The effects of the precision of
pointer analysis. InProceedings of the 4th International
Symposium on Static Analysis, pages 16–34, Paris, France,
Jan. 1997.

[28] M. Shapiro and S. Horwitz. Fast and accurate
flow-insensitive points-to analysis. InProceedings of the
24th ACM Symposium on Principles of Programming
Languages, pages 1–14, Paris, France, Jan. 1997.

[29] O. Shivers.Control-Flow Analysis of Higher-Order
Languages. Ph.D. dissertation, Carnegie Mellon University,
School of Computer Science, May 1991.

[30] B. Steensgaard. Points-to analysis in almost linear time. In
Proceedings of the 23rd ACM Symposium on Principles of
Programming Languages, pages 32–41, St. Petersburg
Beach, FL, Jan. 1996.

[31] F. Tip. A survey of program slicing techniques.J. Prog.
Lang., 3(3):121–189, Sept. 1995.

[32] F. Tip and T. B. Dinesh. A slicing-based approach for
locating type errors.ACM Trans. Softw. Eng. Meth.,
10(1):5–55, Jan. 2001.

[33] M. Weiser. Program slicing.IEEE Trans. Softw. Eng.,
SE-10(4):352–357, July 1984.

[34] R. P. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for C programs. InProceedings of the ACM
SIGPLAN ’95 Conference on Programming Language
Design and Implementation, pages 1–12, La Jolla, CA, June
1995.

