Tactical and Strategical AI

Artificial Intelligence for Games
Waypoint Tactics

Artificial Intelligence for Gaming
Waypoint Tactics

- Waypoint: single position in a game
 - Pathfinding uses nodes
 - Now: associate those nodes with different tactical situations

- Tactical locations (a.k.a. rally points)
 - Waypoints for tactical situations (not only rally points)
 - Usually used to represent
 - defensive locations (cover points)
 - sniper points
 - ambush points
 - ...

Waypoint Tactics

- Waypoints are not necessarily useful for pathfinding
 - Usually many more waypoints
 - Generated by hand
 - Or generated automatically
Waypoint Tactics

- More sophisticated methods
 - Ideal sniper position has good cover and wide view of enemy
 - Sniper points are both cover points and reconnaissance points
 - Need only store primitive properties of waypoints
 - When looking for an ambush point:
 - based on cover
 - based on shadow
 - based on exposure
 - Preferable for smaller number of characters and simple conditions
 - If not, can preprocess and label waypoints with labels for more complicated properties
Waypoint Tactics

- Context Sensitivity
 - Tactical value of any type of point depends on the situation
 - Attitude of a character determines whether a cover point really provides cover
 - Sniping points depend on enemy position for their aptitude
- Evaluation
 - Precompute multiple values:
 - Enemy position in all four directions
 - Casts ray to actual enemy position to see whether cover is provided
Waypoint Tactics
Waypoint Tactics

- Precomputing values
 - Fast: no calculations necessary
 - Can explode:
 - Cover in four directions
 - Two attitudes: standing / crouching
 - Against five types of weapons
 - Total 40 values

- Post-processing
 - Ray-casting can be expensive
 - Some games use 30% of a processing power on line-of-sight calculations
Waypoint Tactics

- Waypoint overview:
 - Many games can use simple labels
 - Context sensitivity through precomputation
 - Post-processing for tactically involved games
Waypoint Tactics

- Using tactical locations
 - Mechanism to include waypoint data into decision making:
 1. Simple decision making process such as a decision tree
 2. Incorporating tactical information into decision making process
 3. Character motion that is always tactical aware
Waypoint Tactics

- Simple tactical experience
 - Character uses a decision tree based on current state: health, ammo, enemy position
 - Decides for reloading
 - Queries tactical waypoints in the vicinity
 - Evaluate for cover
- Drawback: Availability of a nearby cover point is not assured
Waypoint Tactics

- Using tactical information during decision making
 - Binary decisions:
 - Decision tree with a node:
 - Is there a cover point nearby?
 - State machine with state machine
 - Fuzzy logic decision making
 - Incorporates values of waypoints

- Generating nearby decision points
 - need to be fast
 - Use data structures such as quad-trees, binary space partitions, ...
 - Needs to take obstacles into account
Waypoint Tactics

- Tactical Pathfinding
 - Extend A* pathfinding algorithm
Waypoint Tactics

- Generating waypoints
 - Part of level design
 - Use tiling
 - Evaluate center points
Waypoint Tactics

- Cover points
 - Quality evaluated by calculating proportion of successful attacks from different points
 - Create potential enemy locations around point
 - Create different heights of enemy
Waypoint Tactics

- Visibility points
 - Use line-of-sight tests
Waypoint Tactics

- Shadow points
 - Use lighting model of level
 - Test amount of light at different heights over the point
Waypoint Tactics

- Automatic generation of waypoints
 - Watching human players
 - Condensing the waypoint grid
 - Start with points in center of a dense tiling
 - Discard points with low evaluation
 - (Careful: In a room with almost no cover, a modest cover point is important)
 - Condense remaining points
 - If character can move simply between two points, can keep the better of the points
Tactical Analysis

- Represent the game level
 - Tiling with a dense grid
 - Dirichlet domains
- Simple influence maps
 - Each type of unit gives influence
Tactical Analysis

Influence formula:

\[\text{influence} = \alpha \cdot \max(0, 1 - \frac{\phi}{\phi - d(\text{avatar, cell})}) \]

Manhattan geometry
Tactical Analysis

Other formulas for attenuation

![Graph showing various attenuation formulas](image)
Tactical Analysis

- Cumulative effect of units
 - Add, but limit effect of each unit to a certain circle
 - Use a convolution filter
 - Use only the highest influence unit to calculate influence
Tactical Analysis

- Influence can depend on the type of unit
 - Artillery: Influence only in a certain ring around unit
Tactical Analysis

- Use of tactical map:
 - Difference between influences with and without enemy
Tactical Analysis

- Use of tactical map:
 - White piece in center is surrounded by black influence: vulnerable
Tactical Analysis

- Tension Map:
- Difference between influences:
Tactical Analysis

- Tension minus my influence gives vulnerability
Tactical Analysis

- Example:
 - Well-defined frontline
 - Conflict in middle
Tactical Analysis
Tactical Pathfinding
Artificial Intelligence for Gaming
Tactical pathfinding

- Tactical pathfinding
 - Incorporates the tactical evaluation into costs of paths
 - Connection cost depends on
 - Distance
 - Tactical quality of each connection
 - Tactical quality of connection is stored
 - With waypoints
 - (Average the tactical quality of the two endpoints, but face problems)
Direct connection between A and B exposes character

Can only see this with lots of waypoints
Tactical pathfinding

- Modify pathfinding heuristics
 - Euclidean distance heuristic can lead to underestimate tactically excellent routes
Tactical pathfinding

- Modify graph:
 - Need to add waypoints that are not tactical
Coordinated Actions

Artificial Intelligence for Gaming
Coordinated Actions

- Strategy
- Tactical Analysis
- Planning
- Group Movement
- Individual Movement
- Individual Movement
- Individual Movement
- Individual Movement
Coordinated Action

- Incorporating players does not mix well with multi-tiered AI
Coordinated Action

- Integration of player
 - Explicit player orders
 - Different structuring of multi-tier AI
Coordinated Action

Player

Action recognition (rule based)

Strategy

Tactical Analysis

Group Movement

Individual Movement

Individual Movement

Individual Movement

Individual Movement
Coordinated Action

- Emergent cooperation
 - Characters run their own decision making procedure
 - Taking into account what other characters are doing
 - Tune decision making so that cooperate actions emerge
Coordinated Action

- **Scripted actions**
 - Special situations in sports
 - Football
 - Soccer: corner kick, free shot
 - Baseball: double play, bunt
 - Military tactics
 - Entering a potential hostile room
 - Teams moves into position outside
 - Throws stun grenade
 - Move into corner of room
 - Flank inside of doorway