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Abstract—Wi-Fi and Bluetooth are two wireless technologies,

available in every smart-phone, tablet, and laptop. Wi-Fi Access

Points (APs) and Bluetooth beacons are deployed in most indoor

environments to provide service for the Internet of Things (IoT)

applications. Although, Bluetooth and Wi-Fi target different

applications, they both share the 2.4 GHz frequency band. The

re-transmissions caused by interference with Wi-Fi packets is

costly for BLE in terms of energy consumption. Techniques such

as Adaptive Frequency Hopping (AFH) in BLE addresses this

problem. However, the static nature of AFH is not performing

well for highly dynamic environments. Therefore, there is a need

for a predictive model to optimize the spectrum usage. In this

paper, we propose a machine learning model based on Long

Short-Term Memory (LSTM) to predict the wireless activities in

the 2.4 GHz frequency band and its impact on BLE channels.

We apply the proposed model to analyze the Wi-Fi interference

trend on these channels. The Root Mean Squared Error (RMSE)

results for several experiments on both channels indicate the high

performance of the proposed LSTM model over Auto Regressive

Integrated Moving Average (ARIMA) model. This improvement

is significant up to approximately 50% reduction in error.

Index Terms—Long Short-Term Memory (LSTM), Bluetooth

Low Energy (BLE), Machine Learning, Wi-Fi, Internet of Things

(IoT)

I. INTRODUCTION

Most wireless technologies employed by Internet of Things
(IoT) devices operate independently and they are not aware
of the traffic and spectrum occupancy of each other. Due
to the global availability of 2.4 GHz band, many wireless
technologies use this band, e.g., Wi-Fi (IEEE 802.11b/g/n),
Bluetooth Low Energy (BLE), Bluetooth classic, ZigBee,
cordless phones, and even non-networking devices such as
Microwave ovens [1].

It is expected that the number of BLE devices in smart
buildings rise from 95 million in 2018 to 360 million in
2022 [2]. Meanwhile, the collisions caused by spectrum
scarcity leads to re-transmission delay, unreliability, and
higher battery consumption [3]. Wi-Fi and BLE are two dom-
inant technologies in indoor environments. We are surrounded
by Wi-Fi Access Points (APs) and BLE beacons in most
of the indoor environments. The concept of Cognitive Radio
(CR) [4] has been defined to address the scalability issue by
efficiently managing the allocation of the spectrum in time,
frequency, and power domain. Operation of heterogeneous
wireless technologies in the same frequency band with dif-
ferent channel assignment, spectrum access mechanism, and
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Fig. 1. 2.4 GHz spectrum shared by BLE and IEEE 802.11b/g/n

bandwidth raise challenges regarding scheduling the spectrum
as a shared resource.

Figure 1 denotes the BLE and WiFi packets as target and
interfering respectively. The figure demonstrates the spectrum
schematic and shows how two packets sharing the same
frequency and at the same time are colliding. Several types
of collisions are possible: First, Figure 1(a) shows a BLE
packet colliding with Wi-Fi packet. Because the interfering
packet has lower transmit power, the target packet survives.
In Figure 1(b), the target packet is completely lost. Although
the domain of interfering packet in Figure 1(c) and (b) are
damaging the target packet, the packet may be detectable
by the receiver or using techniques such as Forward Error
Correction (FEC). Additionally, in Figure 1, it is clear that
most of the spectrum is unoccupied, and a collision occurs
only because of poor resource management.

Machine learning-based time series prediction can be em-
ployed to improve spectrum management. This means BLE
radio can improve Packet Reception Rate (PRR) by spectrum
sensing and interference prediction on each channel. Wi-
Fi interference prediction on BLE channel is critical for
several reasons: i) It increases battery life and reduces the
delay in transmission. ii) Indoor Positioning Systems (IPSs)
based on BLE beacons can benefit from this prediction by
considering the impact of noise on range estimation. iii) It
can be used for an intelligent blacklisting scheme to improve
Adaptive Frequency Hopping (AFH) performance in BLE data
channels. iv) It helps researchers to develop a decision-making
algorithm adaptively using physical layer to employ different
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Fig. 2. 2.4 GHz ISM frequency band shared by Wi-Fi and BLE channels.
The black channels are advertisement channels used by BLE beacons.

power levels, packet sizes, and modulation rates for each
channel condition.

Since BLE has been primarily designed for devices with
low processing power, sophisticated deep learning algorithms
are not suitable on these devices. Besides, due to high dy-
namicity of wireless channels, achieving timely and accurate
predictions is essential.

In this paper, we present a Light Weight Interference Pre-
diction Model (LWIPM) based on Long Short-Term Memory
(LSTM) [5] for resource constraint IoT devices to predict
the Wi-Fi interference on BLE channels. To the best of our
knowledge, there is no study focusing on Wi-Fi interference
prediction for BLE channels.

This paper is organized as follows. In Section II we elabo-
rate the background of the research on CR. The methodology
of the research and the concept of LSTM is explained in
Section III. Section IV discusses the outcome of the study
and compares the obtained results. Finally, we conclude the
paper in Section V.

II. RELATED WORK

Interference modeling and analysis have been studied in
[6]–[9]. Furthermore, in [10] BLE signal propagation and
impact of interference on advertisement channels have been
analyzed. The authors conducted extensive experiments in sev-
eral indoor and outdoor environments to develop a simulation
model by relying on a realistic dataset. Similarly, authors
in [11] studied interference modeling to develop a simulation
platform. They captured Wi-Fi interference on IEEE 802.15.4
channels and proposed a model to use in ns-2 simulation.
Although these studies help to have a better understanding
to develop an interference model, they do not consider the
effectiveness of using time series prediction algorithms. On
the other hand, CR attempts to fulfill this gap by employing
machine learning algorithms. The main idea is to sense the
wireless spectrum and train the machine learning algorithm
to predict the spectrum holes for successful data transmission.
In this direction, several machine learning algorithms used for
channel interference prediction have been discussed in [12]. In
this study, the authors emphasize the advantage of using Re-
current Neural Networks (RNNs) over Game Theory, Support
Vector Machine, and Bayesian non-parametric approaches,
due to the high and continuous interference variation. In
this direction [13], proposed a kernel-based reinforcement
learning approach to predict the interference in the wireless
channel to achieve the optimal back-off period in CSMA-
CA. Additionally, due to the development of deep learning

algorithms in recent years, there has been a growing interest
in using machine learning and time series prediction methods
to efficiently manage the wireless spectrum [14]. However, a
channel prediction model for BLE is missing in the literature.
In addition, because the application of machine learning in
wireless channel modeling is a recent topic, there is insuffi-
cient study covering the prediction algorithms such as LSTM.
This highlights the need for developing a lightweight, real-
time, and precise interference level prediction algorithm.

III. METHODOLOGY

This section discusses the interference in 2.4 GHz band and
its impact on BLE channels, as well as the detailed description
of LWIPM to characterize and predict the interference on
channel 38 and 15.

A. Interference in 2.4 GHz Frequency Band

The 2.4 GHz is a globally unlicensed band used by sev-
eral technologies such as IEEE 802.11b/g/n and BLE. They
employ different mechanisms to cope against interference.
The objective of this study is the characterization and pre-
diction of BLE in the presence of Wi-Fi interference. As
can be seen in Figure 2, the advertisement channels are
strategically placed to avoid overlapping with commonly used
IEEE 802.11b/g/n channels i.e., channels 1, 6, and 11. Data
channels, on the other hand, compete with Wi-Fi. Therefore,
higher interference is expected in data channels compared to
advertisement channels, and this makes BLE’s data channels
more vulnerable. BLE employs AFH and channel blacklisting
in data channels to avoid transmission on highly affected
channels. The blacklisting scheme excludes noisy channel
from the hopping list. However, low accuracy in selecting
the crowded channels reduces the efficiency of the network in
terms of packet delivery ratio, delay, and energy consumption.
By employing a robust prediction model and computing the
probability of packet loss based on interference level, BLE
can make more accurate decisions for tuning its transmission
parameters such as power, frequency, and time.

We selected the BLE channel 38 and 15 as advertisement
channel and data channel, respectively. It allows us to ob-
serve the performance of LWIPM under two utterly different
interference levels. Our model is influenced by ON/OFF
model [15] in CR which uses energy detection [16] for
spectrum sensing. To this end, using nRF52840 and every 9µs,
we capture the Wi-Fi interference in a particular frequency
without detecting the source Wi-Fi device. Then we develop
a LWIPM based on the recorded dataset to forecast the Wi-
Fi interference. The objective of LWIPM is to predict the
interference level accurately valid for a more extended period
and using minimum samples for training (save time and
battery power).

B. Model design

It is crucial to find the optimal parameter for the developed
machine learning model to avoid latency (because of over-
training) and improve accuracy. For example, how many
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samples are needed to achieve the desired accuracy and how
long the prediction will remain valid. The main goal of this
study is to develop an accurate and straightforward algorithm
for resource-constrained IoT devices. Although, short training
time will lower the model accuracy, over-training will cause
delay in transmission. Besides, over-training has negative
effect on prediction accuracy. Thus, the goal is to find the
shortest possible training time with the highest prediction
accuracy.

C. Long Short-Term Memory (LSTM)

The Wi-Fi interference behavior for the selected channels
is highly variable. Even though Recurrent Neural Networks
(RNNs) are one of the most common methods for learn-
ing from the sequential data and time series, they suffer
from vanishing gradient problem [17] where the gradient
value decreases to the extent that it does not provide any
significant contribution. Gradient values are used to update
neural network weights during backpropagation. However, it
is challenging for RNNs to remember the long sequences
entirely. LSTM was created to address this issue of short-
term memory. The key advantage of using LSTM is to model
sequences with different lengths and capture their long-term
dependencies for accurate predictions.

LSTM has similar chain-like structure as of RNNs. Figure 3
shows the block diagram of LSTM. It contains three layers:
input, cell, and output. A cell is made up of three gates
(input, forget, output) and a cell unit. A gate uses sigmoid
activation function whose output is a number between zero
and one, describing how much of each component of the
information should be let through, while cell state and input
are converted using tanh. The updating procedure of a LSTM
cell is executed in four steps.

Step 1: Calculate the value of current cell state C int.
It takes the previous output (ht�1) and input data (xt), and
outputs a number between 0 and 1. Wxc and Whc are the
weights of input data and previous output, respectively.

C int = tanh(Wxcxt + Whcht�1 + bc)

Step 2: Decide what new information needs to be stored in
the cell state (input gate) it and calculate its value.

it = �i(Wxixt + Whiht�1 + Wcict�1 + bi)
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Fig. 4. Figure shows Periodogram computation to estimate power on channel
15 by Welch method where data is divided into L number of overlapping
segments of length K. It is computed for each segment. Here x-axis shows
frequency value and y-axis shows PSD [18] in unit Decibel (DB) per
Megahertz (MHz).

To tune the effect of previous information on current cell state,
the value of forgotten gate ft is calculated.

ft = �f (Wxfxt + Whfht�1 + Wcfct�1 + bf )

Furthermore, the old cell state Ct�1 is updated to the new cell
state Ct where old state is multiplied by ft.

ct = ft � ct�1 + it � C int

where � shows point-to-point product.

Step 3: This step is for deciding on the output. A sigmoid
layer, which takes real valued input and gives output between
0 and 1, decides which parts of the cell state should give
output by calculation of output gate ot.

ot = �o(Wxoxt + Whoht�1 + Wcoct + bo)

Step 4: To compute the new output ht, tangent of newly
calculated cell state tanh (ct) is multiplied to sigmoidal
output gate ot shown in step 3.

ht = ot � tanh (ct)

D. Data pre-processing

A time series is a sequence of observations taken at succes-
sive equally spaced points in time. In this regard, time series
prediction involves fitting a model by previously observed data
and predicting future observations. Therefore, a time series
problem can be viewed as a supervised machine learning
problem: the previous measurement is used as an input to
predict the next outcome.

In order to use time series prediction models, it is necessary
to remove temporal dependency structures like trend and
seasonal fluctuations from the data i.e., convert any non-
stationary series to a stationary series. The model which
describes non-stationary data will have a variance in its
accuracy at different time-steps (training a model on time
series with trend and seasonal fluctuations are possible, but it
leads to degraded performance). Since in this study, LWIPM
is not stationary, as seen in Figure 6, first we need to convert
the data to stationary series by using difference transformation
technique. This technique for a given interval subtracts the
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value at the interval from the current time-stamps and the
number of times the differencing should be performed is
defined by difference order. Difference order of 1 is used to
de-trend the time series. For removing seasonality, we use
power spectrum estimates in the form of periodograms which
are generated using Welch method. The result for channel 15
is shown in Figure 4 where the signal is converted from the
time domain to the frequency domain. The difference order
is selected based on the frequency, which shows high power
spectral density.

E. Power Spectral Density

To visualise and interpret the seasonal component in the
data, we visualize PSD of the series. PSD function is used to
see the power of variations in the given data as a function of
frequency. As seen in Equation (1),

F{r(t)} = |X(!)|2 ⇠ PSD

r(t) = x(t) ⇥ x(�t)
(1)

PSD |X(!)|2 is Discrete Fourier Transformation (DFT)
and F{r(t)} shows power distribution for the given time
series or an auto-correlation sequence r(t) as defined by
Equation (1). One of the methods to visualize power spectrum
is Periodogram [19]. For a given periodic signal, it takes
samples from X(!) for a consecutive length and obtains
estimations by taking DFT to obtain its coefficient x̂(!). The
periodogram is generated by using a quantity proportional to
the square of the coefficient and divided by that length.

Sxx(!) = lim
L!1

1
L

h
|x̂(!)|2

i
(2)

As seen in Equation (2), when the length L approaches
infinity for power spectral density Sxx, periodogram’s disad-
vantage is highlighted. The variance at a particular frequency
does not decrease with the increment in the number of samples
used in the computation. It becomes almost equal to the square
of the power spectrum at a given frequency, and thus, it
is an inconsistent estimator. Here, Welch method is used as
an improvement over Bartlett’s method [20] for reducing the
variance in the periodogram.

TABLE I
MODEL PARAMETERS

Parameter Value

Epochs 20
Batch size 80
Input dimension 5
Hidden layer nodes 20
Difference order 30

1) Model Description: A well-known approach to tune the
hyperparameters of a machine learning model is grid search. It
is a brute-force search in a subset of possible candidates for
each hyperparameter. For our experiment, we selected four
hyperparameters to tune with the grid search.

1) Epochs: One forward and backward pass of the training
data through the entire network.

2) Batch size: Determines the portion of training data to
pass through one epoch.

3) Input dimension: Number of nodes in input layer of
our neural network.

4) Hidden layer nodes: Number of nodes in the hidden
layer.

The difference order whose optimal value we found by
employing Welch method. The optimal hyperparameters found
during grid search are listed in Table I.

Adam optimizer is used to update network weights and
Rectified Linear Unit (ReLU) employed as an activation
function of the LSTM model. To calculate the loss function
we used Root Mean Squared Error (RMSE). ReLU has an
advantage of lower training time and better generalization over
sigmoid and tanh activation functions due to its gradient
characteristic. The LSTM network is trained for 20 epochs
with the batch size of 80. For test and training dataset, approx-
imately 64,000 samples recorded in an office environment.
Figure 5 illustrates the changes in loss function during each
epoch. Figure 5 shows the loss function has a clear decreasing
trend, indicating the model is in the process of learning.
However, the decreasing trend changes to a steady pattern
after epoch 20. This means the increase in the training process
will not lead to a decline in the loss function. It also justifies
the optimal number of epochs (20 epochs) we selected using
grid search (see Table I). Figure 7 explains the structure of
the proposed LSTM model. To implement the LWIPM, we
used Python and the Keras library.

IV. RESULT AND DISCUSSION

In this section, we evaluate the performance of LWIPM.
In addition, we implemented an Auto Regressive Integrated
Moving Average (ARIMA) [21] algorithm as a baseline for
comparison. We used the seasonal variant of ARIMA and
tuned the hyperparameters using grid search and fit the model
to our respective datasets. The ARIMA, together with the
experimental dataset as a reference, enables us to compare
LWIPM performance with competitive prediction algorithms
and reality. The RMSE based evaluation of our proposed
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model for BLE channels 15 and 38 are also shown along with
plots in Figure 9. From the recorded experimental dataset, we
randomly select multiple data chunks.

The number of samples for each selected chunk is random
as well. We split the selected part into training and test set,
taking care of the sequence to evaluate model performance for
various conditions. After training the model with the training
set, we validated the prediction on the data samples by com-
paring the actual data in the test set with the corresponding
prediction values. This results in a sliding training/validation
window in time. Figure 8 shows the validation results. We
used RMSE in Equation (3) factor as the evaluation metric.
The RMSE error here is the difference between the actual
and predicted values. It is denoted by ŷi � yi, where yi is the

actual value for the ith sample and ŷi is the predicted value.

RMSE =

vuut 1

n

nX

i=1

✓
ŷj � yi

�i

◆2

(3)

All the 10 subplots in Figure 9 with their respective RMSE
results confirm that the proposed LSTM based LWIPM is able
to outperform the ARIMA for both the channels on every
train and test sets. In general, due to the uncertainty in Wi-Fi
interference behaviour, developing an impeccable algorithm
prediction time series model is challenging. Additionally, it is
difficult to distinguish if the time series has stochastic state,
deterministic chaotic behaviour, or a combination of both [22].
Thus, it is pertinent to perform time series analysis instead of
just forecasting. Removing temporal dependency structures is
another major factor in increasing the quality of the forecast.
Current complex machine learning models can memorize the
training set [23], which can lead to estimator even modeling
the interference in the data which poorly generalizes to unseen
data, which is also known as over-fitting. In Figure 9, it is
clear that, while the LSTM and ARIMA models are acting
similarly in the low variation scenarios such as Figure 9(b), the
performance benefits of the model over the baseline is evident
in fluctuation scenarios. Specifically, this can be noticed in
Figure 9(a) and Figure 9(i) where ARIMA fails to predict the
high fluctuation, but the LSTM model matches the dataset
trend more accurately. Similarly, the higher accuracy of the
model over the ARIMA model is evident in Figure 9(c) and
Figure 9(e). Overall, the results validate the functionality of
the proposed model to detect the Wi-Fi interference.

V. CONCLUSION

In this paper, we studied the characteristics of wireless
channels in IoT. We focused on BLE’s channels 15 and
38 and developed a LSTM based LWIPM to forecast the
Wi-Fi interference level resulting in opportunistic using of
the wireless spectrum. The results of the study show that
making the time series stationary by incorporating a proper
seasonal parameter order can improve the prediction quality.
In addition, LWIPM does not suffer from the drawbacks
associated with deep learning in CR. For example, deep
learning approaches require a large size of samples, high
processing power due to the algorithm complexity, and ex-
tended processing time. These challenges not only make the
deep learning algorithms inoperable for resource constrained
IoT devices but also does not meet the real-time decision-
making requirements for highly dynamic Wi-Fi interference.
As a result, simplicity, together with accuracy is the main
advantage of LWIPM over deep learning algorithms.

For future work, it is interesting to develop mobility and
network-aware channel prediction models. For example, ex-
cluding the interference effect caused by a mobile Wi-Fi
device from the training process in machine learning may
result in higher accuracy.
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