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Abstract—The broad deployment of 802.11 (a.k.a., WiFi) access
points and the significant energy-efficiency improvement of 802.11
transceivers have resulted in increasing interest in building 802.11-
based IoT systems. Unfortunately, the power saving mechanisms of
802.11 fall short when used in IoT applications, especially because
they do not take into account the delays caused by various factors
such as buffering, interference, and round-trip delay. In this paper, we
present edge-assisted predictive sleep scheduling (EAPS) to adjust the
sleep duration of stations while they are expecting downlink packets. We
first implement a Linux-based access point that enables us to collect
parameters affecting communication latency. Using this access point,
we build a testbed that, in addition to offering traffic pattern customiza-
tion, replicates the characteristics of real-world environments. We then
use multiple machine learning algorithms to predict downlink packet
delivery. Our empirical evaluations confirm that with EAPS the energy
consumption of IoT stations is as low as PSM, whereas the delay of
packet delivery is close to the case where the station is always awake.

Index Terms—Energy Efficiency, Delay, Wireless Communication, Ma-
chine Learning, Edge Computing.

1 INTRODUCTION

Nowadays, in addition to regular user devices such as lap-
tops, phones, and tablets, many IoT devices such as security
cameras, smart locks, and medical devices rely on the 802.11
standard. Several reasons support the importance of this
standard for IoT applications: First, compared to 802.15.4
and BLE, the 802.11 standard offers higher data rates, and
compared to cellular communication, 802.11 operates in un-
licensed bands. In addition to reducing costs, these features
are particularly useful in domains such as video surveil-
lance, industrial control, and medical monitoring, where
high bandwidth is necessary. Second, 802.11 base stations—
known as Access Points (APs)—are broadly deployed in
various environments and provide an infrastructure for
IoT connectivity. Third, the power consumption of 802.11
transceivers has been considerably reduced during the past
decade by introducing various power-save mechanisms and
developing low-power RF transceiver technologies such as
power gating and clock gating [1]–[3]. Nowadays, 802.11-
based IoT devices are prevalent in the market, such as Ring
security camera and doorbell, Nest security camera, Schlage
locks, and LIFX light bulbs, to mention a few. Nevertheless,
achieving both energy efficiency and timeliness using the

802.11 standards is more challenging compared to 802.15.4
and BLE. Specifically, 802.15.4 and BLE are used in scenarios
where the properties of data flows are known (e.g., Wire-
lessHART), or when the data exchange size is small and
sporadic (e.g., Nest BLE temperature sensors). In contrast,
for example, in a smart home scenario, an increasing num-
ber of devices share a wireless infrastructure to dynamically
exchange various types of flows such as voice, video, and
background.

The 802.11 standard offers multiple power-saving mech-
anisms to support energy-constrained stations. Power Save
Mode (PSM) enables the stations to wake up periodically
and check if the AP has any buffered packet(s) for them.
The AP periodically broadcasts beacon packets at a cer-
tain interval, called Beacon Interval (BI), to inform the
stations about their buffered packets. Stations send PS-Poll
packet to the AP to request downlink delivery. PSM signif-
icantly increases communication delay because stations can
only receive downlink packets after each beacon instance.
The delay problem further exacerbates with the concur-
rent transmission of PS-Poll packets and the accumulation
of downlink packets after each beacon instance [4], [5].
To reduce communication delay with AP, Adaptive PSM
(APSM) requires a station waiting for downlink packets to
stay awake for a tail time duration (e.g., 10 ms [1]) after
each packet exchange [6]. The tail time may cause idle
listening and energy waste, especially if the delay between
uplink and downlink delivery is longer than tail time.
Another enhancement of PSM is Automatic Power Save
Delivery (APSD), which is available in 802.11n, ac, and ax.
APSD allows stations to request downlink packet delivery
by sending NULL packets to the AP [7]. A new power-
saving mechanism introduced in 802.11ax is Target Wake-up
Time (TWT), which was primarily introduced in 802.11ah
for low-power IoT communication. Using TWT, pairwise
agreements between AP and stations can be established,
and stations are allowed to skip receiving beacon packets.
To further reduce the overhead of periodic wake-ups, the
new 802.11ba standard specifies the addition of a low-power
Wake-up Radio (WUR) [8], [9]. The primary radio only
wakes up when the station receives a command over the
WUR or when the station needs to perform uplink trans-
mission. Although these power-saving mechanisms allow
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stations to reduce their energy consumption significantly,
they do not consider the effect of communication delays
caused by buffering, interference, channel access method,
and traffic category.

Many IoT applications require the transmission of uplink
reports by station and reception of commands from a server.
For example, consider a sample medical application where
an IoT device reports an event and expects to receive ac-
tuation commands in return. Another example is a security
camera that transfers an image whenever motion is detected
and waits for a command to stream video if a particular
object is detected. After the transmission of uplink packet(s),
the IoT station has five options before receiving downlink
packet(s):
– (i) use Continuously Active Mode (CAM),
– (ii) use PSM and return to sleep mode and wake up

during the next beacon period,
– (iii) use APSM and stay in awake mode for a short time

duration,
– (iv) use APSD or TWT and periodically check if the

downlink packet has arrived,
– (v) use APSD or TWT and wake up when the downlink

packet is about to be delivered.
Case (i) minimizes delay but does not offer any power effi-
ciency. Case (ii) causes long end-to-end delays [10], [11] be-
cause the station has to wait until the next beacon instance,
even if the actual downlink delivery delay is less than the
time remaining until the next beacon. Besides, the delay
considerably increases when the station and server need
to complete multiple rounds of packet exchange to make a
decision1. Case (iii) is effective if the delivery delay is short;
otherwise, this case results in power waste in tail time. Case
(iv) results in periodic wakeups and unnecessarily increases
channel access contention. Therefore, none of these cases
are suitable for applications where both delay and energy
efficiency are the essential performance metrics. Applying
case (v) requires an accurate estimation of the delay between
uplink and downlink packets. This delay is composed of the
following components: First, the uplink packet received
over the wireless interface must be sent over the wired
interface. The second component is the interval between
the instance the packet leaves the AP until a response is
received from the server. Third, once the reply is received,
the packet must compete with other downlink packets
and be delivered to the station in awake mode. In this
paper, we show that computing the third delay component
is particularly challenging because it depends on various
factors, including channel utilization, the intensity of uplink
and downlink communication, access category of packets,
and AP’s buffer status. This is also verified by the recent
studies that show the delay experienced at AP is more than
60% of the total communication delay between a station
and server [13], [14]. Besides, the buffering mechanisms
employed in Linux’s queuing discipline (qdisc) and wireless
driver further complicate the modeling and prediction of
these delay components [14]–[17]. For example, Intel’s IWL
and Qualcomm’s ath9k and ath10k drivers perform packet

1. Considering user interactions, studies show that every 10 ms
increase in network access results in a 1000 ms increase in page load
time [12].

scheduling; however, these algorithms are heuristically de-
signed by vendors—further complicating delay estimations.

In this paper, we propose a novel mechanism called edge-
assisted predictive sleep scheduling (EAPS) to reduce the idle
listening time and energy consumption of stations when
waiting for downlink packets. At a high level, EAPS works
as follows: Once an uplink packet is received from an
IoT station, the delivery delay is computed using machine
learning techniques. The estimated delay is then conveyed
to the station using a high-priority data-plane queue. The
station then switches into sleep mode and wakes up at the
scheduled time to retrieve downlink packet.

This paper introduces the following contributions: First,
we present the implementation of a Linux-based AP with
new and modified kernel and user-space modules to keep
track of the system operation in terms of parameters such
as incoming and outgoing transmissions, buffer status, and
channel utilization. Second, we introduce multiple traffic
characterization methods. Using the modified AP, we build
a configurable testbed that allows us to generate various
traffic patterns similar to real-world deployments. Third, the
information collected across the 802.11 stack is conveyed
into a user-space module to estimate the delay components.
We focus on wired-to-wireless switching delays and their
prediction using various machine learning algorithms under
different traffic scenarios. EAPS runs at network edge to en-
sure quick sleep schedule computation, which implies that
all the necessary computations to calculate sleep schedules
are performed by AP to avoid any additional processing
overhead on resource-constrained IoT stations. Therefore,
regardless of the IoT station’s processor type, EAPS can
be employed by any 802.11-based IoT devices. Fourth, we
perform an empirical evaluation of delay prediction and
its impact on energy efficiency and timeliness in scenar-
ios where IoT stations communicate with cloud and edge
servers. In terms of delay, EAPS outperforms PSM by 45%
in the cloud scenario and by 84% in the edge scenario. The
energy consumption of EAPS is 26% lower in the cloud
scenario and 6% in the edge scenario, compared to PSM.
In the edge scenario, the delay of EAPS is close to that of
APSM, while its energy efficiency is improved by 37%. In the
cloud scenario, EAPS improves delay and energy efficiency
by 41% and 46%, respectively, compared to APSM.

The rest of this paper is organized as follows. We
overview the related work in Section 2. We present delay
components and implementation details of the AP in Section
3. We present the edge-assisted sleep scheduling mechanism
in Section 4. Section 5 presents empirical performance eval-
uations. Section 7 concludes the paper.

2 RELATED WORK

Peck et al. [18] propose PSM with adaptive wake-up (PSM-
AW), which includes a metric called PSM penalty to enable
the stations to establish their desired energy-delay tradeoff.
The authors define server delay as the total delay between
sending a request to a server and receiving a reply. Based
on Round-Trip Time (RTT) variations, the sleep duration is
dynamically adjusted to satisfy the desired tradeoff. Also,
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the size of the history window of server variations is dynam-
ically tuned based on the range of server delay variations.
Compared to our work, PSM-AW [18] only considers AP-
server RTT, thereby ignoring the variable and long impact
of downlink wireless communication delay. Besides, since
RTT sampling and averaging are performed by stations,
it adds additional load on resource-constrained stations.
Furthermore, delay estimation is directly affected by station-
server communication, and estimation accuracy drops as
the interval between transactions increases. In contrast, our
work does not impose overhead on stations, and once a
model is trained, it does not rely on ongoing communication
to compute sleep schedules. Jang et al. [6] proposed an
adaptive tail time adjustment mechanism by relying on
inter-packet arrival delays. A moving average scheme is
used to predict inter-packet arrival delay when a burst
of packets arrives at a station. The station stays in the
awake mode if the next packet arrival time is before the
tail time expiry. If packet delivery is after the expiry, the
station may extend its tail time based on the outcome of
an energy-delay tradeoff model. In contrast to our work,
neither [18] nor [6] considers the impact of buffering and
channel access delay as variable, essential components of
downlink delivery delay. Furthermore, the effectiveness of
these approaches highly depends on the burst length and
variability of end-to-end delays. Specifically, the moving av-
erage scheme employed in [6] would not be effective in IoT
scenarios where most of the bursts are short-lived. Sui et al.
[19] propose WiFiSeer, a centralized decision-making system
to help stations choose the AP providing the shortest delay.
WiFiSeer works in two phases: During the learning phase,
a set of parameters (such as RSSI, RTT) are pulled every
minute from all APs using SNMP. Then a random forest
model is trained to generate a two-class learning model
for classifying APs into high latency and low latency. A
user agent installed on smartphones communicates with the
controller and associates the station with the recommended
AP. WiFiSeer is vertical to our solution to further reduce
station-AP delay.

Jang et al. [20] study the overhead of radio switching
and show that stations can achieve significant energy saving
during inter-frame delays while the AP is communicating
with other stations. The proposed AP-driven approach,
called Snooze, utilizes the global knowledge of the AP to
schedule sleep and awake duration of each station based
on inter-packet delays and traffic load of the station. To
distribute the schedule, the AP needs to exchange control
messages with stations. Compared to Snooze, our work
considers the sensing-actuation pattern of IoT applications
and reduces the idle listening time between sensing and
actuation. In addition, our work takes into account the
impact of interference by measuring channel utilization
perceived by the AP. Also, Snooze does not benefit from
APSD. Sheth and Dezfouli [21] propose Wiotap, an AP-based
packet scheduling mechanism for IoT stations that employ
APSM. This mechanism uses an Earliest Deadline First
(EDF) scheduling strategy to maximize the chance of packet
delivery before tail time expiry. Rozner et al. [10] propose
NAPman, which prioritizes the delivery of PSM traffic as
long as other stations are not affected. Tozlu et al. [3] show
that increasing AP load has a higher impact on packet loss

Buffering

Station AP Server

UL Data Packet(s) t1t2
t3

t4
t5

t6

DL Data Packet(s)
UL NULL Packet

Sleep

t7

Buffering

�a
<latexit sha1_base64="dnAzV8EjjEh7TK8kIJHuPj/Nj0w=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUCabTbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTlLVoIhLVDVAzwSVrGW4E66aKYRwI1gnGtzO/88SU5ol8MJOU+TEOJY84RWOlx37IhMFBjtNBtebW3TnIKvEKUoMCzUH1qx8mNIuZNFSg1j3PTY2fozKcCjat9DPNUqRjHLKepRJjpv18fvGUnFklJFGibElD5urviRxjrSdxYDtjNCO97M3E/7xeZqJrP+cyzQyTdLEoygQxCZm9T0KuGDViYglSxe2thI5QITU2pIoNwVt+eZW0L+qeW/fuL2uNmyKOMpzAKZyDB1fQgDtoQgsoSHiGV3hztPPivDsfi9aSU8wcwx84nz/MaZD8</latexit><latexit sha1_base64="dnAzV8EjjEh7TK8kIJHuPj/Nj0w=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUCabTbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTlLVoIhLVDVAzwSVrGW4E66aKYRwI1gnGtzO/88SU5ol8MJOU+TEOJY84RWOlx37IhMFBjtNBtebW3TnIKvEKUoMCzUH1qx8mNIuZNFSg1j3PTY2fozKcCjat9DPNUqRjHLKepRJjpv18fvGUnFklJFGibElD5urviRxjrSdxYDtjNCO97M3E/7xeZqJrP+cyzQyTdLEoygQxCZm9T0KuGDViYglSxe2thI5QITU2pIoNwVt+eZW0L+qeW/fuL2uNmyKOMpzAKZyDB1fQgDtoQgsoSHiGV3hztPPivDsfi9aSU8wcwx84nz/MaZD8</latexit><latexit sha1_base64="dnAzV8EjjEh7TK8kIJHuPj/Nj0w=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUCabTbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTlLVoIhLVDVAzwSVrGW4E66aKYRwI1gnGtzO/88SU5ol8MJOU+TEOJY84RWOlx37IhMFBjtNBtebW3TnIKvEKUoMCzUH1qx8mNIuZNFSg1j3PTY2fozKcCjat9DPNUqRjHLKepRJjpv18fvGUnFklJFGibElD5urviRxjrSdxYDtjNCO97M3E/7xeZqJrP+cyzQyTdLEoygQxCZm9T0KuGDViYglSxe2thI5QITU2pIoNwVt+eZW0L+qeW/fuL2uNmyKOMpzAKZyDB1fQgDtoQgsoSHiGV3hztPPivDsfi9aSU8wcwx84nz/MaZD8</latexit><latexit sha1_base64="dnAzV8EjjEh7TK8kIJHuPj/Nj0w=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUCabTbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTlLVoIhLVDVAzwSVrGW4E66aKYRwI1gnGtzO/88SU5ol8MJOU+TEOJY84RWOlx37IhMFBjtNBtebW3TnIKvEKUoMCzUH1qx8mNIuZNFSg1j3PTY2fozKcCjat9DPNUqRjHLKepRJjpv18fvGUnFklJFGibElD5urviRxjrSdxYDtjNCO97M3E/7xeZqJrP+cyzQyTdLEoygQxCZm9T0KuGDViYglSxe2thI5QITU2pIoNwVt+eZW0L+qeW/fuL2uNmyKOMpzAKZyDB1fQgDtoQgsoSHiGV3hztPPivDsfi9aSU8wcwx84nz/MaZD8</latexit>

�b
<latexit sha1_base64="V7liIK87k8vh42VTBVtIlkvz+Xs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuBtRwKRRvoUDJu6nmNA4k7wTj25nfeeLaiEQ94CTlfkyHSkSCUbTSYz/kEukgD6aDas2tu3OQVeIVpAYFmoPqVz9MWBZzhUxSY3qem6KfU42CST6t9DPDU8rGdMh7lioac+Pn84un5MwqIYkSbUshmau/J3IaGzOJA9sZUxyZZW8m/uf1Moyu/VyoNEOu2GJRlEmCCZm9T0KhOUM5sYQyLeythI2opgxtSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwUPAMr/DmGOfFeXc+Fq0lp5g5hj9wPn8Aze6Q/Q==</latexit><latexit sha1_base64="V7liIK87k8vh42VTBVtIlkvz+Xs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuBtRwKRRvoUDJu6nmNA4k7wTj25nfeeLaiEQ94CTlfkyHSkSCUbTSYz/kEukgD6aDas2tu3OQVeIVpAYFmoPqVz9MWBZzhUxSY3qem6KfU42CST6t9DPDU8rGdMh7lioac+Pn84un5MwqIYkSbUshmau/J3IaGzOJA9sZUxyZZW8m/uf1Moyu/VyoNEOu2GJRlEmCCZm9T0KhOUM5sYQyLeythI2opgxtSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwUPAMr/DmGOfFeXc+Fq0lp5g5hj9wPn8Aze6Q/Q==</latexit><latexit sha1_base64="V7liIK87k8vh42VTBVtIlkvz+Xs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuBtRwKRRvoUDJu6nmNA4k7wTj25nfeeLaiEQ94CTlfkyHSkSCUbTSYz/kEukgD6aDas2tu3OQVeIVpAYFmoPqVz9MWBZzhUxSY3qem6KfU42CST6t9DPDU8rGdMh7lioac+Pn84un5MwqIYkSbUshmau/J3IaGzOJA9sZUxyZZW8m/uf1Moyu/VyoNEOu2GJRlEmCCZm9T0KhOUM5sYQyLeythI2opgxtSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwUPAMr/DmGOfFeXc+Fq0lp5g5hj9wPn8Aze6Q/Q==</latexit><latexit sha1_base64="V7liIK87k8vh42VTBVtIlkvz+Xs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabTbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpxlsskYnuBtRwKRRvoUDJu6nmNA4k7wTj25nfeeLaiEQ94CTlfkyHSkSCUbTSYz/kEukgD6aDas2tu3OQVeIVpAYFmoPqVz9MWBZzhUxSY3qem6KfU42CST6t9DPDU8rGdMh7lioac+Pn84un5MwqIYkSbUshmau/J3IaGzOJA9sZUxyZZW8m/uf1Moyu/VyoNEOu2GJRlEmCCZm9T0KhOUM5sYQyLeythI2opgxtSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwUPAMr/DmGOfFeXc+Fq0lp5g5hj9wPn8Aze6Q/Q==</latexit>

�c
<latexit sha1_base64="V7HOGNseAmpoZVQkrZ4t7w9x7K8=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3A2ZACgUtFCihm2pgcSChE4xvZ37nCbQRiXrASQp+zIZKRIIztNJjPwSJbJDz6aBac+vuHHSVeAWpkQLNQfWrHyY8i0Ehl8yYnuem6OdMo+ASppV+ZiBlfMyG0LNUsRiMn88vntIzq4Q0SrQthXSu/p7IWWzMJA5sZ8xwZJa9mfif18swuvZzodIMQfHFoiiTFBM6e5+GQgNHObGEcS3srZSPmGYcbUgVG4K3/PIqaV/UPbfu3V/WGjdFHGVyQk7JOfHIFWmQO9IkLcKJIs/klbw5xnlx3p2PRWvJKWaOyR84nz/Pc5D+</latexit><latexit sha1_base64="V7HOGNseAmpoZVQkrZ4t7w9x7K8=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3A2ZACgUtFCihm2pgcSChE4xvZ37nCbQRiXrASQp+zIZKRIIztNJjPwSJbJDz6aBac+vuHHSVeAWpkQLNQfWrHyY8i0Ehl8yYnuem6OdMo+ASppV+ZiBlfMyG0LNUsRiMn88vntIzq4Q0SrQthXSu/p7IWWzMJA5sZ8xwZJa9mfif18swuvZzodIMQfHFoiiTFBM6e5+GQgNHObGEcS3srZSPmGYcbUgVG4K3/PIqaV/UPbfu3V/WGjdFHGVyQk7JOfHIFWmQO9IkLcKJIs/klbw5xnlx3p2PRWvJKWaOyR84nz/Pc5D+</latexit><latexit sha1_base64="V7HOGNseAmpoZVQkrZ4t7w9x7K8=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3A2ZACgUtFCihm2pgcSChE4xvZ37nCbQRiXrASQp+zIZKRIIztNJjPwSJbJDz6aBac+vuHHSVeAWpkQLNQfWrHyY8i0Ehl8yYnuem6OdMo+ASppV+ZiBlfMyG0LNUsRiMn88vntIzq4Q0SrQthXSu/p7IWWzMJA5sZ8xwZJa9mfif18swuvZzodIMQfHFoiiTFBM6e5+GQgNHObGEcS3srZSPmGYcbUgVG4K3/PIqaV/UPbfu3V/WGjdFHGVyQk7JOfHIFWmQO9IkLcKJIs/klbw5xnlx3p2PRWvJKWaOyR84nz/Pc5D+</latexit><latexit sha1_base64="V7HOGNseAmpoZVQkrZ4t7w9x7K8=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3A2ZACgUtFCihm2pgcSChE4xvZ37nCbQRiXrASQp+zIZKRIIztNJjPwSJbJDz6aBac+vuHHSVeAWpkQLNQfWrHyY8i0Ehl8yYnuem6OdMo+ASppV+ZiBlfMyG0LNUsRiMn88vntIzq4Q0SrQthXSu/p7IWWzMJA5sZ8xwZJa9mfif18swuvZzodIMQfHFoiiTFBM6e5+GQgNHObGEcS3srZSPmGYcbUgVG4K3/PIqaV/UPbfu3V/WGjdFHGVyQk7JOfHIFWmQO9IkLcKJIs/klbw5xnlx3p2PRWvJKWaOyR84nz/Pc5D+</latexit>

DL Control Packet

t8

�

<latexit sha1_base64="+VKucry2xu1d47EVc67mAsjeu4o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS0WPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9SImkPTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJ66Lq16qX97VK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AJQkjyQ=</latexit>

Fig. 1. The end-to-end delay components between a station and a
server. The prediction of δc is particularly challenging because it is
affected by several factors such as traffic rate, channel utilization, and
buffering mechanisms employed by Linux’s qdisc and wireless NIC’s
driver.

and RTT, compared to out-of-band interference. Pei et al.
[13] demonstrate that station-AP link delay comprises more
than 60% of station-server RTT. They also show that more
than 50% of packets experience a delay longer than 20 ms
over station-AP links. This delay is longer than 100 ms for
10% of packets. For TCP traffic, the authors proposed an
approach to measure the delay of wired latency as well
as uplink and downlink channel access delay. Using the
Kendall correlation, they also show that channel utilization,
RSSI, and retry rate are the top three factors affecting station-
AP delay. They used a decision tree model to tune the
parameters of APs and reduce the overall delay experienced
by stations. This is in contrast to our work, which offers
per-station and fine-grained sleep scheduling. Primarily de-
signed for VoIP traffic, Liu et al. [22] propose a mechanism
to reduce contention among stations waking up using APSD
to retrieve packets from the AP. After receiving a burst of
voice data, the station measures the tolerable deadline of
incoming packets and informs the AP about its wake up
time before switching to sleep mode. The wake-up instance
is approved only if the AP will be idle when the station
wakes up.

3 DELAY ANALYSIS AND AP DEVELOPMENT

3.1 Delay Components

As Figure 1 shows, at time t1 the station grasps the channel
and transmits its uplink packet. This uplink packet may
represent a single uplink packet sent by the station or the
last packet of a burst of uplink packets. After this, the station
waits to receive downlink packet(s) from the AP. We refer
to the process of uplink and downlink packet exchange
as a transaction. In event-driven applications, the downlink
packet is usually a command message issued by a server in
response to the message sent by the station. As discussed
in §1, multiple power saving strategies can be used by
the station to save power while waiting for the downlink
packet. The goal of this paper is to inform the station about
the delivery time of downlink packet. Therefore, we enable
the station to switch to sleep mode and wake up when the
downlink delivery is about to happen.

To reduce the waiting time for downlink packet delivery,
the station transitions into sleep mode after the reception
of a control packet at t2 and wakes up at t7 to request and
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Fig. 2. The AP architecture developed and used in this paper. The
Collector module communicates with various kernel and user-space
components to collect a set of features required for delay prediction.
The Scheduler estimates the sleep duration and conveys it to the
station. This figure primarily focuses on the wired-to-wireless interfaces
path to compute δc. Some of the modules required to collect other delay
components (δa and δb) are not included in this figure.

receive the downlink packet. The sleep duration is conveyed
to the station by the AP through a control packet sent at t2.
Therefore, we need to estimate the delay between t1 to t7.
To this end, we first modify a Linux-based AP.

3.2 AP Development

The current AP architectures do not provide the necessary
tools to collect and apply predictive scheduling [23]. In this
section, we present an AP architecture that allows us to col-
lect the features necessary for predictive scheduling. Figure
2 presents the modules we developed on a Linux-based AP.
The user-space components of the AP are Collector and
Scheduler. The Collector is responsible for collecting
all the features required to predict delay. This information
is then shared with and used by the Scheduler to train a
model, estimate the sleep duration, and dispatch the sched-
ule. The information collected by the Collector is stored
in the physical memory (using mmap) to reduce data access
delay. The Collector module includes the following mod-
ules: The Sniffer module utilizes the libpcap library to
capture the timestamp of packets as soon as they are sent or
received by the wireless NIC. The NetMon module records
packet exchange instances over the wired interface as well
as incoming data rate over this interface. The NetQMon and
MACQMon are responsible for keeping track of the utilization
of qdisc and MAC layer queues, respectively. The ChUMon
module captures channel utilization.

To perform the standard AP functionalities, we use
hostapd [24], which is a user-space daemon that han-
dles beacon transmission, authentication, and association
of stations. The underlying hardware includes an Atheros
AR9462 wireless NIC, ath9k driver, a Core i3 processor, and
8 GB of RAM. The AP operates in 802.11n mode, uses two
antennas, and supports up to 144 Mbps. We explain the
implementation detail of the AP in the next three sections.

3.3 Communication Delay Between AP and Server
Once the AP receives an uplink packet, it is stored in the
qdisc of wired interface, then the packet is sent over the
wired interface. The qdisc is the scheduling mechanism
employed by the kernel to schedule the transmission of
packets while switching them between two interfaces. This
buffering delay, denoted as δa = t3 − t1, depends on the
difference between the rate of incoming wireless uplink
packets (destined to the wired interface) and the rate of
transmitting these packets over the wired interface. The
primary types of networks considered in this paper are
smart home environments where an AP is connected to an
Internet modem, and campus and business deployments
where APs communicate via an Ethernet infrastructure.
In such networks, the speed of APss’ wired interface is
fixed and usually higher than the wireless interface. This
are reasonable assumptions because: First, in enterprise
environments, APs are connected to switches via Ethernet
links supporting at least 1 Gbps. This may also be true
in a residential environment where the AP is connected
to a local processing server through Ethernet [25]. For
residential environments, also, cable modems and fiber-to-
the-home (FTTH) provide data rates higher than wireless.
Second, the uplink speed between a home modem and an
Internet provider is fixed. For example, DOCSIS employs a
combination of TDMA and CDMA for deterministic channel
access.

Based on these observations, we estimate δa, denoted
as δ′a, by using the number of packets currently in the
qdisc of wired interface (not shown in Figure 2). We have
modified the qdisc module to communicate the number
of packets in this buffer with NetMon. For each packet pi
in qdisc, the Scheduler computes ψ(pi) = 8 × (s(pi) +
hmac + hphy)/lwired

out , where ψ(pi) is the time required to
transmit pi, s(pi) is the packet size (bytes), hmac is the
MAC header size (bytes), hphy is the physical header size
(bytes), and lwired

out is the transmission bit rate supported by
the wired link. The switching delay is therefore computed
as δ′a =

∑
∀pi∈qdisc ψ(pi).

The delivery delay between the AP and the server, i.e.,
t4− t3 and t6− t5, depend on various factors and primarily
on the number of hops between these two nodes. Based on
this number, we consider edge and cloud computing scenar-
ios. Edge computing is employed in latency-sensitive and
mission-critical applications to minimize the latency and
overhead of communication over the wired network [26]. In
the cloud computing scenario, the server is located at least
a few hops away from the AP. For both cases, to measure
this delay (denoted as δ′b), we use a moving average, which
is the standard approach used by various protocols such
as TCP to estimate RTT [27], [28]. To this end, we modify
the netfilter [29] kernel module to communicate with
the NetMon module and timestamp t3 as the instance the
packet is sent to the wired NIC, and t6 as the instance the
packet has arrived in the AP.

3.4 AP to Station Delivery Delay
An incoming packet from the wired interface first passes
through ingress driver queues. Subsequently, the packet is
processed by the netfilter module. The packet is then
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queued in the qdisc. Finally, the packets are queued in
the Enhanced Distributed Channel Access (EDCA) queues
inside the wireless NIC’s driver. These packets are served
according to the channel contention parameters specified by
the 802.11e standard. Each driver queue contends (individ-
ually) for channel access before packet transmission.

Here we mainly focus on the delay between the arrival of
a downlink packet through the AP’s wired interface and its
transmission through the wireless interface. This delay is de-
noted as δc = t7 − t6. It is particularly challenging to model
and predict this delay because it is affected by several factors
such as queuing strategy and queue utilization at the qdisc
and MAC layer, channel utilization, number of stations, and
link quality. However, in addition to the high complexity
of buffering mechanisms implemented by wireless drivers
such as ath9k and ath10k [15], [16], the actual operation of
non-open source drivers is not known, which makes it im-
possible to develop a mathematical model of buffering de-
lay. Therefore, we follow a data-driven approach to predict
δc. The predicted value is denoted as δ′c. The Collector
module time stamps the switching delay between the wired
and wireless interfaces. The time of packet arrival from
the downlink transmission is determined by the Sniffer
module, which in turn informs the Collector. During
t6 to t8, the Collector also collects statistics regarding
the status of queues and channel condition. The collected
parameters are explained in the following sections.

3.4.1 Input traffic rate through wired interface

The incoming traffic through wired interface, denoted as
rwired
in (bytes/second), impacts the current and future uti-

lization of wireless interface’s qdisc and driver queues.
Hence, the NetMon module communicates with wired in-
terface’s driver to collect incoming traffic rate.

3.4.2 qdisc queues

Every network interface is assigned a qdisc, which is
pfifo fast by default [14]. This mechanism contains three
bands, and dequeuing from a band only happens when
its upper bands are empty. The PRIO qdisc is a classful
configurable alternative of pfifo fast and enables us to
configure the number of bands. To enqueue the packets of
each Access Category (AC) in its own queue, we imple-
ment four queues in this layer. These queues are denoted
by Q = {qvo, qvi, qbe, qbk}. We have modified the PRIO
kernel module to communicate with the NetQMon module
to collect the number of packets in each qdisc band.

With PRIO qdisc, the queuing delay experienced by a
packet enqueued in the lowest priority queue not only
depends on the current utilization level of that queue, but
also on the number of packets in the higher priority queues.
In addition to the four queues mentioned above, we have
also included an additional queue—called control queue—
that is assigned the highest priority level. We will utilize
this queue in order to implement the highest-priority data
plane used to send the control packet that conveys sleep
schedules to stations. We will explain this packet later. It
is worth mentioning that, although our implementation
utilizes the PRIO qdisc (the default policy used in several
Linux distributions), the concept can easily be extended to

other types of qdiscs, such as Hierarchical Token Bucket
(HTB).

3.4.3 Wireless channel condition
Both interference and channel utilization are the main chan-
nel condition parameters that affect packet transmission de-
lay. The duration and intensity of these parameters depend
on various factors, such as the number of contending sta-
tions and APs, burst size, TXOP, and the transmission power
of nearby stations and APs. Therefore, accounting for the
effect of channel condition through measuring the factors
(mentioned above) would be very challenging. Instead, we
collect three parameters to capture the effect of interference
and channel utilization on the delay of packet transmission.
The first parameter is channel utilization (cu), which refers
to the amount of time the AP or its associated stations are
transmitting. The second parameter is the number of MAC
layer retransmissions (w) performed by the AP to deliver
packets to stations. The third parameter is the channel’s
noise level (cn), which reflects the activity of nearby wire-
less devices (such as other APs and stations, ZigBee, and
Bluetooth devices).

Most 802.11 drivers maintain counters that represent
channel utilization rate. For example, the rate of updating
ch_time_busy reflects channel utilization during a sam-
pling interval. The ChUMon module is responsible to extract
these counters from the driver. We realized that the interval
of obtaining channel utilization impacts measurement accu-
racy. We obtained the peak accuracy, in terms of Kendall’s
correlation coefficient, when the frequency of polling cu is 10
ms. Additionally, the granularity of the measurements also
decreases as we increase the frequency of polling channel
utilization. This is because the counters use millisecond
granularity. For example, if the sampling frequency is 10
ms, the granularity of cu obtained in percentage is 10%.

3.4.4 Driver’s transmission queues
Using Enhanced Distributed Coordination Function
(EDCF), packets arriving at the MAC layer are categorized
and inserted into one of the four queues assigned to
each station inside the driver. The categorization relies
on the IP header’s Type of Service (ToS) field. These
queues are denoted by Q̂ = {q̂vo, q̂vi, q̂be, q̂bk}. Each
queue behaves like a virtual station that contends for
channel access independently. In case of internal collision
between two or more queues, the higher priority queue is
granted the transmission opportunity. The status of these
queues are monitored by the MACQMon module through
communicating with the driver. Considering the size of
these queues allows the prediction models to account
for the effect of packet aggregation and packet bursting.
Specifically, for each AC, packet aggregation is applied
if a station’s queue includes more than one packet. Also,
depending on the AC, a burst of packets may be sent
without contending for the channel on a per-packet basis.

3.4.5 Summary of the features collected
The Scheduler interacts with Collector to gather the
features necessary for delay prediction. In summary, the
developed AP enables us to collect the following features
periodically:
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Cu,Cn,R
wired
in ,W,Qvo,Qvi,Qbe,Qbk,

Q̂vo, Q̂vi, Q̂be, Q̂bk

(1)

where Cu, Cn, R, W, Q, and Q̂, represent the list of
channel utilization values, list of channel noise values, list
of incoming traffic rate values over wired interface, list
of MAC layer downlink retransmission values, list of the
utilization values of qdisc queues (for each AC), and list
of the utilization values of driver queues (for each AC),
respectively. Each list includes periodically collected values.
For example, assuming that each list contains k + 1 values,
list Cu is represented as follows:

Cu = [cu(t′ − k ×∆), cu(t′ − (k − 1)×∆), ...,

cu(t′ −∆), cu(t′)]
(2)

where cu(t′) is the last sampled channel utilization value,
and ∆ refers to sampling interval. In our implementation,
∆ = 10 ms. We did not use a shorter sampling interval
because of the significant increase in processor utilization
(> 30%). Implementing a more efficient AP architecture is a
future work.

In addition to the features collected periodically, we add
two features that are collected once per prediction. First,
since each AC uses its own channel access and Transmit
Opportunity (TXOP) parameters, we include the AC of the
transaction as a feature. Second, we use δ′a + δ′b because the
predicted delay (δ′c) depends on the interval between the
uplink packet and the arrival of downlink packet over the
wired interface. For example, if the server delay is expected
to be 30 ms, the prediction for δc should be made for a
packet that would arrive at the AP in 30 ms.

3.5 Schedule Announcement
When a predicted delay value is computed, the Scheduler
creates a UDP control packet to send the value to the station.
This packet includes δ′a, δ′b, and δ′c, as well as the standard
deviation of prediction error, where each value is encoded
as one byte. The value of each byte reflects duration in mil-
liseconds. This data packet is sent using a dedicated queue
with highest priority. When this control packet reaches the
station at t2, the station immediately transitions into sleep
state for δ′a + δ′b + δ′c − (t2 − t1). Note that the AP shares
the relative wake-up time with the station. Since the AP has
computed wake-up schedule at time t1, the station needs to
measure t2 − t1 and subtract it from the shared value. The
station can simply use a timer to measure t2 − t1.

At the end of the sleep interval, the station wakes up
and informs the AP about its transition into awake mode.
This is achieved by relying on APSD, which is supported
by the state-of-the-art wireless NICs. To this end, at t7 (in
Figure 1), the station wakes up and sends a NULL packet
to the AP, conveying that the station is ready for receiving
a packet. The AP responds by sending one or multiple
downlink packets starting at t8. As per the 802.11e amend-
ment, multiple packets can be sent during a Transmission
Opportunity (TXOP) without having to contend for channel
access. For example, if the traffic belongs to the voice AC,
the AP uses a 1.504 ms slot (as long as packets exists) for
downlink delivery.

b1 b2 b3
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Fig. 3. Traffic characterisation.

4 PREDICTIVE SCHEDULING

In this section, we first present traffic characterization meth-
ods and our testbed setup, which are then used for realistic
traffic generation, model training, and evaluation. We also
discuss the various stages of the statistical learning and
modeling process and empirically study the performance
of multiple machine learning algorithms in terms of delay
prediction accuracy.

4.1 Traffic Generation
As explained in the previous sections, AP modification
is necessary to collect the features required for predictive
scheduling. Also, we need to introduce controlled changes
in the traffic pattern of the environment to study the impact
of these changes on prediction accuracy. Therefore, it is
required to have a testbed that represents the traffic pattern
of real-world environments as well as controllability over
traffic generation parameters. To achieve this, we systemat-
ically characterize and compare the scenarios generated in
our testbed with those collected in real-world environments.

A burst, denoted as bi, is defined as a train of packets in
either UL or DL direction with inter-arrival time less than
a threshold value θ [30]. Resembling 802.11 traffic, Figure
3 illustrates a series of bursts. The duration (in seconds) of
a burst bi is denoted by d(bi). g(bi) refers to the gap (in
seconds) between two consecutive bursts bi and bi+1.

To generate traffic flows representative of various levels
of network dynamics in real-world environments, we have
developed a testbed that includes two types of stations: (i)
stations such as laptops, smartphones, and IoT devices, and
(ii) four Raspberry Pi boards to control traffic generation
pattern. Each RPi runs four threads, where each thread can
be involved in a downlink, uplink, or bidirectional flow.
This enables us to introduce up to 16 additional controlled
flows into the network. The implementation of traffic control
capability is composed of a set of Python scripts that use the
iperf tool under the hood. A central controller is in charge
of setting the parameters of traffic flows. Among the flow
parameters, we can modify AC, transport layer protocol,
packet size, bit rate, burst size, and inter-burst interval. Also,
we note that sharing flow characteristics by consecutive
flows is more likely. To represent this behavior, after each
burst, the controller either repeats the process of traffic
selection or chooses the same parameters for the next burst
based on a variability parameter denoted by ν. Specifically,
a higher value of ν results in a higher dynamicity. Hence,
we use ν = 0.9 to generate high dynamicity (HD) traffic,
and ν = 0.1 to generate less diverse traffic referred to as
normal dynamicity (ND). Also, for voice and video ACs, UDP
is preferred because it is the dominant transport protocol for
real-time traffic.

As demonstrated in [30], capturing network dynamics
can be achieved by focusing on characterizing burstiness.
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Additionally, Xiao et al. [31] characterized a flow as reg-
ularly bursty when the standard deviation of the inter-
burst intervals (g(·) seconds) and burst sizes (s(·) bytes)
are relatively smaller. Otherwise, the flow is characterized
as randomly bursty. However, based on Xiao’s metrics for
burstiness, traffic with fewer bursts per unit time can still
have a high standard deviation of s(·) and g(·). Hence, we
consider burst frequency (i.e., number of bursts per second)
and burst size for calculating traffic burstiness. Additionally,
due to the difference in the scale of those two parameters,
we normalize the burst rate (per second) in the range [0, 1].
We define traffic burstiness, denoted by B, as follows:

B =

(
1− 1

M

)
×
(∑N

i=1 s(bi)

N

)
(3)

where N is the number of bursts in the dataset, s(bi) is
the size of burst bi (in bytes), andM is average number of
bursts per second.

In addition to traffic burstiness, we define another metric
that represents traffic dynamicity based on various aspects
including burst size, burst duration, inter-burst interval, and
the AC of the packets in each burst. This metric, which we
refer to as dynamicity and is denoted by D, is defined as
follows:

D =
1

N

N∑
i=2

|d(bi)−d(bi−1)|
d(bi−1)

g(bi−1)
+

1

N

N∑
i=2

|s(bi)−s(bi−1)|
s(bi−1)

g(bi−1)
+

1

N

N∑
i=2

|p(bi)−p(bi−1)|
p(bi−1)

g(bi−1)
+

1

N

N∑
i=2

z(bi)

g(bi−1)

(4)

where,

z(bi) =
|pvo(bi)− pvo(bi−1)|

pvo(bi−1)
+
|pvi(bi)− pvi(bi−1)|

pvi(bi−1)
+

|pbe(bi)− pbe(bi−1)|
pbe(bi−1)

+
|pbk(bi)− pbk(bi−1)|

pbk(bi−1)

(5)

Here, px(bi) is number of packets belonging to an AC x in a
burst bi. Parameter z(bi) reflects the change in the number
of packets belonging to each AC in each burst compared to
that in the previous burst.

4.2 Data Collection
We use the metrics mentioned above and compare datasets
generated in our testbed against those collected in multiple
real-world environments. Figure 4 presents the results. In
general, we observe that the ND scenario resembles real
traffic. The HD scenario offers higher network dynamics,
which is essential to study the robustness of predictive
scheduling.

When generating data in our testbed, the type of each
transaction is selected from the voice, video, background,
and best-effort ACs with equal probability. The inter-
transaction delays are uniformly distributed between 1 ms
and 500 ms. In addition to the features discussed in §3, we
also collect δa, δb, and δc values per transaction. We split
each dataset, such that 70% of it is used for training and the
remaining 30% is used for validation. We use independent
datasets, referred to as the test datasets, consisting of 10,000

(a) (b)

(c) (d)
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Fig. 4. (a) Standard deviation of burst size, (b) standard deviation of burst
interval, (c) burstiness (B), and (d) dynamicity (D) of traffic generated by
our testbed compared to traffic captured in real-world environments. ND
and HD refer to normal and high dynamicity, respectively.

data points for evaluating the performance and robustness
of each modelling approach in the ND and HD scenarios.

4.3 Data Pre-processing
We focus on delay prediction for δc < 100 ms, for two
reasons: First, considering edge computing scenarios, ob-
serving RTTs more than 100 ms is very unlikely. Second,
almost all commercial APs implement 102.4 ms as their
beaconing period. Therefore, all stations wake up every
102.4 ms to synchronize with AP beacons and check if the
AP has any buffered packets.

The feature set varies in terms of ranges and units. For
example, cu varies from 0 to 100%, whereas cn varies from
−95 to −66 dBm. Since this would result in disproportional
treatment of the features by the machine learning algo-
rithms, we scale each of the features into the range [−1,+1].
Furthermore, the dataset contains more samples (transac-
tions) with delay range [1, 50] ms, compared to samples in
range [50, 100] ms. We under-sample the majority bins to
prevent the algorithms from generalizing the results for the
packets whose actual delay is higher.

4.4 Regression Models
Given the continuous nature of the target variable, we
identify predicting δc as a regression problem. The methods
that we use are Random Forest Regressor (RFR), Gradi-
ent Boosting Regressor (GBR), Extra Trees Regressor (ETR)
and Histogram-Based Gradient Boosting Regressor (HBR),
which are widely-used ensemble learning methods for re-
gression. We also use (deep) neural networks, which are
more effective in areas such as predicting time-series data.

Referring back to Eq. 2, whenever a prediction must
be made, we use: (i) the closest set of features collected
at t′, and (ii) a weighted average of the last k measure-
ments collected before t′. For example, we use cu(t′) and
cu(t̄) =

∑k
i=1 wi × cu(t′ − i × ∆) for channel utilization.

Here, cu(t̄) is called the feature history of channel utilization,
k denotes the length of feature history, and wi refers to the
individual weights assigned to the past feature values such
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that
∑k

i=1 wi = 1. More recent feature values are assigned
larger weights. For example, when k = 2, w1 = 0.75 and
w2 = 0.25. When k > 2, w1 = 0.5 and w2 = 0.25 (i.e.,
half of the remaining weight-budget of 0.5), and this process
continues recursively until all k weights are assigned. With
this method applied to all the features summarized in §3.4.5,
we can capture network dynamics and dependency of the
predictions on previous feature history with models that do
not support back propagation.

In ensemble learning, final prediction can either be cal-
culated by the average of the predictions of the model
trained on random subsets of data (bagging) or calculated
via sequentially training the model using prediction success
on the previous sample of the dataset (boosting). RFR is
an example of the bagging approach and operates by con-
structing several decision trees during training and makes
predictions based on the outputs of the individual trees.
RFR runs efficiently on large and high-dimensional datasets.
GBR is an example of the boosting approach. Each tree out-
puts a prediction value at different splits that can be added
together, allowing subsequent models to modify error in
predictions. HBR is a variant of GBR. Since it is a histogram-
based estimator, HBR can reduce the number of splitting
points by binning input samples, and therefore improves
performance when dealing with large datasets. ETR creates
decision stumps at variable tree depths. The features and
splits are selected randomly, and are less computationally
expensive than other tree-based algorithms.

Neural Networks (NN) have been studied extensively
in the past decade for their efficiency in learning complex
data features for making predictions. Multilayer perceptrons
(MLP) is one such variant of feed-forward neural networks
that does not allow feedback loops, thereby resulting in
data progressing in a single direction over the network from
input to output. One of the biggest drawbacks of using such
a network is its lack of memory, i.e., it treats each instance
of the input time-series independently and predictions are
independent of the history of past inputs to the network.
Recurrent Neural Networks (RNN) are a class of neural
networks in which the predictions are based on the current
and past inputs, and therefore they are suitable for mak-
ing predictions about δc using historical network features.
A specific variant of RNN is Long Short-Term Memory
(LSTM) [32], which is able to track dependencies of output
predictions on input history. The network retains a memory
equal to the number of lookbacks that allow the flow of
information from the previous timesteps [33]. Lookback is
defined as the number of timesteps—transactions in our par-
ticular application—that are unfolded for back-propagation.
Simply put, transaction history is the number of previous
transactions in the temporal domain that aids in predicting
the delay of the current transaction by providing contextual
information.

For the ensemble learning methods, we use scikit-learn
library and tune the hyper parameters using grid search and
a validation dataset to obtain the highest performance on the
training data to avoid over-fitting. For the MLP and LSTM
model, we use Tensorflow and Keras library [34]. Also,
we utilize early stopping mechanism (on the validation
dataset) to prevent over-fitting. The optimal MLP model
contains five dense layers, each consisting of 32, 20, 16, 10,
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Fig. 5. MAE of machine learning algorithms versus the number of sam-
ples (transactions) in training dataset for (a) Normal Dynamicity (ND),
and (b) High Dynamicity (HD) scenarios. Results are averaged over all
ACs. ETR converges the fastest, and LSTM requires up to 3x more data
points compared to ETR.

8 neurons, respectively, and ReLu activation function. The
optimal LSTM model contains one LSTM layer followed by
three dense layers, each consisting of 20 neurons and ReLu
activation function. We use a stateless LSTM model, which
is the default setting in Keras library. Hence, the inputs to
LSTM layer are: (i) hidden cell states that carry information
about previous timesteps (transactions), and (ii) feature
values of the current timestep. Note that the latter input
includes feature values collected at t′ as well as the weighted
average of the past k measurements. The input to the dense
layer (after LSTM layer) is the last hidden state of LSTM
layer. While training both the LSTM and MLP models, we
tested batch sizes from 10 to 1000. We observed that training
duration decreases as the batch size increases. However, we
use the batch size of 100 transactions for evaluating the
models because the models started overfitting with larger
batch sizes. Both the MLP and LSTM models contain an
output layer and were trained using Adam optimizer [35]
with learning rate of 0.01.

4.5 Model Evaluation
We used the test dataset for all evaluations. Figure 5 illus-
trates the Mean Absolute Error (MAE) of δ′c as a function
of the size of training data. For better visibility, we used
Savitzky–Golay filter and also added markers at regular
intervals in Figure 5. We observed that the performance
of ETR converges at the fastest rate, utilizing 15000 and
20000 data points for training under the ND and HD traf-
fic, respectively. Whereas, due to the higher complexity of
neural networks, MLP requires 20000 data points in the ND
scenario and 35000 data points in the HD scenarios. LSTM
requires 30000 data points in the ND and 50000 data points
in the HD scenario, thereby showing slower convergence
compared to MLP. Based on these results, for the rest of
the evaluations presented in this paper, we use the required
number of data points that are needed by each algorithm for
performance convergence.

Figure 6 quantifies the effect of feature history (k in Eq.
2). For all the algorithms, MAE decreases significantly in
both HD and ND scenarios when we include feature history.
This decrease continues up to 30 ms, beyond which it does
not result in performance enhancement. Feature history
helps the model to anticipate features’ trend and accurately
predict δc that would be incurred by the downlink packet
shortly. Therefore, in addition to the most recent record,
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Fig. 6. MAE of machine learning algorithms with respect to feature
history in (a) Normal Dynamicity (ND), and (b) High Dynamicity (HD)
scenarios. Results are averaged over all ACs.
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Fig. 7. MAE of machine learning algorithms versus transaction’s AC in
(a) Normal Dynamicity (ND), and (b) High Dynamicity (HD) scenarios.
MAE of VO and VI packets is lower than BK and BE packets.

we include the weighted average of three preceding feature
values (corresponding to a total of the preceding 40 ms of
feature values) to train the models.

Figure 7 compares the performance of the machine learn-
ing algorithms versus the AC of transactions. Averaged
over all ACs, the MAE (in millisecond) of algorithms in
the ND scenario are: RFR: 1.43, ETR: 1.26, GBR: 1.49, HBR:
1.28, MLP: 1.24, and LSTM: 1.16. For the HD scenarios the
MAE values are: RFR: 2.49, ETR: 2.17, GBR: 2.69, HBR: 2.27,
MLP: 2.12, and LSTM: 2.01. On average for the ND and
HD scenarios, the MAE of LSTM is 14% lower for all ACs,
compared to the average MAE of all the other machine
learning algorithms.

Figure 7 also shows that the MAE of VO and VI packets
is lower than BK and BE packets. The reason is that the
packets of these ACs are prioritized over higher ACs at the
qdisc layer (using PRIO qdisc) as well as the driver’s queues
(using EDCA). This results in lower delays incurred by the
downlink packets and lower unpredictability caused by the
transmission of packets in higher priority queues.

Figure 8 presents the Empirical Cumulative Distribution
Function (ECDF) of the deviation of δ′c from δc. The 95th per-
centile of error (δ′c − δc) for all machine learning algorithms
is less than ±5.3 ms in case of ND scenario and ±10.6 ms
for the HD scenario.

Transactions may occur at random time instances and
result in irregular time-series. With feature history, we
provide the models with a limited amount of historical
measurements. For example, if the inter-transaction interval
is longer than 40 ms (i.e., feature history of the current
transaction), the information about the previous state of the
network is not considered in prediction. In this case, using
transaction history is particularly beneficial when multiple
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Fig. 8. ECDF of prediction errors (|δ′c − δc|) while utilizing various ma-
chine learning algorithms in (a) Normal Dynamicity (ND), and (b) High
Dynamicity (HD) scenarios. All machine learning algorithms are able to
predict δ′c for 95% of the packets with an error of ±5.3 ms in case of ND
scenario, and ±10.6 ms for the HD scenario. We have used markers in
the inset graph for better visibility.
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Fig. 10. Processing time of the
prediction algorithms.

transactions occur during similar network conditions. Since
LSTM predicts based on the current and past transactions’
inputs, we estimate the effect of transaction history on the
MAE of this model. Figure 9 shows the results. We observe
that MAE decreases for up to five lookbacks. This means,
on average, five transactions occur during similar network
conditions.

Figure 10 presents the prediction execution time of all the
machine learning algorithms on a dual-core 2.4 GHz Core-i3
processor. Each marker shows the median of time taken to
predict each data point in the test dataset, and the error bars
present lower and upper quartiles. We observed that HBR is
the fastest (24 µs median and 0.046 µs standard deviation)
for prediction, whereas LSTM is the longest (48 µs median
and 3 µs standard deviation). However, the time taken to
predict the delay in case of LSTM is still considerably shorter
than a packet transmission time. For example, with a 1400
bytes packet sent over a 54 Mbps link, the ratio of prediction
duration to transmission duration is 48µs/207µs.

5 EMPIRICAL EVALUATION

In this section, we present an empirical evaluation of EAPS
versus the power saving mechanisms of 802.11. Since the
empirical measurements of prediction accuracy (§4.5) con-
firm the superiority of LSTM compared to other algorithms,
we use this algorithm to compare the performance of EAPS
against the power saving methods of 802.11 standard. Note
that LSTM requires about 3x more training data for its
performance to converge, compared to other algorithms (cf.
Figure 5). Hence, in scenarios where it is not possible to
collect large datasets for training, either ETR or MLP can be
used.
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5.1 Testbed

Our testbed includes four IoT stations (cameras and Ama-
zon Echo), four Raspberry Pi boards, regular stations (smart-
phones and laptops), an AP, and a server. We refer to the
IoT stations as station. Each station is a Cypress CYW43907
[1], which is a low-power 802.11n SoC designed for IoT
applications. To represent a real-world scenario affected by
variable background interference, the testbed is located in
a residential environment surrounded by APs belonging to
multiple households. Also, the four Raspberry Pi boards are
used to control network dynamicity and variability in δc.

To represent the request-response behavior of IoT traffic,
for each uplink packet sent, the server responds by sending
a downlink packet back to the station.2 The exchange of
an uplink packet and receiving its response is referred
to as a transaction. In all the figures of this section, each
marker shows the median of 1000 transactions and the
error bars present lower and upper quartiles. We use the
EMPIOT tool [36] to measure the energy and delay of
each transaction. This tool samples voltage and current at
approximately 500,000 samples per second. These samples
are then averaged and streamed at 1 Ksps. The current and
voltage resolution of this platform are 100 µA and 4 mV,
respectively.

We use two scenarios to evaluate the performance of
EAPS with respect to varying AP-server delays (i.e., δb in
Figure 1): edge, and cloud computing. In the former, the
server is directly connected to the AP, and in the latter, we
use an Amazon AWS server in Oregon, USA. Note that in
both cases the sleep schedules are computed at the edge and
by the AP the station is associated with.

5.2 Baselines and EAPS Variations

The baselines are PSM, APSM, and CAM. Using PSM, after
an uplink packet, the station goes back into sleep mode and
wakes up at each beacon instance to check for downlink
packet delivery. With APSM, instead of going back into
sleep right after packet exchange, the station stays in the
awake mode for 10 ms. With CAM, the station always stays
in awake mode. Note that for CAM, we measure only the delay
and energy consumption of transactions (only the time interval
between the uplink and downlink packets).

To study energy-delay tradeoffs, we use three versions of
EAPS, derived based on observations concerning prediction
error. To justify the importance of these three versions, we
first present the distribution of prediction errors in Figure 11
for voice and background ACs. Based on the distribution for
each AC, the station can either choose to wake up at (i) δ′ −
2σ, (ii) δ′+2σ, or (iii) δ′, where δ′ = δ′a+δ′b+δ′c. We call these
cases EAPS with Early wake-up (EAPS-E), EAPS with Late
wake-up (EAPS-L), and EAPS with Mid wake-up (EAPS-
M), respectively. Intuitively, EAPS-E reduces delay with a
higher energy consumption, EAPS-L reduces energy with
a longer delay, and EAPS-M establishes a tradeoff between
energy and delay. Note that EAPS-E is only applicable if
δ′ − 2σ > 0.

2. Note that the case where multiple uplink and downlink packets
are exchanged is simply supported as explained in §3.
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Fig. 11. Cumulative distribution function of prediction error (δ′c − δc) for
(a) voice, and (b) background ACs. Prediction error of voice AC is lower
than that of background AC. Depending on the application’s energy-
delay tradeoff, the station may wake up before, on, or after the predicted
time.

5.3 Results

Figures 12 and 13 illustrate the average energy consumption
and duration of transactions when the station is communi-
cating with edge and cloud computing platforms under ND
and HD conditions, respectively.

In the cloud computing scenario, CAM and EAPS incur
an average round trip delay of 35 ms and 42 ms, respectively,
while EAPS consumes 63% less energy. This is because
EAPS conserves energy expenditure by switching to sleep
mode and waking up right before the packet is ready for
transmission at AP. In contrast, CAM needs to stay in awake
mode until the response is received. Reduction in energy
consumption of EAPS compared to CAM reduces to 30%
in edge environment due to the shorter duration spent in
awake mode to receive the downlink packet.

With PSM, the station immediately transitions to sleep
mode after transmitting each uplink packet. While this
results in less energy consumption compared to CAM, trans-
actions suffer about 55 ms higher delay on average because
the earliest opportunity for downlink packet delivery is after
the next beacon instance. The transaction duration of EAPS
is 62% lower compared to PSM on average across all the
ACs. With APSM, the station remains in idle state for 10
ms after each packet exchange. This is beneficial only in
specific scenarios. For example, in the edge scenario, the
station receives its downlink packet within the tail time
(similar to CAM). However, when the round trip delay is
more than 10 ms, the station has to wake up again to retrieve
the downlink packet after the next beacon announcement,
thereby resulting in higher energy consumption compared
to PSM. On average, for both edge and cloud scenarios, the
energy consumption of APSM is 30% higher compared to
PSM. In contrast, the energy consumption of EAPS is 20%
and 43% lower than PSM and APSM, respectively. Also, the
transaction duration of PSM, APSM, and EAPS are 77 ms,
10 ms, and 12 ms in edge computing scenario, and 77 ms,
72 ms, and 42 ms in cloud computing scenario.

EAPS allows each node to choose between EAPS-E,
EAPS-M, or EAPS-L, according to application requirements.
As our results show, with EAPS-E, the station suffers from
slightly higher energy consumption because it wakes up
early, waits for the packet to be received from the AP,
and then transitions into sleep mode. In the case of EAPS-
L, since the station wakes up 2 × σ after the predicted
delay, the probability of immediate packet delivery is higher
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Fig. 12. Performance comparison of EAPS with 802.11 power saving mechanisms in ND conditions for all ACs. (a) and (b) show the average per-
transaction energy and duration in cloud scenario, respectively. (c) and (d) show the average per-transaction energy and duration in edge scenario,
respectively.
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Fig. 13. Performance comparison of EAPS with 802.11 power saving mechanisms in HD conditions for all ACs. (a) and (b) show the average per-
transaction energy and duration in cloud scenario, respectively. (c) and (d) show the average per-transaction energy and duration in edge scenario,
respectively.

once the station wakes up, and the station can immediately
transition to sleep mode once the packet is received. Thus,
energy consumption of EAPS-L is 14% lesser compared to
EAPS-E, whereas, the transaction duration of EAPS-L is 18%
higher than EAPS-E. EAPS-M balances the trade off between
energy consumption and transaction duration.

6 DISCUSSION

Wake-up radio. WUR mechanisms such as 802.11ba [8], [9]
can be used to enhance EAPS in several ways. For example,
as soon as a station finishes sending its uplink packet(s), the
primary radio can switch into sleep mode, and the station
will receive the schedule message via its low-power WUR.
The primary radio will then wake up at the scheduled time
to receive the downlink packet. To further reduce the idle
energy caused by prediction inaccuracy, the WUR can be
scheduled to wake up at δ′ − 2σ and wait for a command
to wake up the primary radio. As another example, once
the downlink packet arrives on the wired interface of the
AP, the AP uses EAPS to compute the packet delivery delay.
Assuming that the wake-up delay of the primary radio is
β [8], the AP sends the wake-up packet at δ′ − β to make
sure the station’s primary radio will be awake on time for
downlink delivery.

Mesh networks. As discussed in §3.3, the primary types
of networks used in this paper are smart home environ-
ments where an AP is connected to an Internet modem, and
campus and business deployments where APs communicate
via an Ethernet infrastructure. EAPS can also be used in

mesh deployments. In this case, the backbone communica-
tion between APs (mesh nodes) introduces a wireless-to-
wireless switching delay. This delay primarily depends on
the bandwidth difference between the backbone link (AP-
AP) and access links (AP-station). For example, assume a
160 MHz channel (in the 5 GHz band) is used to form
the backbone, while each AP operates on a 20 MHz or 40
MHz channel (in the 2.4 GHz band). This configuration is
prevalent because most of the existing IoT stations operate
in the 2.4 GHz band, and WiFi mesh systems are usually
tri-band and dedicate a channel (in the 5 GHz band) to
their backbone. With this configuration, the delay caused
by the backbone would be negligible and a method similar
to that mentioned in §3.3 can be used to measure the delay
from each AP to the server. If backbone links suffer from
congestion and significant interference, EAPS can be used
to predict packet switching delay over the backbone. As
an alternative, more efficient strategy, EAPS could run on
a central machine and allow the stations to receive their
downlink packet from the AP offering the lowest delay. We
leave these enhancements as future works.

Computation offloading. If the AP is not powerful
enough to train the model, the training could be offloaded
to a cloud or fog computing platform. In any case, edge
computing is essential to perform scheduling immediately
and convey the sleep schedule to the station.

7 CONCLUSION

In this paper, we presented the design, implementation, and
evaluation of a predictive scheduling mechanism, named
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EAPS, which allows IoT stations to transition to sleep mode
and wake up when their downlink packet(s) is expected
to be delivered. The proposed solution benefits from edge
computing, meaning that sleep scheduling is performed at
the network edge and by the AP. We presented an AP
architecture capable of collecting queues status, channel
condition, and packet transmission and reception instances.
Once the AP receives an uplink packet, a machine learning
model is used to compute the sleep delay, and the station
is informed about its schedule using a high-priority data
plane. Using empirical evaluations, we confirmed the sig-
nificant enhancement of EAPS in terms of energy efficiency
and transaction delay.

EAPS can be used to augment the power saving mech-
anisms of 802.11 such as APSD and TWT (introduced in
802.11ah and 802.11ax). The next generation of IoT stations
that support TWT can set up their wake up time based on
the sleep schedule computed by AP. By protecting IoT sta-
tions against the effect of concurrent traffic and interference,
EAPS is a particularly useful method in scenarios where
both regular and IoT stations exist. EAPS can lower the
energy cost of households and reduce the impact of IoT on
global ICT energy footprint.

REFERENCES

[1] Cypress Semiconductor. CYW43907: IEEE 802.11 a/b/g/n SoC
with an Embedded Applications Processor. [Online]. Available:
http://www.cypress.com/file/298236/download

[2] AVNET Inc. BCM4343W: 802.11b/g/n WLAN, Blue-
tooth and BLE SoC Module. [Online]. Avail-
able: https://products.avnet.com/opasdata/d120001/medias/
docus/138/AES-BCM4343W-M1-G data sheet v2 3.pdf

[3] S. Tozlu, M. Senel, W. Mao, and A. Keshavarzian, “Wi-Fi enabled
sensors for internet of things: A practical approach,” IEEE Com-
munications Magazine, vol. 50, no. 6, pp. 134–143, 2012.

[4] “Analysis of the impact of background traffic on the performance
of 802.11 power saving mechanism,” IEEE Communications Letters,
vol. 13, no. 3, pp. 164–166, 2009.

[5] J. Manweiler and R. Roy Choudhury, “Avoiding the rush hours:
WiFi energy management via traffic isolation,” in MobiSys, 2011,
pp. 253–266.

[6] S. Y. Jang, B. Shin, and D. Lee, “An adaptive tail time adjust-
ment scheme based on inter-packet arrival time for IEEE 802.11
WLAN,” in ICC. IEEE, 2016, pp. 1–6.

[7] A. Vinhas, V. Bernardo, M. Pascoal Curado, and T. Braun, “Per-
formance analysis and comparison between legacy-PSM and U-
APSD,” CRC, pp. 1–12, 2013.

[8] D.-J. Deng, M. Gan, Y.-C. Guo, J. Yu, Y.-P. Lin, S.-Y. Lien, and K.-C.
Chen, “IEEE 802.11 ba: Low-power wake-up radio for green IoT,”
IEEE Communications Magazine, vol. 57, no. 7, pp. 106–112, 2019.

[9] D. Bankov, E. Khorov, A. Lyakhov, and E. Stepanova, “IEEE
802.11 ba—Extremely Low Power Wi-Fi for Massive Internet of
Things—Challenges, Open Issues, Performance Evaluation,” in
BlackSeaCom. IEEE, 2019, pp. 1–5.

[10] E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu, “NAPman:
Network-assisted power management for WiFi devices,” in Mo-
biSys. ACM, 2010, pp. 91–106.

[11] A. J. Pyles, X. Qi, G. Zhou, M. Keally, and X. Liu, “SAPSM: Smart
adaptive 802.11 PSM for smartphones,” in UbiComp. ACM, 2012,
pp. 11–20.

[12] S. Sundaresan, N. Magharei, N. Feamster, R. Teixeira, and S. Craw-
ford, “Web performance bottlenecks in broadband access net-
works,” ACM SIGMETRICS Performance Evaluation Review, vol. 41,
no. 1, pp. 383–384, 2013.

[13] C. Pei, Y. Zhao, G. Chen, R. Tang, Y. Meng, M. Ma, K. Ling, and
D. Pei, “WiFi can be the weakest link of round trip network latency
in the wild,” in INFOCOM. IEEE, 2016, pp. 1–9.

[14] T. Høiland-Jørgensen, P. Hurtig, and A. Brunstrom, “The good,
the bad and the WiFi: Modern AQMs in a residential setting,”
Computer Networks, vol. 89, pp. 90–106, 2015.

[15] T. Høiland-Jørgensen, M. Kazior, D. Täht, P. Hurtig, and A. Brun-
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