
1

Profiling and Improving the Duty-Cycling
Performance of Linux-based IoT Devices

Immanuel Amirtharaj, Tai Groot, and Behnam Dezfouliú
Internet of Things Research Lab, Department of Computer Engineering, Santa Clara University, USA

iamirtharaj@scu.edu, agroot@scu.edu, bdezfouli@scu.edu

Abstract—Minimizing the energy consumption of

Linux-based devices is an essential step towards their

wide deployment in various IoT scenarios. Energy sav-

ing methods such as duty-cycling aim to address this

constraint by limiting the amount of time the device

is powered on. In this work we study and improve the

amount of time a Linux-based IoT device is powered

on to accomplish its tasks. We analyze the processes

of system boot up and shutdown on two platforms,

the Raspberry Pi 3 and Raspberry Pi Zero Wireless,

and enhance duty-cycling performance by identifying

and disabling time-consuming or unnecessary units

initialized in the userspace. We also study whether SD

card speed and SD card capacity utilization a�ect boot

up duration and energy consumption. In addition, we

propose Pallex, a parallel execution framework built on

top of the systemd init system to run a user application

concurrently with userspace initialization. We validate

the performance impact of Pallex when applied to var-

ious IoT application scenarios: (i) capturing an image,

(ii) capturing and encrypting an image, (iii) capturing

and classifying an image using the the k-nearest neigh-

bor algorithm, and (iv) capturing images and sending

them to a cloud server. Our results show that system

lifetime is increased by 18.3%, 16.8%, 13.9% and 30.2%,

for these application scenarios, respectively.

Index Terms—Energy e�ciency; boot up; shutdown;

edge and fog computing; userspace optimization; ma-

chine learning.

I. Introduction

As more Internet of Things (IoT) devices are deployed
every day, the demand for energy e�cient and low-power
devices is increasing at a fast pace. These devices are
increasingly deployed in remote regions or harsh environ-
ments where the only reliable source of power is a battery
or the power provided by an energy harvesting solution.
In addition, even for those devices that are connected
to the power grid, it is essential to reduce their energy
footprint given the increasing cost of energy and the e�orts
towards reducing carbon emissions [1], [2]. To this end,
various solutions have been proposed, such as energy-
e�cient hardware design [3]–[5], low-overhead operating
systems (OS) [6]–[9], and low-power networking stacks
[10]–[13]. The importance of energy-e�cient design has
also been demonstrated by mining the questions raised by
developers in forums [14].

úCorresponding Author

With the increases in processing power and memory
capacity for embedded systems, new process-intensive IoT
applications are being introduced. Such applications bene-
fit from edge and fog computing to improve responsiveness
and minimize the overhead of data exchange with cloud
platforms [15]. For example, image processing through ar-
tificial intelligence on IoT devices presents several benefits
including faster decision-making and lower reaction time
to environmental changes, less wireless interference with
nearby devices, and improved security due to eliminating
the need to upload raw images to a cloud service [16].
According to ABI Research [17], 90% of the data generated
by edge devices is being processed locally. In summary,
local storage and processing can help satisfy the stringent
latency requirements of mission-critical applications [11],
reduces network utilization, reduces the processing over-
head of resource-constraint devices, enhances security, and
enables the system to continue its operation even in the
presence of intermittent network connectivity [18].

Among the most-popular OSs for IoT edge devices is
Linux. According to the Eclipse IoT survey report [19],
71% of IoT developers rely on this OS. Existing low-cost
devices such as the Raspberry Pi 3 (RPi3), Raspberry Pi
Zero Wireless (RPiZW), Arduino Yun, and Beaglebone
Black support this OS. Despite low-level software and
hardware improvements targeted at lowering their energy
consumption, widespread use of these devices in IoT con-
texts requires employing user-level energy conservation
techniques. Unfortunately, although there are valuable
studies on the power measurement and modeling of this
device [20]–[23], less attention has been paid to improving
energy e�ciency.

One of the most e�ective approaches towards improving
energy e�ciency is duty cycling. This approach has been
widely employed by the wireless sensor network commu-
nity to achieve a long node lifetime, in some cases up to
a few years [11], [12], [24]. In a duty-cycled application,
a device powers on, performs its intended task, and then
powers o� for a specified interval. Without relying on duty
cycling, the lifetime of a system using an RPi3 and a
2400mAh battery is around 6 hours, assuming 400mA and
5V for current and voltage consumption.

The major burden of a duty-cycled Linux-based device
is its boot up time. Specifically, the system software and
hardware must be loaded and initialized before running
user applications. Compared to real-time OSs such as

Journal of Ambient Intelligence and Humanized Computing, Springer, 2019

2

0 2 4 6 8 10 12 14 16 18
Time (second)

(a)

CYW43907 w/ FreeRTOS
CYW43907 w/ ThreadX

BCM4343W w/ FreeRTOS
BCM4343W w/ ThreadX

RPi3
RPiZW

0 2 4 6 8 10 12
Energy Consumption (joule)

(b)

CYW43907 w/ FreeRTOS
CYW43907 w/ ThreadX

BCM4343W w/ FreeRTOS
BCM4343W w/ ThreadX

RPi3
RPiZW

Fig. 1: The (a) boot up duration and (b) energy consumption

of the popular IoT operating systems on di�erent hardware

platforms.

FreeRTOS [9] and ThreadX [8], the boot up time of Linux
is several orders of magnitude longer. To show this, we
have measured the boot up time of various hardware
platforms when using Linux, FreeRTOS and ThreadX. The
results are presented in Figure 1. These results indicate
that for Linux-based systems a significant amount of
energy is consumed during the boot up process at the
beginning of each duty cycle.

There are two types of energy optimization techniques
commonly applied to reduce the energy consumption
of Linux: general optimization [25]–[29] and application-

specific optimization [30], [31]. General optimization refers
to the improvement of OS code to run faster and con-
sume less energy, agnostic to the application type. Sample
techniques belonging to this category include improving
the filesystem and compression methods of unpacking the
kernel during the bootloader phase [25], running boot up
scripts in parallel and disabling kernel print statements
[26], and saving a copy of the boot image to a file for reuse
on subsequent boot ups [27]. Applying general optimiza-
tion techniques, however, requires a deep understanding
of the boot up process and OS. In addition, hardware
initialization may pose some challenges. For example,
assume that a system image is taken after the hardware
devices have been initialized. When this image is reloaded
during the next duty cycle, some hardware devices might
not be initialized, and therefore the user application can-
not function properly. Addressing this limitation requires
deep system knowledge and thorough testing to ensure
system reliability. Additionally, applying security updates
requires image regeneration. Even if the image can be
updated, reliability would be a major concern. If images
are generated on-the-fly after updates, the system might
fail to boot up if the image is corrupted. Enabling fallback
images requires an overhead for image verification and uses
at least twice the storage space.

Application-specific optimization, on the other hand,
refers to either OS improvement or the removal of unneces-
sary components, depending on application requirements.
For example, by customizing the bootloader and thinning

the kernel of unnecessary modules, the authors of [30]
decreased the boot up time on an embedded Android
device by 65%. In [31], the authors optimized a Linux-
based smart television and reduced its boot up time by
five seconds. However, since they defined boot up time as
the interval between power on and the time instance at
which the user can interact with the device, they delayed
the initialization of certain components until after the
home screen of the television was loaded. Unfortunately,
the existing application-specific optimization techniques
do not provide simple and universally applicable guidelines
for IoT scenarios. When Linux-based devices are used in
IoT applications, it is desirable to tailor the system based
on application requirements. Even the Linux distributions
released for IoT boards are preloaded with unnecessary
services and initialize hardware devices not required by
specific IoT application scenarios. For example, a device
running an image classification algorithm may not require
sound utilities, remote login, service discovery daemons,
time synchronization, or all the wireless technologies of-
fered by the device.

In this paper we focus on the userspace level and
application-specific optimization to improve the perfor-
mance of duty-cycled Linux systems. In other words, the
goal of this paper is to profile and improve the energy
consumed by the boot up and shutdown phases of the
RPi3 (Raspberry Pi 3, based on the quad-core BCM2837
SoC) and the RPiZW (Raspberry Pi Zero w/ Wireless,
based on a single-core BCM2835 SoC) in such a way
that minimal work is required to tailor a standardized
installation image to specific IoT applications. In par-
ticular, the contributions of this paper are as follows:
First, we overview the boot up process and present the
implementation of a testbed to measure the duration and
energy consumption of this process. In order to reveal
the e�ect of loading services on system performance, we
profile the start and end of loading units that require
more than 10ms to initialize. By categorizing system units
into multiple classes, we show that customizing the set
of active units, which we refer to as the unit configu-

ration, is a very e�ective approach towards improving
duty-cycling performance. For example, unit configuration
reduces the energy consumption of the boot up process
using a RPi3 by 43.62% for an application that only
requires communication with the camera interface. In
addition, through profiling the resource utilization of the
RPi3 and RPiZW in terms of processing, memory and I/O,
we further analyze the overhead of initializing units and
show the possibility of running user application processes
while userspace initialization is still in progress. Second,
in the context of flash memory, even when up to 95%
of its capacity is utilized, our results show no e�ect on
the boot up duration or energy consumption. However,
using faster flash memory always results in a slightly lower
boot up duration (around 1.5%) and energy consumption
(around 2.5%). Third, we investigate two shutdown ap-
proaches, graceful and forced, and evaluate the impact
of unit configuration on their performance. Our results

3

TABLE I: Key abbreviations and notations

Ebtl Energy of the bootloader phase

Eknl Energy of the kernel phase

Eusi Energy of the userspace initialization phase

Esdn Energy of the shutdown phase

EU Essential Units

GPIO General Purpose Input/Output

NRS Networking Related Services

Pbtl Bootloader phase

Pknl Kernel phase

Pusi Userspace initialization phase

RPi Raspberry Pi 3 or Raspberry Pi Zero w/ Wireless

RPi3 Raspberry Pi 3

RSL Raspbian Stretch Lite

RPiZW Raspberry Pi Zero w/ Wireless

SDC Secure Digital Card

SoC System on a Chip

Tbtl Duration of the bootloader phase

Tknl Duration of the kernel phase

Tusi Duration of the userspace initialization phase

Tsdn Duration of the shutdown phase

UART Universal Asynchronous Receiver Transmitter

confirm that using unit configuration reduces the energy
consumption of the graceful and forced shutdown by up to
43.87% and 57.42%, respectively. Additionally, the benefits
and risks of both categories are highlighted when used for
duty-cycled systems. Fourth, we propose Pallex, a parallel
execution framework to execute a user application while
userspace initialization is still in progress. Using Pallex, a
user application is split into several stages that execute at
di�erent points of the userspace initialization phase. Our
evaluations considering di�erent user application scenarios
show that in terms of lifetime, Pallex improves the duty-
cycling performance of the RPi3 and RPiZW by 30.2%
and 9%, respectively. Although the power consumption of
the RPi3 (quad-core) is higher than that of the RPiZW
(single-core), the RPi3 achieves a longer lifetime due to
its significantly shorter processing duration.

We have chosen to conduct our research using Raspbian
Stretch Lite (RSL) on both the RPi3 and RPiZW because
around 43% of Linux-based IoT systems rely on Raspbian
[19]. RSL is a popular release packaged without a desktop
environment, is advertised as a minimalist distribution,
has a long development cycle, and is o�cially supported by
the Raspberry Pi Foundation, thereby making it an ideal
candidate for deploying energy-e�cient IoT applications.
However, it is worth noting that the results of this paper
translate over to other Linux distributions supporting
systemd such as Debian, Arch Linux, and Kali.

The rest of this paper is organized as follows: In Section
II, we provide an in-depth description of the Linux boot
up process. We present the components of our testbed and
experimentation methodology in Section III. In Section
IV, we profile the Linux boot up process and measure
the e�ect of unit configuration and flash memory on the
duration and energy consumption of boot up. The Linux
shutdown phase is studied in Section V. The operation and
performance evaluation of Pallex is presented Section VI.
Section VIII overviews the related work. We conclude our
findings in Section IX.

Hardware, RAM, and Firmware
Initialization

Kernel
Initialization

ui ujsystemd
Initialization uk

Bootloader Phase Kernel Phase Userspace Initialization Phase

…
ul

PusiPbtl

Tusi, EusiTknl, EknlTbtl, Ebtl

Pknl

Fig. 2: The sequence of operations during the boot up process.

ui, uj , uk and ul refer to userspace units.

II. Boot Up Process

As demonstrated in Figure 2, the Linux boot up process
consists of three main phases: (i) the bootloader phase
(Pbtl), (ii) the kernel phase (Pknl), and (iii) the userspace
initialization phase (Pusi). Each of these phases present
unique opportunities to optimize boot time. In this paper
we focus on Pusi because it enables the user to simply and
e�ectively implement duty cycling to conserve energy.

A. Bootloader Phase

In the Pi’s boot up process, a two-stage bootloader1

prepares the hardware to load the kernel. First, while
the ARM processor is o�, the GPU is powered up and
initializes itself by executing a first stage bootloader that
is burned into the SoC’s ROM [32]. This stage instructs
the GPU to power on the Secure Digital Card (SDC) and
read a file called bootcode.bin from the first partition
of the SDC. The execution of bootcode.bin enables the
on-board SDRAM and loads start.elf, which contains
firmware for the GPU. After reading in system configu-
ration parameters from config.txt, the GPU loads the
kernel image (kernel.img) along with kernel parameters
(cmdline.txt) into the shared RAM allocated to the
ARM processor. Lastly, the second stage powers on the
ARM processor by triggering the reset signal [33]. Now
the system is running the Linux kernel. In this paper we
refer to the duration and energy consumption of this phase
as Tbtl and Ebtl, respectively. Also, we refer to the ARM
processor as "processor".

B. Kernel Phase

The Linux kernel handles all OS-related processes such
as memory management, process scheduling, driver initial-
ization, and overall system control. The kernel is initialized
in two steps: The first step occurs when the kernel is
loaded into memory and decompressed. Basic memory
management is enabled during this stage as well. The next
major step the kernel takes is launching an init process
to run and transition to Pusi. In this paper we refer to the
duration and energy consumption of the kernel phase as
Tknl and Eknl, respectively.

C. Userspace Initialization Phase

The final phase of the boot up process is userspace
initialization. In this paper we refer to the duration and

1Until October 2012, the RPi platform used a three stage boot-
loader, with an additional file, loader.bin, executed by the GPU
between the bootcode.bin and start.elf stages.

4

energy consumption of this phase as Tusi and Eusi, re-
spectively. During this phase, the units that are activated
(a.k.a., initialized) in the userspace as well as the dae-
mons that run in the background during active mode
are activated by an init process. Most modern Linux
distributions (including RSL) use systemd [34]–[36] as
their initialization system. The predecessor to systemd
was System V init (sysvinit), which traces its origins
back to the original commercial Unix system. Compared
to sysvinit, systemd o�ers advantages such as calendar-
based job timers, a more unified API, and backward
compatibility with sysvinit.

systemd is the first daemon to start during boot up
and the last to exit during shutdown. In addition to
operating processes and services, systemd is capable of
triggering filesystem mounts, monitoring network sockets
and running timers. Each of these capabilities is described
by a set of configurations files, termed unit files. Unit
types include service units, which manage background
services; mount units, to mount filesystems; and target
units: to group and control other units. There are other
unit types as well, but the details of their implementa-
tion reside outside the scope of this paper. In order to
manage the dependencies and ordering of unit activation,
unit files employ the syntax provided by systemd. When
systemd is initialized, it first loads the unit configurations
and determines the boot up goal. Based on the specified
hierarchy of dependencies, systemd activates the units in
order to reach the target goal. On RSL, the rc.local
file is loaded and executed by systemd after all the
services have been initialized. Therefore, the Raspberry
Pi Foundation recommends general consumers launch user
processes through this file to ensure all necessary hardware
and software components are initialized. However, perfor-
mance improvements are easily achieved through manually
resolving dependencies and writing custom unit files, as we
will demonstrate in Section IV.

One important feature systemd provides is the ability to
activate units in parallel. This feature can save time com-
pared to initializing units sequentially, even on a single-
core or single-threaded board, as some units require time
for hardware initialization [37]. Finally, systemd enables
developers to customize rules for automatically starting,
reloading, and killing services.

III. Testbed Overview

Figure 3 shows the architecture of the testbed. It con-
sists primarily of two hardware components: a master and
a minion. The master is composed of a RPi3 and uses
a shield board [38] for energy measurement. The minion
refers to the device under test. We used two di�erent
minion boards in this paper, a RPi3 and a RPiZW, where
both run the March 2018 release of RSL.

The master runs two programs: (i) a control program

that is responsible for enabling and disabling the input
power to the minion, and (ii) an energy measurement

program that controls the EMPIOT shield to measure the
energy consumption of the minion. Algorithm 1 shows

Control
Program

Energy
Measurement

Program
SendBitStream

Program

Digital
Switch

Enable/Disable Power
(GPIO)

Power
Supply

(5V)

Master (RPi3) Minion
(RPi3 / RPiZW)

Energy Measurement Hardware
(EMPIOT)

Start/Stop Power
Measurement (IPC)

End of
Experiment

(GPIO)

Shutdown
(GPIO)

OS
(Raspbian Stretch Lite)

SDC (Class 1/3)

Communication
over I2C

Power to
Minion

Fig. 3: The schematic of the testbed used for measuring the

duration and energy consumption of the boot up phases.

the pseudo-code of the control program running on the
master device. This program is used to control power
supply to the minion and measure the duration and
energy consumption of the boot up process by sending
commands to the energy measurement program. First,
the BCM [39] and WiringPi [40] libraries are initialized.
Then, the energy measurement program is initialized to
listen on a socket and receive commands from the control
program using inter-process communication (IPC). At
the beginning of each experiment, the control program
communicates with the digital switch through GPIO pins
controlled by the BCM library to turn on the minion. At
the same time, the control program communicates with
the energy measurement program through the socket to
start power measurement. After the start of the boot up
process, the control program uses the WiringPi library to
detect and decode a message sent by the minion when the
experiment reaches the desired completion point. The end
of the operation depends on the experimentation scenario
and refers to the cases such as the end of Pusi or the
completion of a user application. The control program logs
the duration and energy consumption of this operation for
each experiment. Figure 4 shows the states of the minion
during one single experiment from the instance the minion
is powered on until the instance the minion sends the
signal to the master after it has completed the desired
set of operations.

It should be noted that the minion cannot use Ethernet,
WiFi, or Bluetooth to inform the master about the end
of its operation because their relevant units might not
be activated in some scenarios, as we will see later in
this paper. Furthermore, it is not possible to use any
of these mechanisms when the performance of Pbtl and
Pknl is being measured. To address this challenge, we
send a message over a GPIO pin from the minion to
the master. When the minion completes its operation, it
runs a program that generates a simple bit pattern to
notify the master. The minion generates a bit pattern,
instead of a simple rising or falling edge signal, because of
the GPIO voltage variations during the boot up process.
Therefore, the generated bit pattern avoids the master
from reporting false positives. This approach enables us
to measure the performance of Pbtl and Pknl because
systemd is initialized immediately after the kernel phase,

5

and GPIOs can be used as soon as systemd is initialized.
The pattern generation program, named SendBitStream,
is a unit that is activated by systemd once the targeted
state (based on the experiment type) has been reached.
Specifically, to measure Tbtl + Tknl (and Ebtl + Eknl), this
unit is called immediately after systemd initialization.
This is achieved by creating a new unit without enforcing
any dependencies. Similarly, to measure Tbtl + Tknl + Tusi,
this unit is called when all the required units have been
activated. In order to measure boot up duration and
energy until a particular unit has been activated, this unit
is activated when its dependencies have been resolved.
We used systemd-analyze to extract Tknl. By using this
value, we can compute Tbtl as well. A similar approach is
used to measure the energy consumption of these phases.

The existing COTS energy measurement tools are either
costly or do not o�er the necessary features to build a fully
controllable energy measurement testbed. For example,
Keithley 7510 [41], includes only 2MB of storage and costs
more than $3500. The Monsoon tool, which has been
widely used by the academia, interfaces with the board
under test using a USB connection. Therefore, accurately
controlling the start and stop of the measurement interval
is not possible. On the other hand, the tools proposed by
the research community reveal the following shortcomings:
(i) complexity and the need to modify the board under test
(e.g., [42]–[47]), (ii) o�ering a limited measurement range
(e.g., [42], [48]–[52]), and (iii) low accuracy (e.g., [53], [54]).
Due to these concerns, to build the testbed required for
the experiments of this paper, we used the EMPIOT tool
proposed in [38].

EMPIOT is a shield board that is installed on top of
an RPi3 and communicates with the energy measurement
program using I2C, as Figure 3 shows. For the experiments
of this paper, we have configured the board to measure
current and voltage values up to 1A and 5V, respectively.
For current measurement, the board utilizes the INA219
chip to measure the voltage across a 0.1� shunt resistor.
This voltage is then converted to current using Ohm’s law.
The voltage is directly measured using the internal ADC
of INA219. The EMPIOT tool is capable of supersampling
approximately 500,000 samples per second (sps), which
are then averaged and streamed at 1Ksps. The current
and voltage resolution of this platform are 100µA and
4mV, respectively, when the 12-bit resolution mode is
configured. Once a new sample is ready, the shield sets
the conversion ready bit, which is read by the energy
measurement program running on the master. The sample
is then read o� the shield board using I2C communication.
The energy measurement program uses two bu�ers. Once
a bu�er it filled, an execution thread is activated to write
the collected samples to a file, while the second bu�er
is being filled up. This program also converts the raw
power samples collected during the measurement interval
to energy using Riemann integration.

Figure 5 shows the actual testbed used. In addition to
the master node and the two minion boards, this testbed
includes a gateway, which is a RPi3 board. Since for most

Algorithm 1: Master’s control program
1 function startExperiments()
2 /*to control the power switch through a GPIO pin and

receive the bit pattern from the minion on another

GPIO pin */
3 setup the BCM and WiringPi GPIO libraries;
4 /*setup the energy measurement program and make it

ready to measure power */
5 initialize the energy measurement energy;
6 for i = 0; i < 50; i++ do
7 cut power to the minion;
8 apply power to the minion and start time and energy

measurement;
9 wait for minion to transmit bit pattern;

10 record duration and energy consumption;

Off

Wait for
Master

Bootloader Kernel

Shutdown
command
received

Power on

Inform master by sending the bit stream

…

Userspace initialization/application execution

Fig. 4: The state machine of the minion device during an

experiment. The minion executes the SendBitStream program

to send a message to the master after reaching the desired level

of completion.

Fig. 5: The hardware components of the testbed.

of the scenarios, both the wired and wireless communica-
tion interfaces are disabled, we need to use the serial port
to communicate with the minions and configure the tests.
To this end, the gateway, which is always connected to our
wired network, enables us to use UART and communicate
with the minions. For the rest of this paper we refer to a
minion board simply as "board", which is the device under
test.

Unless otherwise mentioned, results are averaged over
50 experiments, with the error bars representing the 95%
confidence interval of the mean.

6

IV. Profiling and Enhancement of the Linux

Boot Up Process

In this section, we first study the activation time of units
during Pusi. We then profile system resource utilization
in terms of processing, memory and I/O. In addition, we
evaluate the e�ect of SDC speed and capacity usage on the
duration and energy consumption of the three phases of
the boot up process. Finally, we show how customizing
userspace units can be employed to improve boot up
duration and energy consumption.

A. A Deeper Look into the Userspace Initialization Phase

The userspace initialization phase activates a variety of
units supporting di�erent functionalities of the system. A
summary of these units is available in Appendix A. In the
beginning of this phase, systemd is initialized and it loads
unit configuration files to determine which units must be
activated. It then creates a dependency tree to determine
the ordering of unit dependency resolution. In order to
improve e�ciency, units can be initialized in parallel with
respect to their dependency relationships.

Figures 6(a) and (b) show the start and activation
duration of units during Pusi for the RPi3 and RPiZW,
respectively. We have used the systemd-analyze blame
utility to extract these data. Although all of the units
are enabled for these experiments, we disabled WiFi and
Ethernet connectivity to extract the activation duration
of units without them being a�ected by external factors
such as communication with a WiFi access point. Also,
to focus on the units that significantly contribute to Tusi,
these figures do not display units that require less than
10ms to be activated. Please note that the x-axis of both
Figures 6(a) and (b) start at t = 6s because Tbtl = 3.65s
and Tknl = 2.85s for both boards. It must also be noted
that, since energy = power ◊ duration, the execution
duration of each unit does not necessarily reflect its energy
consumption. We will study the energy consumption of
unit activation in the subsequent sections. Additionally,
we will show that a long unit activation duration does not
prevent us from running a user application concurrently
with the unit activation.

For the RPi3, our results show that the system units im-
posing the highest overhead are dev-mmcblk0p2.device,
networking.service, hciuart.service, and systemd-
resolved.service. Except the first unit, which is respon-
sible for bringing the root partition into the scope of sys-
temd, the rest are networking-related services. Networking
services generally require a longer activation duration
compared to other units because they require a combi-
nation of initializing hardware and networking utilities.
The hciuart.service is responsible for the initialization
of Host Controller Interface (HCI) to provide a uniform
interface for accessing Bluetooth hardware capabilities. All
USB-Bluetooth adapters operate with a HCI interface over
the USB link. During its initialization, HCI creates read
and write communication threads, establishes a connection
to the Bluetooth transceiver, and reads device bu�er sizes.

Enabling real-time Bluetooth communication requires the
processor to frequently context-switch to monitor UART
communications. Because bluetooth.service depends
on hciuart.service, it finishes initialization after hci-
uart.service. An interesting behavior of these services is
that they both complete their activation after rc.local.
This means that user applications that rely on Bluetooth
cannot be started using rc.local. Instead, these appli-
cations require a systemd unit that is scheduled to be
activated after the completion of bluetooth.service.

On the RPiZW, we observe that Tusi is about 17s,
which is 10s longer than that of the RPi3. The same
units mentioned for the RPi3 consume most of the
userspace initialization time on the RPiZW as well. Since
the RPiZW’s processor only has one core, compared to
the RPi3’s quad-core processor, the di�erence in dura-
tion is expected. A multi-core processor can parallelize
unit activations across multiple cores, while a single-
core processor must context-switch more frequently be-
tween tasks. This also explains why di�erent sets of
units are presented in Figure 6(a) and (b). Furthermore,
other units including systemd-login.service, console-
setup.service, alsa-restore.service, and systemd-
user-sessions.service reportedly require a longer ac-
tivation duration (at least 1s) on the RPiZW.

Threats to Validity. Our analysis of unit activa-
tion duration revealed one significant shortcoming about
systemd-analyze blame. The initialization duration cal-
culated by this utility is not completely accurate if the
dependency tree is not precisely configured. For example,
if systemd attempts to activate a fast unit that depends on
a longer unit which has not been activated yet, the faster
unit cannot complete its activation until the dependency
has been resolved. More specifically, if the activation
duration of longer and shorter units are 800ms and 10ms,
respectively, then systemd-analyze blame reports 810ms
as the initialization duration of the faster unit. For exam-
ple, for sudo.service, systemd-analyze blame falsely
reports a long initialization duration because systemd
attempts to activate it before the filesystem the service
depends on is mounted. Therefore, the values generated
by this utility may be longer than the actual activation
duration of each unit, but these values are not shorter. To
cover all the units that contribute significantly to the boot
up process, we have included only those units that require
more than 10ms according to systemd-analyze blame.
In Figure 6, we include Type I errors to avoid excluding
any units that require more than 10ms. Later, to eliminate
Type I errors, we identify and study the impact of units
that significantly a�ect the boot up process.

B. Customizing Userspace Initialization

In this section, we analyze the e�ect of disabling op-
tional units on the performance of the userspace initializa-
tion phase. This is referred to as unit configuration in this
paper. The systemctl [55] utility is used to implement
unit configuration.

7

systemd-hostnamed.service
systemd-update-utmp-runlevel.service

bluetooth.service
plymouth-quit.service

plymouth-quit-wait.service
systemd-rfkill.service

rc-local.service
systemd-resolved.service

systemd-user-sessions.service
alsa-restore.service
raspi-config.service

sudo.service
triggerhappy.service

dphys-swapfile.service
avahi-daemon.service

systemd-logind.service
rsyslog.service

console-setup.service
plymouth.service

rsync.service
ssh.service

hciuart.service
systemd-timesyncd.service

rpcbind.service
systemd-update-utmp.service

plymouth-read-write.service
networking.service
nfs-config.service

systemd-tmpfiles-setup.service
boot.mount

systemd-fsck@dev-disk.service
plymouth-start.service

systemd-networkd.service
systemd-random-seed.service

systemd-udev-trigger.service
systemd-journal-flush.service

systemd-remount-fs.service
systemd-udevd.service

sys-kernel-config.mount
systemd-sysctl.service

systemd-tmpfiles-setup-dev.service
kmod-static-nodes.service
systemd-fsck-root.service
systemd-journald.service

systemd-modules-load.service
fake-hwclock.service

dev-mqueue.mount
run-rpcpipefs.mount

sys-kernel-debug.mount
dev-mmcblk0p2.device

6 8 10 12 14 16 18 20 22 24
Time (second)

(b)

RPiZW

0.413
0.277
0.299
0.328

0.424

0.351

0.084

0.147

0.317

0.200
0.474

0.225

0.356

0.333
0.236

0.294

0.672
0.579

1.602

0.502
3.354

3.274
0.741

4.717
3.722
4.009

1.110
2.894

2.397
2.507

4.164
6.084

0.890
0.553
0.576

6.541

0.618

0.545

1.354
0.579

0.730

0.556

1.054
0.965

0.517
0.506
0.540
0.614
0.744

5.534 0.01s to 0.5s
 Greater than 0.5s

systemd-update-utmp-runlevel.service
bluetooth.service

systemd-rfkill.service
plymouth-quit.service

systemd-user-sessions.service
rc-local.service

systemd-resolved.service
ssh.service

raspi-config.service
alsa-restore.service

rsync.service
sudo.service

triggerhappy.service
dphys-swapfile.service

rsyslog.service
console-setup.service

hciuart.service
plymouth.service

avahi-daemon.service
systemd-logind.service

systemd-update-utmp.service
rpcbind.service

systemd-timesyncd.service
plymouth-read-write.service

systemd-tmpfiles-setup.service
nfs-config.service

networking.service
boot.mount

systemd-fsck@dev-disk.service
plymouth-start.service

systemd-journal-flush.service
systemd-udev-trigger.service

systemd-random-seed.service
systemd-networkd.service

systemd-remount-fs.service
systemd-udevd.service

systemd-tmpfiles-setup-dev.service
systemd-sysctl.service

sys-kernel-config.mount
systemd-fsck-root.service
systemd-journald.service

systemd-modules-load.service
dev-mqueue.mount

fake-hwclock.service
sys-kernel-debug.mount

run-rpcpipefs.mount
kmod-static-nodes.service

dev-mmcblk0p2.device

6 7 8 9 10 11 12 13 14 15
Time (second)

(a)

RPi3

0.044
0.102

0.022
0.020
0.019
0.019

0.381
0.064

0.327
0.399

0.075

0.168
0.413

0.178

0.093
0.156

0.338
0.043
0.094

0.035

0.091
0.243

0.080
0.068

0.314
0.058
0.122

0.104
0.158

0.121
0.057
0.028

0.265
0.126

0.114
0.113
0.138
0.142
0.143
0.160

0.510
0.541

0.553

4.527
0.501

0.634

0.753

1.214 0.01s to 0.5s
 Greater than 0.5s

Fig. 6: The starting time and initialization duration of units during Pusi for (a) RPi3 and (b) RPiZW. Only the units with

activation duration longer than 10ms are included in this figure. Results are averaged over 50 experiments.

Among the units activated during Pusi, some of them
are essential to maintain stable system operation. For
example, units that are responsible for mounting the file
systems and loading kernel modules cannot be safely dis-
abled. Another example, nearly all user applications will
work even if systemd-random-seed.service is disabled.
However, disabling this service is a security risk, because
it is critical for maintaining higher entropy for the secure
generation of random numbers used in encryption algo-
rithms. A complete list of these units, which are referred
to as Essential Units (EU) in this paper, can be found in
Appendix A-A. The next category includes a significant
number of services and is referred to as Networking-Related

Services (NRS) in this paper. Appendix A-B overviews
these services. These services are by far the most variable
in terms of activation duration because they often rely
on external dependencies (e.g., association with an access
point, communicating with a DHCP server, etc.) and/or
initializing physical hardware such as the WiFi and Blue-
tooth transceivers. Due to the significant e�ect of NRS on
boot up performance, we study the e�ect of following unit
configurations on Pusi:
– EU. Refers to the case where only the essential units (cf.

Appendix A-A) are enabled. For EU configuration, we
detect the end of userspace initialization when rc.local
runs because it is the last unit file that is executed.

– MMS. Refers to dphys-swapfile.service. For config-
uration EU w/ MMS, we detect the end of userspace
initialization when rc.local runs because it is the last
unit file that is executed.

– NET1. Refers to networking.service. For configura-
tion EU w/ NET1, we detect the end of userspace
initialization when rc.local runs because it is the last
unit file that is executed.

– NET2. Refers to networking.service and
sshd.service. For configuration EU w/ NET2, we
detect the end of userspace initialization when rc.local
runs because it is the last unit file that is executed.

– NET3. Refers to bluetoothd.service and hci-
uart.service. For configuration EU w/ NET3, since
bluetooth.service is the last service that is executed,
we detect the end of userspace initialization when this
service completes its initialization.

– ALLU. Refers to the case where all units are enabled.
For this configuration, since bluetooth.service is
the last service that completes, we detect the end of
userspace initialization when this service is activated.
For configuration ALLU w/o NET3, we detect the end
of userspace initialization when rc.local runs because
it is the last unit file that is executed.
In addition to the classifications detailed above, since

the actual association of a RPi with an access point
introduces more variations due to the control messages
exchanged between the two parties, we report the results
separately for the cases where a WiFi connection is es-
tablished. Figures 7(a) and (b) show the impact of unit
configuration on both the RPi3 and RPiZW, respectively,
in terms of Tusi and Eusi.

These figures clearly show the benefits of unit configura-
tion to enhance the performance of boot up phase. For ex-
ample, applying unit configuration EU reduces the energy
consumption by 43.62% compared to ALLU, for the RPi3
board. These results also reveal that WiFi significantly
a�ects Tusi and Eusi. Specifically, for configuration EU
w/NET1, enabling WiFi increases Tusi by around 2s and
4s, for the RPi3 and RPiZW, respectively. Besides, for this
configuration, enabling WiFi increases Eusi by 3 and 3.5
joules for the RPi3 and RPiZW, respectively.

8

0 5 10 15
Time (second)

(a)

EU

EU w/ MMS

EU w/ NET1

EU w/ NET2

EU w/ NET3

ALLU w/o NET3

ALLU

EU w/ NET1 w/ WIFI

EU w/ NET2 w/ WIFI

ALLU w/o NET3 w/ WIFI

ALLU w/ WIFI

0 2 4 6 8 10 12 14 16 18 20
Energy (joule)

Energy
Time

0 5 10 15 20 25 30
Time (second)

(b)

EU

EU w/ MMS

EU w/ NET1

EU w/ NET2

EU w/ NET3

ALLU w/o NET3

ALLU

EU w/ NET1 w/ WIFI

EU w/ NET2 w/ WIFI

ALLU w/o NET3 w/ WIFI

ALLU w/ WIFI

0 2 4 6 8 10 12 14 16 18 20
Energy (joule)

Energy
Time

Fig. 7: The duration and energy consumption of booting up the (a) RPi3 and (b) RPiZW for di�erent unit configurations. The

lower and upper axes show Tbtl + Tknl + Tusi and Ebtl + Eknl + Eusi, respectively.

These results also reveal the higher e�ect of hci-
uart.service and bluetooth.service on the RPi3.
Since activating these services do not significantly utilize
the processing resources of the RPi3 (as we will show
in Section IV-C), the waste of processing resources, and
hence energy consumption, is higher than that of the
RPiZW. Therefore, EU w/ NET3 compared to EU results
in a 54.8% energy increase on RPi3, compared to the
26.92% increase on RPiZW. In addition, we can observe
that on the RPi3, which can initialize the WiFi and NET3
services concurrently, the duration and energy consump-
tion of the "ALLU" and "ALLU w/ WiFi" configurations
are almost equal. In contrast, for the RPiZW, the duration
and energy consumption of the "ALLU w/ WiFi" config-
uration are higher than "ALLU" because the single-core
processor needs to interleave the tasks of initializing WiFi
and NET3 services. We will further study this behaviour
in the next section.

It must be noted that disabling units does not necessar-
ily prevent their activation by systemd. More specifically,
units might be activated when: (i) other units relying on
them are activated, or (ii) in the case of external event
hooks such as attaching a device. For example, alsa-
restore.service is automatically activated even if it
has been disabled. However, as its main function is to
initialize the onboard sound card, it is not required by
most IoT applications. Therefore, it is worth masking this
service using systemctl. This is performed by pointing
the unit file to the special device /dev/null so that the
dependency tree can mark it as resolved for dependants
without actually running it.

The exact increase of duration and energy when using
the networking services depends on factors such as interfer-
ence, channel congestion, and the load of the access point
during the association process. For example, the duration
of WPA authentication and IP allocation increases as the
current load of the access point is intensified. Since these
external dependencies are outside the scope of the RPi
performance, unnecessary services must be disabled or
careful attention must be paid to link quality and access

0 5 10 15
Time (second)

(a)

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

(%
)

0 5 10 15
Time (second)

(b)

5

5.5

6

6.5

7

7.5

8

M
em

or
y

U
til

iz
at

io
n

(%
)

0 5 10 15
Time (second)

(c)

2000

3000

4000

5000

6000

7000

R
ea

d
Sp

ee
d

(k
B/

s)

0 5 10 15
Time (second)

(d)

0

10

20

30

40

W
rit

e
Sp

ee
d

(k
B/

s)

0 5 10 15
Time (second)

(e)

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

(%
)

0 5 10 15
Time (second)

(f)

4

5

6

7

8

9

10

M
em

or
y

U
til

iz
at

io
n

(%
)

0 5 10 15
Time (second)

(g)

3000

4000

5000

6000

7000

R
ea

d
Sp

ee
d

(k
B/

s)

0 5 10 15
Time (second)

(h)

0

10

20

30

40

50

60

W
rit

e
Sp

ee
d

(k
B/

s)

Fig. 8: The resource utilization of the RPi3 during userspace

initialization for three di�erent experiments. Sub-figures (a)-

(d) represent unit configuration EU, and sub-figures (e)-(h)

represent unit configuration ALLU. Dashed lines indicate the

start of Pusi, dotted lines indicate the instance rc.local is

activated, and solid lines indicate the end of Pusi.

point load to achieve a desirable performance.

C. Resource Utilization During Userspace Initialization

In this section, we study system resource utilization dur-
ing Pusi. To this end, we measured processor utilization,
memory utilization, and SDC’s I/O speed on the RPi3
and RPiZW. Resource monitoring is performed by a shell
program that starts as soon as systemd is initialized. For
this reason we noticed that resource monitoring is not
available for 0.75s and 1.2s after the completion of Pknl on
the RPi3 and RPiZW, respectively. To record processor
utilization, we wrote a gawk [56] script to read values
from /proc/stat and calculate the current percentage of
processor utilization across all cores with high granularity
and low overhead. We read directly from /proc/meminfo
to determine memory utilization, and used the iostat [57]
utility for collecting SDC’s I/O utilization. Figures 8 and
9 show the results for three trials.

Comparing the two figures indicates the significantly
higher processor utilization of the RPiZW compared to the

9

0 10 20
Time (second)

(a)

0

20

40

60

80

100
C

PU
 U

til
iz

at
io

n
(%

)

0 10 20
Time (second)

(b)

10

12

14

16

18

M
em

or
y

U
til

iz
at

io
n

(%
)

0 10 20
Time (second)

(c)

1500

2000

2500

3000

3500

R
ea

d
Sp

ee
d

(k
B/

s)

0 10 20
Time (second)

(d)

0

5

10

15

20

W
rit

e
Sp

ee
d

(k
B/

s)

0 10 20
Time (second)

(e)

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

(%
)

0 10 20
Time (second)

(f)

10

12

14

16

18

20

22

M
em

or
y

U
til

iz
at

io
n

(%
)

0 10 20
Time (second)

(g)

1800

2000

2200

2400

2600

2800

3000

3200

R
ea

d
Sp

ee
d

(k
B/

s)

0 10 20
Time (second)

(h)

0

5

10

15

W
rit

e
Sp

ee
d

(k
B/

s)

Fig. 9: The resource utilization of the RPiZW during userspace

initialization for 3 di�erent experiments. Sub-figures (a)-(d)

represent unit configuration EU, and sub-figures (e)-(h) repre-

sent unit configuration ALLU. Dashed lines indicate the start

of Pusi, dotted lines indicate the instance rc.local is activated,

and solid lines indicate the end of Pusi.

RPi3. For the RPi3, we notice that processor utilization
drops to less than 5% as soon as rc.local is invoked,
regardless of the unit configuration applied (compare Fig-
ure 8(a) and (e)). For the RPiZW, however, when the
unit configuration ALLU is applied, processor utilization
drops to around 5% after the end of userspace initializa-
tion, which is the completion of NET3 services (compare
Figures 9(a) and (e)). We justify this behavior by referring
back to Figure 6. While the RPi3 is almost finished with
userspace initialization (except the NET3 services) at the
time rc.local is activated, RPiZW needs to complete the
activation of multiple units. Specifically, as Figure 6 shows,
a considerable number of units with loading time longer
than 10ms are being activated around t = 20.

For RPi3, enabling all services increases memory uti-
lization from around 7% to 10%. For RPiZW, the increase
is from around 16% to 21%. These results indicate that
even for the unit configuration ALLU, more than 900MB
and 400MB of RAM is available on the RPi3 and RPiZW,
respectively. In terms of I/O, since the RPi3 initializes
more units in parallel, its I/O speed is almost double than
that of the RPiZW. Although the processor utilization
of the RPiZW is around 100% throughout Pusi, we can
still benefit from concurrent execution of user applications
within this phase if they mostly rely on peripheral ini-
tialization and I/O operations. A sample IoT application
that satisfies this requirement is capturing a photo using
a camera. For example, the RPi camera module [58] con-
nects over a Camera Serial Interface (CSI) to the GPU on
the RPi. While a picture is being captured and processed,
the processor can switch to other tasks, as there are several
steps performed by the camera that are independent of the
RPi’s processor. In particular, the camera has a physical
requirement of exposure time. Next, the camera needs
to process the image. According to the manufacturer of
the camera module’s image sensor (IMX219PQ [59]), the
camera has Lens Shading Correction (LSC) functionality,

which means the image undergoes some processing on
the camera module before it is sent over CSI. After this
step, the image must be sent over the CSI interface as a
series of Bayer frames to the RPi’s GPU. Next, the GPU’s
VideoCore firmware assembles the image. Finally, the
processor can receive the assembled image from the GPU.
In Section VI we will show the performance improvement
of this application running during Pusi.

D. Profiling the Time and Energy Consumption of Boot-

loader and Kernel Phases

In this section, we study the duration and energy con-
sumption of bootloader, kernel, and userspace initializa-
tion phases versus the properties of the SDC used. In
order to measure the e�ect of SDC speed on performance,
we used two 32GB Sandisk SDCs: (i) a UHS (Ultra High
Speed) class 1, and (ii) a UHS class 3. Note that UHS 1
and UHS 3 refer to minimum write speed of 10 MB/sec
and 30 MB/sec, respectively. In addition to SDC speed,
we are interested in measuring the e�ect of SDC capacity
utilization on boot up performance. Modern SDCs are
implemented with the NAND technology. Compared to the
NOR technology, NAND o�ers lower power consumption,
lower cost per bit, higher density and faster write speed.
However, as the disk fills up, the write performance starts
to degrade. In order to measure the e�ect of SDC utiliza-
tion on boot up performance, we fill 5%, 50%, and 95% of
the SDC capacity. To fill the SDC with data, we used the
dd [60] utility which allows us to write blocks of memory
to the SDC.

Tables II and III demonstrate the results averaged
over 50 trials for each configuration. The following unit
configurations are used for these measurements: (i) EU,
and (ii) ALLU w/o NET3 w/o WiFi). We excluded NET3
due to the high variations caused by these services. In
terms of SDC capacity usage, these results show no e�ect
on boot up performance. However, the use of a faster SDC
results in a slight reduction in energy consumption. For
example, for the ALLU w/o NET3 configuration on the
RPi3, on average the faster SDC reduces energy by 2.5%,
compared to the slow SDC.

According to these results, regardless of the SDC type
and capacity usage, Tbtl and Tknl are similar for the two
boards. However, the energy consumption of these phases
is higher on the RPi3 than on the RPiZW. Compared
to Pusi, which is process-intensive, Pbtl and Pknl do not
benefit from the higher processing power of RPi3’s SoC
because their main operation is to load the kernel and
initialize hardware components. These are tasks that are
mostly synchronous and not easily threaded across cores.
Therefore, since the RPi3 has a more complex and power-
ful SoC, more resources are wasted on this board during
the first two phases. In contrast, Eusi of the RPi3 is
actually lower than that of the RPiZW. During Pusi, the
RPi3 runs a larger number of processes in parallel, and
therefore requires less energy to reach the boot up target
by reducing the total amount of time spent in this phase.

10

TABLE II: The duration and energy consumption of the bootloader phase, kernel phase, and userspace initialization phase for

RPi3. The left and right values in each cell show duration (second) and energy consumption (joule).

EU ALLU w/o NET3 w/o WiFi
Bootloader+Kernel

(Tbtl + Tknl, Ebtl + Eknl)
Userspace

(Tusi, Eusi) Total Bootloader+Kernel
(Tbtl + Tknl, Ebtl + Eknl)

Userspace
(Tusi, Eusi) Total

Slow
SDC

5% 6.5, 4.51 2.94, 5.77 9.44, 10.28 6.5, 4.51 4.04, 7.72 10.54, 12.23
50% 6.5, 4.51 3.23, 5.95 9.73, 10.46 6.5, 4.51 3.72, 7.32 10.22, 11.74
95% 6.5, 4.51 3.23, 5.89 9.73, 10.4 6.5, 4.51 3.72, 7.28 10.22, 11.79
AVG 6.5, 4.51 3.13, 5.87 9.63, 10.38 6.5, 4.51 3.83, 8.91 10.33, 11.92

Fast
SDC

5% 6.5, 4.51 2.94, 5.6 9.44, 10.11 6.5, 4.51 3.74, 7.13 10.24, 11.64
50% 6.5, 4.51 2.97, 5.68 9.46, 10.19 6.5, 4.51 3.66, 7.07 10.16, 11.58
95% 6.5, 4.51 2.96, 5.67 9.46, 10.18 6.5, 4.51 3.71, 7.2 10.21, 11.71
AVG 6.5, 4.51 2.95, 5.65 9.45, 10.16 6.5, 4.51 3.7, 7.133 10.2, 11.64

TABLE III: The duration and energy consumption of the bootloader phase, kernel phase, and userspace initialization phase for

RPiZW. The left and right values in each cell show duration (second) and energy consumption (joule).

EU ALLU w/o NET3 w/o WiFi
Bootloader+Kernel

(Tbtl + Tknl, Ebtl + Eknl)
Userspace

(Tusi, Eusi) Total Bootloader+Kernel
(Tbtl + Tknl, Ebtl + Eknl)

Userspace
(Tusi, Eusi) Total

Slow
SDC

5% 6.5, 3.26 9.73, 7.02 16.23, 10.28 6.5, 3.26 15.48, 10.91 21.88, 14.17
50% 6.5, 3.26 9.43, 6.34 15.93, 9.6 6.5, 3.26 15.4, 10.97 21.9, 14.23
95% 6.5, 3.26 9.8, 6.57 16.3, 9.83 6.5, 3.26 15.47, 10.94 21.97, 14.2
AVG 6.5, 3.26 9.65, 6.64 16.15, 9.9 6.5, 3.26 15.45, 10.94 21.92, 14.2

Fast
SDC

5% 6.5, 3.26 9.47, 6.56 15.97, 9.82 6.5, 3.26 15.3, 10.86 21.8, 14.12
50% 6.5, 3.26 9.41, 6.31 15.91, 9.57 6.5, 3.26 15.39, 10.92 21.89, 14.18
95% 6.5, 3.26 9.47, 6.35 15.97, 9.61 6.5, 3.26 15.34, 10.92 21.84, 14.18
AVG 6.5, 3.26 9.45, 6.41 15.95, 9.67 6.5, 3.26 15.34, 10.9 21.84, 14.16

V. Profiling and Enhancement of the Linux

Shutdown Phase

Throughout the scope of this paper, special attention is
paid to system boot up phases rather than the shutdown
phase. This is because the time and energy required for
boot up are higher than that required for the shutdown,
and the gains are therefore more significant. However,
there are also several ways through which shutdown time
and energy consumption can be reduced. The naive ap-
proach is to cut the power to the RPi as soon as the user
application is completed. Unfortunately, cutting the power
improperly might result in corrupting data blocks on SDC.
If these blocks also happen to coincide with the sectors
necessary for boot up or important files in the rootfs,
the device could be rendered unrecoverable. In order to
address this problem, all of the SDC’s partitions can be
mounted as read-only to guarantee there would be no file
operations when a power loss event occurs. However, a
read-only solution is complicated and not feasible when the
user application needs to store or analyze large quantities
of dynamic data such as running a machine learning al-
gorithm. Furthermore, since the filesystems are by default
read-only, updating the device becomes a lengthy and chal-
lenging process, requiring virtual root filesystems mounted
to RAM disks and multiple remount operations on the
SDC. In this case, if large amounts of data must be stored
for processing or before transmission, external storage is
required. This solution, however, introduces extra power
consumption and might cancel out any gains achieved by a
faster shutdown. Additionally, if no external device is used,
workarounds must be implemented for system logging and
other system functionalities, which rely on a writeable

filesystem. This analysis is outside the scope of this paper.
The next approach is to make only the boot partition

write-protected. However, this solution does not necessar-
ily prevent data corruption, because flash partitions are
not actually separated as they would be on a traditional
hard drive. SDCs use a Flash Transition Layer (FTL) to
map virtual file blocks to their actual location in the stor-
age [61]. Many SDCs are preloaded with a wear-leveling
firmware which uses the FTL to re-arrange data blocks,
often mixing across partition lines (transparently to the
RPi) to enhance block device lifetime. In this case, data
corruption can occur if the power is cut while read-only
data is being migrated during the wear-leveling operation.
Therefore, mixing read-only and writeable partitions does
not guarantee protection against improper shutdowns. The
only way to guarantee it is safe to cut the device power is
to ensure that no operations are being performed on the
SDC.

In the rest of this section, we present and evaluate two
suitable approaches, graceful shutdown and forced shut-

down, to power o� a duty-cycled IoT system. Furthermore,
we assess the tradeo�s between system reliability and
energy consumption. Please note that Tsdn and Esdn refer
to the duration and energy consumption of the shutdown
phase.

A. Graceful Shutdown

During a graceful shutdown, systemd sends a shutdown
signal to all of the running processes. After these processes
exit and the network interfaces are brought down, the
filesystems are unmounted and power to the device is
safely cut. The amount of time required to unmount the

11

filesystems is almost fixed and beyond the control of the
user. However, the lower the number of running processes
which must return an exit code before shutdown.target
is reached, the faster systemd can finalize the shutdown;
therefore, removing extraneous units expedites the shut-
down phase. This behavior is best exemplified in Figure 10.
These figures represent the time and energy consumption
of the RPi3 and RPiZW for various unit configurations.

When WiFi is disconnected, using unit configuration
EU reduces energy consumption by 43.9% and 57.4%,
on the RPi3 and RPiZW, respectively, compared to unit
configuration ALLU. When WiFi is connected, using unit
configuration EU reduces energy consumption by 37.3%
and 48.85% for the RPi3 and RPiZW, respectively, com-
pared to ALLU. These results also show the significant
e�ect of WiFi communication on Esdn. During the shut-
down phase, the system invokes ifdown to ensure all
connected networks are brought down properly and then
powered o�. This process takes around 0.8s when avahi-
daemon.service is disabled. When this service is enabled,
the duration varies depending on the network speed and
configuration. In our testbed, we noticed a delay of up
to 12s. For example, unit configuration EU w/ NET1 w/
WiFi increases energy consumption by 96.4% and 60%, for
the RPi3 and RPiZW, respectively, compared to EU w/
NET1.

B. Forced Shutdown

Not all IoT applications require a clean shutdown to
remain functional. There are two alternative commands,
systemctl halt ––force (equivalent to the traditional
halt command) and systemctl halt ––force ––force
(equivalent to the traditional halt -f command), which
result in shorter shutdown phases. In this paper we re-
fer to these approaches as forced shutdown and forced-

forced shutdown. Both of these approaches skip the steps
performed by shutdown to notify the running processes
of the impending shutdown and wait for them to exit
gracefully. Therefore, steps such as recording the shutdown
event and any STDOUT or STDERR output that are typically
printed to a log file during the shutdown phase are skipped
by these commands. In the case of systemctl halt ––
force, this may be acceptable, as the logging of system
shutdown events is not often critical to IoT applications,
and any necessary shutdown logs may be generated man-
ually by the user application. systemctl halt ––force
also properly disconnects the networking interfaces by
calling ifdown on all the connected interfaces.

Figure 11 shows the impact of using forced shutdown on
both time and energy consumption. Comparing this figure
against Figure 10 demonstrates the performance benefits
of killing processes rather than gracefully terminating
them. Although this mechanism results in lower energy
consumption for both platforms, the e�ects are more ap-
parent on the RPiZW. When gracefully shutting down, the
RPi3 provides the system processes with more resources to
finalize their operations and terminate correctly, resulting

in a shorter shutdown phase. On the other hand, when
forced shutdown is used, running processes are merely
killed, which does not require significant system resources.
However, the OS still waits for the networking interfaces
to be brought down before continuing the shutdown phase.
As a result, the extra power provided by the RPi3’s pro-
cessor is wasted, making the RPiZW more energy e�cient
during the shutdown phase.

The second approach, systemctl halt ––force ––
force, is faster than calling systemctl halt ––force
because the processes are not killed. Instead, the processes
are simply abandoned as the processor cores are stopped.
This command physically halts the processor and cuts
power almost immediately without bringing down network
interfaces or unmounting filesystems. Eliminating these
steps reduces the shutdown duration of the RPi3 and
RPiZW to less than 200ms and 400ms, respectively, and
the energy consumption to less than 700mJ and 350mJ,
respectively, as Figure 12 shows. Unfortunately, accord-
ing to the documentation [55], using this command may
cause data corruption. However, some approaches exist to
minimize the risk. For example, all processes required or
started by the user application can be killed manually first,
and the sync command must be run to commit unsaved
bu�ers to the SDC. For preventing issues related to wear-
leveling, increasing the percentage of unused storage on
SDC reduces the frequency of moving critical data blocks
by the wear-leveling algorithm. However, since the chance
of data corruption is not fully eliminated, it is up to the
user to calculate the risk involved in shutting down the
system using this mechanism repeatedly (or across many
devices). These calculations are outside the scope of this
paper. Additionally, for both forced-shutdown approaches,
the user must consider running some processes (such
as fake-hwclock save and systemd-random-seed save)
manually to ensure system integrity and security.

It is worth mentioning that the halt system call for the
ARM architecture automatically calls machine_power_-
off() to power o� the board rather than entering the
traditional halted state where the board stays powered
on after the processor is powered o�. Other architectures
may require additional flags or even di�erent commands
in order to achieve a similar result.

VI. Parallelizing Application Processes with

Userspace Initialization

As we showed in the previous sections, the userspace
initialization phase does not fully utilize the system re-
sources. In this section, we propose Pallex, a parallel
execution framework to run user applications during the
userspace initialization phase. After presenting the imple-
mentation of Pallex and providing guidelines for applying
this framework, we evaluate its performance considering
various IoT application scenarios.

A. Pallex

The basic idea of Pallex is to divide a user application
into stages and run each stage based on the set of available

12

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (second)

(a)

EU

EU w/ MMS

EU w/ NET1

EU w/ NET2

EU w/ NET3

ALLU w/o NET3

ALLU

EU w/ NET1 w/ WIFI

EU w/ NET2 w/ WIFI

ALLU w/o NET3 w/ WIFI

ALLU w/ WIFI

0 1 2 3 4 5 6 7
Energy (joule)

Energy (joule)
Time (second)

0 1 2 3 4 5 6 7 8 9
Time (second)

(b)

EU

EU w/ MMS

EU w/ NET1

EU w/ NET2

EU w/ NET3

ALLU w/o NET3

ALLU

EU w/ NET1 w/ WIFI

EU w/ NET2 w/ WIFI

ALLU w/o NET3 w/ WIFI

ALLU w/ WIFI

0 1 2 3 4 5 6 7 8
Energy (joule)

Energy (joule)
Time (second)

Fig. 10: The duration and energy consumption of graceful shutdown for the (a) RPi3 and (b) RPiZW when various unit

configurations are applied. The lower and upper axes show Tsdn and Esdn, respectively.

0 0.5 1 1.5 2 2.5 3 3.5
Time (second)

(a)

EU

EU w/ NET1

ALLU

EU w/ WiFi

ALLU w/ WiFi

0 1 2 3 4 5
Energy (joule)

0 1 2 3 4
Time (second)

(b)

EU

EU w/ NET1

ALLU

EU w/ WiFi

ALLU w/ WiFi

0 0.5 1 1.5 2 2.5 3
Energy (joule)

Energy (joule)
Time (second)

Fig. 11: The duration and energy consumption of forced shut-
down for the (a) RPi3 and (b) RPiZW when various unit

configurations are applied. The lower and upper axes show Tsdn

and Esdn, respectively.

0 0.05 0.1 0.15 0.2
Time (second)

(a)

EU

EU w/ WiFi

ALLU w/ WiFi

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Energy (joule)

0 0.1 0.2 0.3 0.4
Time (second)

(b)

EU

EU w/ WiFi

ALLU w/ WiFi

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Energy (joule)

Energy (joule)
Time (second)

Fig. 12: The duration and energy consumption of forced-forced
shutdown for the (a) RPi3 and (b) RPiZW when various unit

configurations are applied. The lower and upper axes show Tsdn

and Esdn, respectively.

units and the completion of prerequisite stages. For a given
user application, we break the code into a stage set S =
{si, sj , ...}. Each stage si has two types of dependencies:

D(si) = {sj , sk, ...} (1)

and
DÕ(si) = {uj , uk, ...} (2)

where DÕ(si) is called the stage dependency set and refers
to the set of user application’s stages that must be com-
pleted before starting stage si, and D(si) is called unit

dependency set and refers to the set of units on which stage
si depends on. Each stage is invoked by systemd when
the dependency sets specified in the stage’s unit file are
resolved. Therefore, for systemd to build the dependency
tree and run the stages in an orderly manner, each stage’s
dependency sets must be specified in its corresponding
unit file’s Requires section.

Since the stages of execution might be implemented
as independent processes, they may not share the same
address space. Therefore, a mechanism is required to share
data across processes. To this end, Pallex utilizes the
mechanism o�ered by Unix Domain Socket (UDS) [62].
UDS is a data communication endpoint for exchanging
data between processes executing on the same host OS,
and provides a standard method for implementing Inter-
Process Communication (IPC) on a Unix-based system.
Since UDS handles communication within the Linux ker-
nel, it is initialized in the kernel space as well. This
indicates that we can use them as reliable means of
communication during Pusi. When a stage si completes its
execution and needs to transfer data to another stage sj ,
the kernel blocks si until sj is ready [63]. During this time,
processor resources are used for the activation of units that
are required by stage sj . When the dependencies of sj are
resolved and it requests the shared data, si completes the
data transfer and then exits.

There are at least three other IPC methods we could
have used, including TCP/UDP sockets, POSIX message
queues, and writing to a file. The reasons that we did not
use these methods are as follows. First, using a TCP/UDP
connection over localhost requires waiting for network-
ing.service to load, which reduces the level of concur-
rency for those stages that do not need the networking
capability. Besides, assume that a user application only
uploads the results to the cloud when abnormal behavior is
detected. In this case, relying on the networking.service
unnecessarily increases the energy consumption of the

13

boot up process as we demonstrated in Section IV-B). Sec-
ond, writing to a file increases the I/O overhead and a�ects
the boot up time and message sharing delay because of
the SDC activity during the userspace initialization phase.
Lastly, we did not use POSIX message queues because
they are very low-level and require careful configuration.
Although both UDS and POSIX message queues are avail-
able almost concurrently, for the latter, it is necessary
to configure the size and number of messages and their
accepted/waiting status to make sure that enough bu�er is
available. Although message queues o�er various features,
UDS is standard, easy to use, and fast. UDS allow us
to send data to the socket before the receiving program
is even started with little to no configuration. Therefore,
the sending program can be completely divorced from the
receiver regarding dependencies. Also, UDS is agnostic
towards payload size and can pause the sending program
until the FIFO queue of data has begun to move and there
is memory available to continue sending.

We further clarify the operation of Pallex through the
scenario presented in Figure 13. This example assumes
that the user application is composed of two processes
(or threads), and the first process depends on the data
generated by the second process to complete its task.
Also, each process can be broken into a set of sequentially
running stages. For the stages we assume that,

D(si) = ÿ, D(sj) = {si}, D(sk) = {si, sj},

D(sm) = ÿ, D(sn) = {sm}, D(sl) = {si, sj , sk, sm, sn}

Each stage also depends on a set of units. Figure 13
shows the instances where the stage dependency set and
unit dependency set of each stage are resolved. Since
D(si) = {} and D(sm) = {}, both stages can start at
time t1 at which point their unit dependency sets are
resolved. Therefore, these two stages run in parallel while
the userspace units are being activated. At time t2, stage si

completes. However, sj cannot be started because its unit
dependency set is resolved at t3. Therefore, si is blocked
and waits until stage sj is started and is ready to receive
the data generated by si. Sharing the messages generated
by a stage si with the next stages is denoted as Msi . This
figure also shows that, since D(sl) = {si, sj , sk, sm, sn},
stage sl cannot be started before the completion of sn.
Once started, stage sl reads Msn and Msk , the messages
shared by two stages sn and sk. At time t9, both the unit
and stage dependency sets of sl are resolved, and this stage
has all the resources necessary to complete its operation.
The user application finishes at time t10. At this point, the
system enters the shutdown phase.

The performance improvement achieved by Pallex
highly depends on the number of and dependencies be-
tween the stages of a user application. Specifically, to
minimize the waiting time of each stage and reduce energy
consumption, it is important to break a user application
into stages with small unit dependency sets. To this end,
system developers must identify the main tasks performed
by the application carefully, before restructuring them as

stages. Each stage must resolve all its dependencies before
beginning execution. Therefore, each stage must comprise
a set of instructions that once started, can be completed
without relying on the completion of any other unit or
stage. However, finding the right decomposition might not
be a straightforward task due to the large number of units
activated during Pusi. Besides, little to no improvement
is observed by minimizing the waiting time of stages on
units requiring execution time of only a few milliseconds.
Due to the sampling-processing-sending nature of IoT
applications, we can narrow down the list of essential units
to simplify the task of decomposition, as follows.

– GPIO. These interfaces are initialized by the GPU.
Therefore, as soon as systemd finishes its initialization
(0.75s for the RPi3 and 1.2s for the RPiZW), user appli-
cations can use the GPIO pins. In addition to enabling
the execution of user applications at the beginning of
Pusi, using GPIOs provides a faster communication
interface without the high overhead of a full networking
stack, especially when a small amount of data must be
communicated between nearby devices.

– I2C, SPI, CSI. The drivers for I2C (Inter-Integrated Cir-
cuit), SPI (Serial Peripheral Interface) and CSI (Camera
Serial Interface) are loaded as kernel modules during
Pknl. Therefore, the unit dependency of user applica-
tions relying on these components is resolved at the
beginning of Pusi.

– Bluetooth. Bluetooth depends on both hci-
uart.service and bluetooth.service. As Section
IV showed, the activation of these services finishes after
rc.local. Therefore, user application stages that rely
on Bluetooth must be started by creating a systemd
service that starts after bluetooth.service instead of
rc.local. If an application includes tasks that do not
depend on these services, then running those tasks as
stages that start before the completion of these services
can result in a considerable performance improvement,
especially due to their long activation duration.

– WiFi. Stages that rely on WiFi must be initialized after
the activation of network.target. Another option is to
start the stage after network-online.target, which is
invoked once the network is connected as opposed to
available.

– Ethernet. Similar to WiFi, the status of the Ethernet
interface can be derived from network.target. A dif-
ference between the WiFi and Ethernet interfaces is
that the speed of initializing Ethernet is faster because
it does not perform the authentication and association
process required for WiFi. Therefore, using Ethernet
results in a shorter duty cycle. However, since most IoT
applications rely on wireless communications, we mainly
focus on WiFi in this paper.

In Appendix A, we present an overview of units to
provide the users with guidelines regarding the impact of
each unit on each application scenario.

14

Msi

si (execution) sj (execution) sk (execution) sl (execution)

Msj
Msk

time

sm (execution) sn (execution)

Msm

t1 : Completion of
D(si) and D’(si)

t2 : Completion of D(sj)

t3 : Completion of D’(sj)

t4 : Completion of D’(sk)

t6 : Completion of D(sk)

t1 : Completion of D(sm) and D’(sm)

Msn

t8 : Completion of D’(sl)

t9 : Completion of D(sl)

t5 : Completion of D(sn)

t7 : Completion of D’(sn)

t10 : User Application
Execution Finished

Userspace Initialization Phase

si (waiting)

sm (waiting) sn (waiting)

Shutdown

Fig. 13: An example of Pallex. The stage set of user application includes six stages, S = {si, sj , sk, sl, sm, sn}. A new stage is

started as soon as its stage dependency set and unit dependency set are satisfied. Stages share their messages using the mechanism

o�ered by Unix Domain Socket (UDS).

B. User Application Scenarios for Evaluating Pallex

In this section, we evaluate the performance of Pallex
when applied to various types of user applications imple-
mented on the RPi3 and RPiZW. Since using the RPi3 or
RPiZW is justified when the application at hand cannot
be accomplished using resource-constrained devices (such
as those employing ARM Cortex-M or R processor), our
user application scenarios include heavy operations like
image capture, encryption, and classification. However, it
should be noted that we omit image classification using
RPiZW due to the high overhead caused by running the
machine learning algorithm on this platform. We explain
these scenarios in the following subsections.

1) Scenario 1: Image Capture (IC): For this scenario
we used a camera module [58] to capture an image. The
application stage set includes only one stage, P = {scap},
where D(scap) = ÿ and DÕ(scap) = ÿ. Therefore, we
use unit configuration EU for this scenario. The camera
module is capable of capturing one picture per second
(each around 2.5MB) and uses CSI to communicate with
the RPi. After capturing the image, the user application
saves the image as a JPEG file. The stage scap is written
as a Python program that calls the picamera library [64]
(written in Python) to capture the image.

2) Scenario 2: Image Capture+Encryption (IC&E):

We extend "Scenario 1" by encrypting the captured image
using the AES-256 encryption algorithm. The application
stage set includes one stage, P = {scap+enc}, where
D(scap+enc) = ÿ and DÕ(scap+enc) = ÿ. Please note that
since encryption depends on capture, we do not decompose
the application into two stages. This scenario uses Unit
configuration EU. The stage scap+enc is written as a
Python program that calls the picamera library to capture
the image, then calls the GNU Privacy Guard (gpg) utility
(written in C) to encrypt the image.

3) Scenario 3: Image Capture+Classification (IC&C):

In this scenario, we capture an image and classify it
using a pre-trained K-Nearest Neighbors (KNN) algorithm
[65]. Since image capture and loading the model are

independent, we decompose the application into three
stages: image capture (scap), loading the KNN model
(sload), and performing classification (sclas). Therefore,
P = {scap, sload, sclas}, where D(scap) = ÿ, DÕ(scap) = ÿ,
D(sload) = ÿ, DÕ(sload) = ÿ, D(sclas) = {scap, sload} and
DÕ(scap) = ÿ. Please note that scap and sload are two con-
currently running processes. Consequently, the two heavy
stages, i.e., image capture and loading the model, start and
run concurrently. sclas depends on the completion of scap

and sload to perform its operation. This scenario uses Unit
configuration EU. The implementation of the scap stage
is as before. The stage sload is implemented in a Python
program that loads scikit-learn’s KNN model (written in
Cython) [66]. The stage sclas is implemented in a Python
program that uses scikit-learn’s KNN algorithm to classify
the image.

4) Scenario 4: Image Capture+Upload (IC&U): In this
scenario, we capture an image and transmit it to a
cloud server through WiFi communication with an ac-
cess point. The application stage set includes two stages,
P = {scap, supl}, where D(scap) = ÿ, DÕ(scap) = ÿ,
D(supl) = {scap} and DÕ(supl) = {unet}, where unet

refers to the network-online.target unit. Please note
that the service configuration we used for this scenario
is EU w/NET1. Because networking services require a
relatively long duration to initialize, we are interested
in evaluating Pallex in scenarios where Tusi is long. For
the RPi3 and RPiZW, we vary the number of images
that are captured and uploaded from 1 to 3. For the
RPi3, activating networking.service is approximately
3.5s, which means that we can capture a maximum of
3 images in parallel with this service activation without
negatively impacting the duration of userspace initial-
ization.no Although activating networking.service on
the RPiZW is longer than 7.4s, we cap the maximum
number of images at 3 to present a fair comparison across
the two boards. These sub-scenarios are referred to as
IC&Ux, where x refers to the number of images captured
and uploaded. The implementation of the scap stage is as

15

pcap (Execution)

time

Bootloader Kernel

pload (Execution)

pcap+enc (Execution)Kernel

pcap (Execution)Kernel
pclas (Execution)

pcap (Execution)Kernel pupl (Execution)

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Shutdown

Bootloader

Bootloader

Bootloader

Shutdown

Shutdown

Shutdown

Fig. 14: The four scenarios used to measure the e�ect of Pallex

on duration and energy consumption. We have used three

variations of Scenario 4 to evaluate Pallex when using WiFi

for uploading data.

before. The stage supl is implemented as a Python program
that calls the curl utility (written in C) to upload the
image.

Figure 14 shows a summary of the operations of these
applications versus time.

Threats to Validity. As the authors in [67] showed,
the choice of programming language a�ects the energy
consumption of user application depending on the task be-
ing performed. This must be taken into account when the
measurements are repeated using di�erent programming
languages than those we used.

C. Results

Considering the user application scenarios given in
Section VI-B, we present the performance measurement
results of Pallex in this section. It must be noted that
Pallex is compared against baseline scenarios that employ
unit configuration to prevent the activation of unnecessary
units. In the baseline scenarios, referred to as "EU" in
the figures, the EU configuration is used, and the user
application is started when rc.local is loaded.

Regarding duration and energy measurement, we con-
sider the interval between the instance the RPi is powered
on until the completion of the user application program.
Please note that merely measuring the impact of Pallex
on the duration of completing a user application does
not reflect performance in terms of energy e�ciency and
lifetime. Since the OS dynamically adjusts the operating
frequency of the processor cores based on load [68] (a.k.a.,
dynamic frequency scaling), it is critical to verify that the
additional system load during Pusi does not eliminate the
energy saving achieved by reducing the duration.

Figure 15 and 16 show the performance improvements
achieved using Pallex for RPi3 and RPiZW during the
boot up process, respectively. In these figures, the black
and gray bars represent Pbtl and Pknl, respectively. It must
be noted that, since Pallex a�ects system performance
after Pknl, both Ebtl and Eknl are fixed irrespective to
the RPi board used. From the userspace processing point
of view, for the IC scenario, energy consumption is re-
duced by 24.7% and 10.77% for the RPi3 and RPiZW,
respectively. For the IC&E scenario, we observe 27.22%
and 5.98% improvement in terms of duration and 21.54%

IC IC&E IC&C IC&U1 IC&U2 IC&U3
(a)

0

5

10

15

20

D
ur

at
io

n
(s

ec
on

d)

EU EU w/ Pallex

IC IC&E IC&C IC&U1 IC&U2 IC&U3
(b)

0

5

10

15

20

25

En
er

gy
 C

on
su

m
pt

io
n

(jo
ul

e) EU EU w/ Pallex

Fig. 15: The duration and energy consumption of Pallex versus

normal launching of user applications. The device used is a

RPi3. Black, grey, and white bars show the bootloader phase,

kernel phase, and the completion of user application.

IC IC&E IC&U1 IC&U2 IC&U3
(a)

0

5

10

15

20

25

30
D

ur
at

io
n

(s
ec

on
d)

EU EU w/ Pallex

IC IC&E IC&U1 IC&U2 IC&U3
(b)

0

5

10

15

20

25

En
er

gy
 C

on
su

m
pt

io
n

(jo
ul

e) EU EU w/ Pallex

Fig. 16: The duration and energy consumption of Pallex versus

normal launching of user applications. The device used is a

RPiZW. Black, grey, and white bars show the bootloader phase,

kernel phase, and the completion of user application.

and 4.89% in terms of energy for the RPi3 and RPiZW,
respectively. Both of these scenarios include a single stage
that is executed as soon as systemd is ready. It must be
noted that the user application is not the only process
running after the completion of systemd initialization. As
explained in Section IV-B, the units that are essential
for maintaining system integrity and stability are being
activated during this duration as well.

Each IC&C scenario is composed of three stages, where
two stages run in parallel and during Pusi. For this scenario
we observe a 22.68% improvement in terms of duration and
16.29% in terms of energy for the RPi3.

The IC&U scenario is composed of two stages, where
the first stage runs during Pusi. As we showed in the

16

previous sections, activating the networking.service is
a lengthy process due to the initialization of hardware and
networking utilities as well as association with the access
point. Therefore, this scenario can significantly benefit
from capturing images while the activation of networking
services is in progress. In addition, more improvement
is observed as the number of captured images increases:
When one image is captured, we find 27.57% and 7.3%
improvement in terms of userspace processing duration
for the RPi3 and RPiZW, respectively. This results in an
energy improvement of 22.67% for the RPi3 and 7.04%
for the RPiZW. These improvements are increased to
39.36% and 11.89% for these two boards when three
images are captured. Regarding energy improvement, we
observe 31.35% and 10.45% improvement for the RPi3 and
RPiZW, respectively, when three images are captured.

Comparing the two hardware platforms, we can observe
that when Pallex is applied, the RPi3 shows a higher
performance improvement compared to the RPiZW. These
results are consistent with our observations in Section
IV-B, indicating that the RPi3 platform consumes less
energy than the RPiZW in a duty-cycling capacity despite
drawing more current. The RPi3 parallelizes userspace
initialization processes across multiple cores, resulting in a
shorter duty-cycle duration. The impact of shortening the
processing duration is more significant than the impact of
the di�erence in current consumption across platforms.

To measure the impact of Pallex on the lifetime of duty-
cycled systems, we compute system lifetime as follows:

lifetime = Ebat

(Ebtl + Eknl + Eusr + Esdn) ◊ N

= 3600 ◊ 2400 ◊ 10≠3 ◊ 5
(Ebtl + Eknl + Euser + Esdn) ◊ N

(3)

where Ebtl, Eknl, Euser, and Esdn are the energy con-
sumption of the bootloader phase, kernel phase, user
application, and shutdown phase. Ebat is the available
energy of the battery, and N is the number of cycles per
hour. For the shutdown phase, we used the forced shutdown

mechanism detailed in Section V, as it is faster than the
shutdown command without sacrificing reliability. We also
assume the capacity of the battery is 2400mAh and its
voltage is 5V. Figures 17 and 18 show system lifetime
versus the number of cycles per hour for the RPi3 and
RPiZW, respectively.

The maximum improvement in the lifetime for the
RPi3 is 30.16% for scenario IC&U3, and the minimum
is 13.89% for scenario IC&C. Similarly, for the RPiZW,
the maximum improvement is 9.01% for scenario IC&U3,
and the minimum is 3.74% for scenario IC&C. For the
networking-dependent scenarios, we notice that lifetime
improvement increases versus the number of images cap-
tured and transmitted. Specifically, for the RPi3, we notice
an improvement of 18.06% for IC&U1, 25.74% for IC&U2,
and 30.16% for IC&U3. For the RPiZW, we notice an
improvement of 5.67% for IC&U1, 6.7% for IC&U2, and
9.01% for IC&U3. For the networking-independent sce-
narios, IC%C achieves the highest increase in the lifetime

1 2 3 4 5 6
Number of Cycles per Hour

(a)

0

500

1000

1500

2000

2500

3000

3500

Li
fe

tim
e

(h
ou

r)

IC
IC w/ Pallex
IC&E
IC&E w/ Pallex
IC&C
IC&C w/ Pallex

1 2 3 4 5 6
Number of Cycles per Hour

(b)

0

500

1000

1500

2000

2500

3000

Li
fe

tim
e

(h
ou

r)

IC&U1
IC&U1 w/ Pallex
IC&U2
IC&U2 w/ Pallex
IC&U3
IC&U3 w/ Pallex

Fig. 17: Lifetime of the RPi3 for di�erent user application sce-

narios. Sub-figure (a) shows networking-independent scenarios,

and sub-figure (b) shows networking-dependent scenarios.

1 2 3 4 5 6
Number of Cycles per Hour

(a)

0

500

1000

1500

2000

2500

3000

3500

Li
fe

tim
e

(h
ou

r)

IC
IC w/ Pallex
IC&E
IC&E w/ Pallex

1 2 3 4 5 6
Number of Cycles per Hour

(b)

0

500

1000

1500

2000

2500

Li
fe

tim
e

(h
ou

r)

IC&U1
IC&U1 w/ Pallex
IC&U2
IC&U2 w/ Pallex
IC&U3
IC&U3 w/ Pallex

Fig. 18: Lifetime of the RPiZW for di�erent user application

scenarios. Sub-figure (a) shows networking-independent scenar-

ios, and sub-figure (b) shows networking-dependent scenarios.

(18.33%) on the RPi3. This phenomenon is attributed to
the higher processing demand and concurrent execution of
scap and sload stages.

The improvements in the lifetime, in particular, reduce
the cost of energy harvesting systems as well as system
maintenance. For example, when the amount of energy
consumed per hour is reduced, a lower-cost energy harvest-
ing system (e.g., smaller solar panels, smaller batteries)
can be used as it is provided with more time to harvest and
store energy. For fully battery powered systems, increasing
lifetime reduces the frequency of system maintenance to
replace or recharge the batteries.

17

VII. Threats to Validity

In addition to the discussions regarding threats to
validity presented in the previous sections, we highlight
additional internal and external threats in this section.

Internal Validity. The power measurement tool used
for the experiments of this paper presents an accuracy
of 2.5%, as proved in [38], when used in the room tem-
perature of 23°C. Nevertheless, it should be noted that
both the accuracy of the power measurement tool as
well as the energy consumption of the board vary with
temperature. Specifically, for the power measurement tools
without a self-calibration feature, the impact of tempera-
ture on analog-to-digital converter (ADC) accuracy must
be carefully taken into account.

External Validity. As mentioned in Sections III and
IV-D, the experiments of this paper have been conducted
using two di�erent hardware platforms, one OS, and two
di�erent SDCs. Future work could address the applica-
bility of these observations using di�erent hardware plat-
forms and software environments. Regarding OS, we have
employed the March 2018 release of RSL. However, it must
be noted that the results might be di�erent for the new
releases of this OS. A study similar to that performed
in [69] can be very helpful to reveal the impact of OS
maintenance and updates on performance.

Reliability. The testbed architecture and experimen-
tation methodology have been presented in Section III in
details. This enables the extension of this work to other
systems and scenarios while establishing a clear baseline
for comparison with our work.

VIII. Related Work

In this section, we overview the existing works relevant
to energy measurement and modeling, boot up improve-
ment, and energy e�cient software development.

A. Energy Measurement and Modeling

Although most of the existing works on the energy
measurement and modeling of low-power systems focus on
the communication cost [70], [71], there exist a few studies
that model the energy consumption of the whole system.
The authors in [72] present a systematic analysis of energy
distribution in IoT devices that rely on energy harvesting.
Although the accuracy of the proposed models have been
verified against empirical evaluations, the proposed models
are only applicable to IoT devices that utilize micro-
controllers (e.g., Cortex-M4) and simple OSs (e.g., RTOS).
In contrast, the RPi3 board includes a Cortex-A53 proces-
sor and the operation of its OS is significantly more com-
plex than RTOSs such as FreeRTOS [9] and ThreadX [8].
PowerPi [20] proposes a power estimation model for the
RPi Model B. The power estimation model is composed of
the power consumption of a processor, an Ethernet NIC,
and an external WiFi transceiver. Although the proposed
models present a realistic power consumption of the board
versus processor and communication load, the models do

not provide insights regarding the performance of duty-
cycled systems regarding the boot up overhead. Besides,
applying these models requires the pre-measurement of
processor utilization and networking load, which might
not be feasible for complex tasks. An extension of the
PowerPi modeling approach has been proposed in [73] for
various single-board computers. The authors in [74] model
the power consumption of ARM-based architecture, using
regression analysis to develop statistical power models. At-
tention is given to both the processor itself and the system
as a whole, i.e. wireless radios, in di�erent scenarios, such
as browsing the web or multimedia benchmarking. The
paper concludes that hardware changes such as increasing
the size of the L2 cache can increase power e�ciency, but
does not go into detail concerning improvements that can
be made in software to increase e�ciency when modifying
the hardware is not feasible.

B. Boot-up Improvement

In this section, in addition to userspace optimization,
we also study several other techniques for improving
boot up, namely, bootloader optimization, kernel space
optimization, and suspend optimization. Variants of these
techniques can be utilized in conjunction with our work to
further enhance boot up time and energy consumption.

1) Userspace Optimization: The authors in [28] identify
several areas of improvement for boot up time on Debian, a
Linux operating system, which at the time used sysvinit.
Although Raspbian uses systemd instead of sysvinit, its
backwards compatibility allows for some of these optimiza-
tions to translate over to devices using systemd as their
init system. The first area of optimization involves sub-
stituting lighter default applications. For example, boot up
time was improved by two seconds by using dash instead
of bash, the default shell for Debian. Rewriting slow
shell scripts to use internal functions instead of external
functions has also been proven to improve the performance
of boot up time.

Boot scripts can also be executed in parallel. This is
achieved through setting the CONCURRENCY option in each
boot script. Reordering boot scripts can also help pro-
grams complete faster. In [31], the authors identified areas
during the boot up process of a smart TV when processor
utilization is low. They used this information to optimize
boot script execution by interleaving I/O-intensive pro-
grams with processor-intensive programs. While this can
be an e�ective solution, maintaining system stability can
be troublesome, as sysvinit does not track dependencies.
Therefore, it is the user’s responsibility to ensure any
changes do not compromise system stability. Compound-
ing the issue, dependencies between boot scripts are often
not well documented and require thorough research and
an understanding of both the Linux kernel and sysvinit
before modification is possible. By comparison, systemd, a
modern init system, tracks dependencies and automati-
cally generates a tree structure to determine which startup
tasks can be executed in parallel. Therefore, the feature set

18

of systemd makes boot script reordering a much simpler
task.

In addition to improving boot up time, we studied
several methods for shortening the duration until user

interaction time: the time it takes until the user is able
to interact with the application. In [28] the authors are
able to gain an improvement of two seconds by performing
certain tasks, such as setting up the network and hardware
clock, in the background. In [30], [31], the authors optimize
boot up time on Android smartphones and televisions
by deferring long-running services until after the log-in
screen is displayed to the user. However, this approach is
not directly applicable to the IoT devices employing duty
cycling.

Application XIP (Application Execute in Place) [29]
is another technique for improving application start up
speed. Application XIP allows for user applications to
be executed directly from the filesystem instead of first
being loaded into RAM. When a program is executed, the
kernel program loader maps text segments for applications
directly, resulting in a reduction in RAM footprint, faster
first invocation, and reduced power consumption of flash
vs RAM. However, Application XIP requires compiling the
kernel with support for a filesystem (such as CRAMFS
[75]) that supports storing files in contiguous blocks of
memory. Additionally, there are hardware requirements
for XIP such as random access storage that is directly
accessible by the processor, which the RPi platform does
not o�er.

One major complexity of userspace initialization can
be attributed to the evolution of the init system’s re-
sponsibilities. Modern init systems often manage pro-
cess scheduling, I/O scheduling, and memory scheduling,
among other responsibilities. In [76], the authors addressed
this issue by simplifying the existing init scheme to im-
prove an Android device’s boot up time.Their contribution
involves separating the init scheme into two booting
modes: normal boot, which executes all tasks during boot
up time, and quick boot, which executes only mandatory
tasks before user interaction time. However, duty-cycled
IoT systems do not typically require separate modes for
mandatory services and extra services, as an optimized
system only runs the software required to complete its
task. When device features, such as applying system up-
dates, are not utilized during every duty-cycle, they are
easily loaded after the boot up is completed. Furthermore,
modern Linux kernels support dynamic kernel module
loading using the modprobe utility.

2) Suspend-related Improvements: Another approach
to improve boot up time is the usage of a suspend or
hibernation mechanism. In [77], the standard hibernate-

resume approach is used to optimize the boot up time
of a digital camera. During the system suspend phase,
current system information such as processor registers,
I/O map information, and runtime variables (both global
and local), are stored in RAM before the device powers o�.
When the system receives certain power events, the resume

operation is started. The previous state of the device is

restored from RAM, resulting in a faster initialization time
than a regular boot up. It is important to note that the
RPi platform’s hardware does not support hibernation or
suspension, as the SoCs do not support modern power
management features [33].

In [27] and [78], methods for snapshot boot techniques are
discussed with respect to boot up time improvement on a
device running a Linux-based OS. These methods utilize
a snapshot image created at boot up time and stored on a
disk or in reserved flash memory. For subsequent boot ups,
the device loads the suspended image instead of stepping
through the standard kernel initialization process. As
opposed to a standard hibernate-resume operation, this
snapshot image is generated only once and then reused. A
major disadvantage of snapshot images is the considerable
amount time required for image generation, verification,
and storage. Also, storing a full image in addition to the
original system scripts and binaries necessary for image
generation requires a considerable amount of disk space,
which may not be available on many IoT platforms. If the
image is corrupted (due to power loss, for examples), the
device may become unrecoverable if a fallback image is
unavailable. To mitigate these issues, the authors in [79]
proposed a dual-image system, where some essential ser-
vices and initialization are kept in the first image, and less
critical functions are loaded by the second image, referred
to as the essential-snapshot-image and supplementary-

snapshot-image, respectively.
3) Bootloader Optimization: The bootloader is respon-

sible for initializing the hardware and loading the kernel.
In most cases, the kernel is compressed to save space and
the bootloader must decompress it before use. The authors
in [25] analyzed the time required by the bootloader and
compared the performance of several root filesystems for
fast boot up time. Decompressing the kernel with gzip-
cheksum on their system resulted in a bootloader time
of 16s. Conversely, using gzip-nochecksum required only
12s, with a reduction of 3.8s. While the actual decom-
pression of the image took 2.79s, verifying the checksum
required an extra second on their device. In addition, the
cost of calculating the checksum for the RAM disk was
2.78s. They found that storing the image in a decom-
pressed format can circumvent this process. These results
are noteworthy in the realm of embedded Linux, where
processors may be slower than the RPi’s processor and
the onboard flash is more responsive than the SDC used
by the RPi. However, most general-purpose Linux systems
can decompress the kernel faster than the storage medium
can read the uncompressed alternative. Therefore, it is
important to balance the speed of the processor and the
I/O read speed before seeking performance gains from an
uncompressed kernel.

Similar to Application XIP, Kernel XIP (Kernel
Execute-In-Place) [29] is a popular technique used for
optimizing bootloader initialization. In a typical boot
sequence, the kernel is decompressed either during or
just after it is loaded into memory. XIP enables direct
execution of kernel instructions directly from ROM or

19

flash memory. However, this method requires the kernel
be stored in an uncompressed format, thereby requiring
more storage space. The RPi platform does not support
Kernel XIP due to hardware constraints.

4) Kernel Space Optimization: In [25], the authors
show the e�ect of removing unnecessary kernel modules
and bundling multiple modules into a single module on
decreasing kernel loading time. In another work [29],
the authors evaluate the e�ect of disabling kernel print
statements to prevent bottlenecks caused by streaming
messages to the console. The quiet option in the kernel
configuration changes the logging level of print state-
ments to 4, which suppresses the output of regular (non-
emergency) messages.

C. Energy-E�cient Software Development

The importance of energy e�cient software develop-
ment has been attracting a lot of attention from both
industry and academia [67], [80], [81]. The importance,
in particular, is revealed by [14], which studies the pop-
ularity of energy-e�cient software design by developers.
Specifically, for mobile application development, the liter-
ature proposes various approaches and tools to study and
improve energy consumption. For example, [82] combines
empirical power measurement with statistical modeling
to o�er energy consumption information at the source
line level. The authors in [83] propose a technique that
first determines the execution trace of the code and then
applies a set of cost functions to estimate the energy
consumption of the execution path. The authors in [69]
study the impact of software maintenance and update
on energy consumption. Although these solutions do not
directly address the energy consumption and overhead of
duty-cycled systems from the boot up and shutdown point
of views, they are complementary to our work and can be
used to enhance the performance of these systems further.
For example, developers can first use these techniques to
improve the energy utilization of an user application and
identify the energy bugs. Then Pallex can be employed to
parallelize the execution of the user application’s stages
with the userspace initialization phase.

IX. Conclusion

The increasing number of Linux-based IoT devices used
for edge and fog computing necessitates the adoption of
duty-cycling mechanisms to reduce the energy consump-
tion of these devices. To this end, profiling and improving
the operation of userspace initialization o�ers techniques
that can be easily adopted by users. In this work, we pre-
sented a thorough study of the Linux boot up process, in
particular the e�ects of unit activation on the duration and
energy consumption of the boot up and shutdown phases.
We showed that although some units cannot be disabled
without compromising system stability, duty-cycling per-
formance is significantly enhanced by application-specific
unit configuration. Our studies also showed that there is no
e�ect on boot up performance when up to 95% of the SDC

capacity is utilized. However, using a faster SDC results
in a slightly shorter, more energy e�cient duty-cycle.
After analyzing the resource utilization of the RPi3 and
RPiZW during the boot up process, we showed that user
applications can be executed in parallel with the userspace
initialization phase to reduce the energy consumption of
each duty-cycle. To this end, we proposed Pallex, a parallel
execution framework which relies on systemd and Unix
Domain Sockets to break a user application into multiple
phases. Our evaluations show up to a 31% reduction in
energy consumption and up to a 30% enhancement in
lifetime when Pallex is applied to various IoT application
scenarios. Our studies also reveal the trade-o� between
processing power and current consumption. Although the
current draw of the RPiZW is lower than that of the RPi3,
this paper confirms the RPi3 platform is more suitable
for duty-cycled applications. This is because the RPi3
parallelizes userspace initialization and user application
processes across multiple cores, resulting in lower energy
consumption by shortening processing duration.

Some potential areas of future work are as follows:
Although the studies of this paper revealed the significant
e�ects of quad-core and single-core SoCs on duty-cycling
performance, extending these observations and profiling
the performance of other COTS Linux-based boards is of
interest. From the shutdown point of view, developing a
model to predict the probability of SDC corruption based
on factors such as capacity, I/O rate, and duty-cycling
frequency enables users to choose the best shutdown mech-
anism available without compromising system reliability.
Regarding Pallex, although we have provided guidelines
to simplify its applicability to other IoT scenarios, it
would be helpful to develop a program to analyze user
application code and break it into stages based on the
tasks it performs and the dependencies of those tasks.
Finally, unit configuration and Pallex can be integrated
with bootloader and kernel-level optimization mechanisms
to further enhance performance.

Acknowledgment

This research has been partially supported by the Santa
Clara Valley Water District research grant SCWD02. This
project involves the development of a flood monitoring
system where Linux-based wireless systems, which rely on
solar or battery power, capture images for analysis using
machine learning to classify and report the debris carried
by rivers and streams.

Appendix A

List of Units in Raspbian Stretch Lite (RSL)

In this section, we present an overview of the units
available in RSL. All units except those in the EU category
can be disabled if they are not necessary for the application
scenario being considered.

20

A. Essential Units (EU)

– boot.mount: This unit helps systemd resolve depen-
dency trees for units that depend on mounting /boot
before activation.

– dev-mmcblk0p2.device: This unit brings the root par-
tition on the SDC into the scope of systemd so that
units that require the root partition’s mount to finish
before activation can resolve their dependencies prop-
erly.

– dev-mqueue.mount: This unit informs systemd when
the POSIX message queues for internal system messages
is ready.

– kmod.service: This service contains modprobe, which
is used for loading and unloading kernel modules.

– kmod-static-nodes.service: This service creates a
list of required static modules for the loaded kernel.

– run-rpc_pipefs.mount: This unit directs systemd on
how to mount the RAM-based pipefs, which is used
every time a process is forked or a pipe (“|”) is used.

– sys-kernel-debug.mount: Similar to dev-
mmcblk0p2.device, this unit helps systemd resolve
dependencies correctly. The actual mounting of debugfs
occurs within udev, which is the daemon that detects
hardware changes.

– sys-kernel-config.mount: This unit prevents the sys-
tem from reaching sysinit.target until the kernel
configuration parameters are fully loaded into the kernel
from the Configuration File System (configfs).

– systemd-fsck.service and systemd-fsck-
root.service: These services run fsck on each
partition to ensure file system consistency. This is an
important step, and does not run every time unless
there are problems detected on the SDC.

– systemd-journald.service: Many programs rely on
journald for logging output, including the kernel
(through kmsg). Therefore, it should not be disabled.
However, in order to speed up its initialization, it may
be useful to lower the size limit of the journal logs since
a dependency, systemd-journal-flush.service, must
rotate this log file on initialization.

– systemd-modules-load.service: This service starts
early in the userspace initialization phase to load static
kernel modules.

– systemd-remount-fs.service: In the beginning of the
userspace initialization phase, this service mounts the
necessary API filesystems for the kernel (such as /proc,
/sys, or /dev) to a RAM disk.

– systemd-random-seed.service: This service loads the
random seed and saves it at shutdown to enable the
device to generate a new value when the system restarts.

– systemd-sysctl.service: By loading kernel configu-
rations, this service enables systemctl to perform as
expected.

– systemd-udevd.service: This service initializes udev,
a daemon that listens to kernel uevents and matches
them against specified rules, to run scripts. For example,
it can load drivers when a new device is attached, or

mount a USB drive when it is plugged in.
– systemd-udev-trigger.service: Devices plugged in

before the system is powered on might not generate the
kernel messages necessary for udev to discover them.
This service probes and detects devices that udev would
not normally discover.

– sudo.service: This service clears cached sudo privilege
escalations to enforce user re-authentication after every
reboot.

– systemd-tmpfiles-setup.service and systemd-
tmpfiles-setup-dev.service: Mount /tmp and delete
the old files. These services also create any files that are
specified by user-provided configuration.

– systemd-rfkill.service: This service restores the
rfkill state at the beginning of userspace initialization
to ensure it matches the status saved before shutdown.
Therefore, if the wireless peripherals (typically WiFi
or Bluetooth) had rfkill preventing their use before
shutdown, they will remain disabled on reboot.

– systemd-update-utmp.service and systemd-update-
utmp-runlevel.service: Record and manage the sys-
tem uptime, the logged-in users, and users’ log-in
method (such as ssh, tty, and serial port).

– systemd-user-sessions.service: This service en-
ables user log-in and denies log-in attempts after the
shutdown signal has been sent. If a device in the field
does not require log-in capabilities, this service does not
need to be started automatically. For example, it can be
started by a helper program when a GPIO pin is pulled
high.

– systemd-logind.service: This service is responsible
for tasks such as user session management, processor
usage quotas, and device access management.

B. Networking-related Services (NRS)

– avahi-daemon.service: This service enables programs
to discover and publish services and hosts running on
a local network. Note that this service can significantly
slow the speed of the ifdown command and therefore the
shutdown process if not completely uninstalled. Unless
necessary for the user application, avahi-daemon should
be uninstalled.

– bluetoothd.service: Daemon for controlling the Blue-
tooth interface. Bluez, bluetoothctl, and many other
Bluetooth-related utilities communicate through this
daemon.

– dhcpcd.service: The daemon responsible for managing
the DHCP protocol on all targeted network interfaces.
This service can be disabled if the device does not
require a network connection or is guaranteed a static
IP address. The duration of IP allocation depends on
external factors including link quality and the load of
access point.

– hciuart.service: This is responsible for initializing
the HCI bluetooth interface. HCI stands for "Host-to-
Controller-Interface" and it is controlled over a serial
UART interface.

21

– networking.service: Completes the configuration of
WiFi and Ethernet interfaces based on the settings
available in the /etc/network/interfaces configura-
tion file.

– nfs-config.service: This service, along with nfs-
common.service, loads configuration details applicable
to Network File Systems (NFS).

– rsyncd.service: Daemon that listens on port 873 for
incoming rsync file transfer requests. rsync is used
for e�ciently transferring and synchronizing files across
computer systems.

– rpcbind.service: This service accepts requests for Re-
mote Procedure Calls (RPC) and binds them to TCP
ports for access and control.

– sshd.service: This service belongs to the OpenSSH
package. It runs in the background to listen for and
accept or deny incoming ssh connections according to
a user-defined configuration file.

– systemd-hostnamed.service: This service can be used
to control the hostname and related metadata by user
programs.

– systemd-networkd.service: Brings up the system’s
network manager and provides it with discovered net-
works, both physical and virtual.

– systemd-resolved.service: Provides local DNS reso-
lution for namespaces such as localhost or those added
by the user to overlay DNS provided by an external
source.

– systemd-timesyncd.service: Used for time synchro-
nization across the network.

C. Memory Management Services

– dphys-swapfile.service: This service initializes,
mounts, unmounts, and deletes swap files on the SDC.
If the available RAM is enough for the user application,
then disabling this service results in a performance
enhancement in terms of faster boot up time and
prolonged SDC lifetime. This service is usually required
when the user application involves loading large machine
learning models and data sets.

D. I/O-related Services

– alsa-utils.service: Represents the tools relating to
the Advanced Linux Sound Architecture (ALSA).

– alsa-restore.service: Initializes and restores the last
state of the RPi’s onboard soundcard.

E. Miscellaneous Units

– fake-hwclock.service: This service saves the current
time to a file at shutdown and loads it at boot up time.
Without this service, the RPi is unaware of the current
epoch time until it establishes a network connection. An
incorrect epoch value may cause some files to appear as
if they are edited in the future.

– plymouth.service: Provides a flicker-free graph-
ical boot up process. Other related services in-

clude plymouth-quit.service, plymouth-quit-
wait.service, plymouth-start. service, and
plymouth-read-write.service.

– raspi-config.service: This service loads configura-
tion changes made by the user such as processor gover-
nance, display overscan, and filesystem partition expan-
sions, and applies them on reboot.

– rsyslog.service: Tools for log processing and conver-
sion.

– console-setup.service: Configures the fonts, screen
resolution, keyboard layout, etc., for virtual tty termi-
nals.

References

[1] P. Delforge, “Slashing energy use in computers and monitors
while protecting our wallets, health, and planet.” Natural
Resources Defense Council, 2016.

[2] S. Chu and A. Majumdar, “Opportunities and challenges for a
sustainable energy future,” nature, vol. 488, no. 7411, p. 294,
2012.

[3] Z. Wang, Y. Liu, Y. Sun, Y. Li, D. Zhang, and H. Yang, “An
energy-e�cient heterogeneous dual-core processor for Internet
of Things,” in IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2015, pp. 2301–2304.

[4] M. Ueki, K. Takeuchi, T. Yamamoto, A. Tanabe, N. Ikarashi,
M. Saitoh, T. Nagumo, H. Sunamura, M. Narihiro, K. Uejima
et al., “Low-power embedded reram technology for iot applica-
tions,” in Symposium on VLSI Technology. IEEE, 2015, pp.
T108–T109.

[5] Cypress Semiconductor. CYW43907: IEEE 802.11 a/b/g/n SoC
with an Embedded Applications Processor. [Online]. Available:
http://www.cypress.com/file/298236/download

[6] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. C.
Schmidt, “RIOT OS: Towards an OS for the Internet of Things,”
in IEEE Conference on Computer Communications Workshops
(INFOCOM Workshops). IEEE, 2013, pp. 79–80.

[7] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,
A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer et al., “TinyOS: An
operating system for sensor networks,” in Ambient intelligence.
Springer, 2005, pp. 115–148.

[8] (2018) ThreadX RTOS Real-Time Operating Sys-
tem. [Online]. Available: https://rtos.com/solutions/threadx/
real-time-operating-system/

[9] (2018) The FreeRTOS Kernel. [Online]. Available: https:
//www.freertos.org

[10] C. E. Jones, K. M. Sivalingam, P. Agrawal, and J. C. Chen,
“A survey of energy e�cient network protocols for wireless
networks,” wireless networks, vol. 7, no. 4, pp. 343–358, 2001.

[11] B. Dezfouli, M. Radi, and O. Chipara, “Rewimo: a real-time and
reliable low-power wireless mobile network,” ACM Transactions
on Sensor Networks (TOSN), vol. 13, no. 3, p. 17, 2017.

[12] B. Dezfouli, M. Radi, K. Whitehouse, S. A. Razak, and T. Hwee-
Pink, “DICSA: Distributed and concurrent link scheduling al-
gorithm for data gathering in wireless sensor networks,” Ad Hoc
Networks, vol. 25, pp. 54–71, 2015.

[13] S. Zoican and M. Vochin, “LwIP stack protocol for embedded
sensors network,” in 9th International Conference on Commu-
nications. IEEE, 2012, pp. 221–224.

[14] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about
software energy consumption,” in Proceedings of the 11th Work-
ing Conference on Mining Software Repositories. ACM, 2014,
pp. 22–31.

[15] J. Hong, Y.-G. Hong, and J.-S. Youn, “Problem Statement of
IoT integrated with Edge Computing,” 2018. [Online]. Available:
https://tools.ietf.org/html/draft-hong-iot-edge-computing-00

[16] E. Gri�ths, S. Assana, and K. Whitehouse, “Privacy-preserving
image processing with binocular thermal cameras,” Proc. ACM
Interact. Mob. Wearable Ubiquitous Technologies, vol. 1, no. 4,
pp. 133:1–133:25, 2018.

[17] R. Kelly, “Internet of things data to top 1.6 zettabytes by 2022,”
Campus Technology, vol. 9, pp. 1536–1233, 2016.

22

[18] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6,
pp. 854–864, 2016.

[19] Eclipse Foundation, “Key Trends from the IoT Developer
Survey 2018.” [Online]. Available: https://blogs.eclipse.org/
post/benjamin-cabe/key-trends-iot-developer-survey-2018

[20] F. Kaup, P. Gottschling, and D. Hausheer, “PowerPi: Measuring
and modeling the power consumption of the Raspberry Pi,” in
39th Conference on Local Computer Networks (LCN). IEEE,
2014, pp. 236–243.

[21] R. Morabito, “Virtualization on internet of things edge devices
with container technologies: a performance evaluation,” IEEE
Access, vol. 5, pp. 8835–8850, 2017.

[22] V. Vujovic and M. Maksimovic, “Raspberry Pi as a Wireless
Sensor node: Performances and constraints,” in 37th Interna-
tional Convention on Information and Communication Tech-
nology, Electronics and Microelectronics (MIPRO). IEEE,
2014, pp. 1013–1018.

[23] R. Fisher, L. Ledwaba, G. Hancke, and C. Kruger, “Open
hardware: A role to play in wireless sensor networks?” Sensors,
vol. 15, no. 3, pp. 6818–6844, 2015.

[24] B. Dezfouli, M. Radi, S. A. Razak, T. Hwee-Pink, and K. A.
Bakar, “Modeling low-power wireless communications,” Journal
of Network and Computer Applications, vol. 51, pp. 102–126,
2015.

[25] K. H. Chung, M. S. Choi, and K. S. Ahn, “A study on the
packaging for fast boot-up time in the embedded Linux,” in
13th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA). IEEE, 2007,
pp. 89–94.

[26] C. Villegas. (2006) Improve the Debian boot process. [Online].
Available: http://bootdebian.blogspot.com

[27] H. Kaminaga, “Improving linux startup time using software
resume (and other techniques),” in Linux Symposium, 2006,
p. 17.

[28] C. Villegas and P. Reinholdtsen, “State-of the-art in
the boot process.” Google Summer of Code, 2006.
[Online]. Available: https://pdfs.semanticscholar.org/a171/
696ddb41ba8aad53cdcbb6aba1c4547aa80e.pdf

[29] T. R. Bird, “Methods to Improve Bootup Time in Linux,” in
Proceedings of the Linux Symposium, 2004.

[30] G. Singh, K. Bipin, and R. Dhawan, “Optimizing the boot
time of android on embedded system,” in 15th International
Symposium on Consumer Electronics (ISCE). IEEE, 2011,
pp. 503–508.

[31] H. Jo, H. Kim, J. Jeong, J. Lee, and S. Maeng, “Optimizing
the startup time of embedded systems: a case study of digital
tv,” IEEE Transactions on Consumer Electronics, vol. 55, no. 4,
2009.

[32] E. Upton, J. Duntemann, R. Roberts, B. Everard, and T. Mam-
tora, Learning Computer Architecture with Raspberry Pi. John
Wiley & Sons, 2016.

[33] “BCM2835 ARM Peripherals.” [Online]. Avail-
able: https://www.raspberrypi.org/app/uploads/2012/02/
BCM2835-ARM-Peripherals.pdf

[34] (2018) systemd System and Service Manager. [Online]. Avail-
able: https://www.freedesktop.org/wiki/Software/systemd/

[35] J. Gorauskas, “Managing Services in Linux: Past, Present and
Future,” Linux J., vol. 2015, no. 251, 2015.

[36] “systemd.unit,” 2018. [Online]. Available: https://www.
freedesktop.org/software/systemd/man/systemd.unit.html

[37] R. Love, Linux Kernel Development, 3rd ed. Addison-Wesley,
2010.

[38] B. Dezfouli, I. Amirtharaj, and C.-C. Li, “EMPIOT: An energy
measurement platform for wireless IoT devices,” Journal of
Network and Computer Applications, vol. 121, pp. 135 – 148,
2018.

[39] “C library for Broadcom BCM 2835.” [Online]. Available:
http://www.airspayce.com/mikem/bcm2835/

[40] “Wiring Pi: GPIO Interface library for the Raspberry Pi.”
[Online]. Available: http://wiringpi.com

[41] Tektronix. DMM7510 7 1
2 Digit Graphical Sampling

Multimeter. [Online]. Available: https://www.tek.com/
tektronix-and-keithley-digital-multimeter/dmm7510

[42] X. Jiang, P. Dutta, D. Culler, and I. Stoica, “Micro Power Meter
for Energy Monitoring of Wireless Sensor Networks at Scale,”
2007, p. 186.

[43] T. Stathopoulos, D. McIntire, and W. J. Kaiser, “The energy
endoscope: Real-time detailed energy accounting for wireless
sensor nodes,” Proceedings of International Conference on In-
formation Processing in Sensor Networks (IPSN’08), pp. 383–
394, 2008.

[44] P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler, “Energy
metering for free: Augmenting switching regulators for real-time
monitoring,” in Proceedings of the 7th International Conference
on Information Processing in Sensor Networks (IPSN’08), 2008,
pp. 283–294.

[45] J. Andersen and M. T. Hansen, “Energy Bucket: A Tool for
Power Profiling and Debugging of Sensor Nodes,” in Proceedings
of Third International Conference on Sensor Technologies and
Applications (SENSORCOMM’09). IEEE, 2009, pp. 132–138.

[46] R. Zhou and G. Xing, “Nemo: A high-fidelity noninvasive power
meter system for wireless sensor networks,” Proceedings of the
ACM/IEEE International Conference on Information Process-
ing in Sensor Networks (IPSN’13), pp. 141–152, 2013.

[47] S. Naderiparizi, A. N. Parks, F. S. Parizi, and J. R. Smith,
“µMonitor: In-situ energy monitoring with microwatt power
consumption,” in Proceedings of the IEEE International Con-
ference on RFID (RFID’16). IEEE, may 2016, pp. 1–8.

[48] I. Haratcherev, G. Halkes, and T. Parker, “PowerBench: A
Scalable Testbed Infrastructure for Benchmarking Power Con-
sumption,” in Proceedings of the International Workshop on
Sensor Network Engineering (IWSNE’08), 2008, pp. 37–44.

[49] T. Trathnigg, M. Jürgen, and R. Weiss, “A low-cost energy mea-
surement setup and improving the accuracy of energy simulators
for wireless sensor networks,” in Proceedings of the workshop on
Real-world wireless sensor networks, 2008, pp. 31–35.

[50] N. Zhu and I. O’Connor, “Energy measurements and evaluations
on high data rate and ultra low power wsn node,” in 10th IEEE
International Conference on Networking, Sensing and Control
(ICNSC), 2013, pp. 232–236.

[51] R. Hartung, U. Kulau, and L. Wolf, “Distributed energy mea-
surement in WSNs for outdoor applications,” 2016, pp. 1–9.

[52] A. Pötsch, A. Berger, and A. Springer, “E�cient analysis of
power consumption behaviour of embedded wireless iot sys-
tems,” in Proceedings of the Instrumentation and Measurement
Technology Conference (I2MTC), 2017, pp. 1–6.

[53] K. Gomez, R. Riggio, T. Rasheed, D. Miorandi, and F. Granelli,
“Energino: a Hardware and Software Solution for Energy Con-
sumption Monitoring,” in Proceedings of the International
Workshop on Wireless Network Measurements (WiOpt’12),
2012, pp. 311 – 317.

[54] S. Keranidis, G. Kazdaridis, V. Passas, T. Korakis, I. Kout-
sopoulos, and L. Tassiulas, “NITOS Energy Monitoring Frame-
work: Real Time Power Monitoring in Experimental Wireless
Network Deployments,” SIGMOBILE Mob. Comput. Commun.
Rev., vol. 18, no. 1, pp. 64–74, 2014.

[55] “systemctl,” 2017. [Online]. Available: https://www.
freedesktop.org/software/systemd/man/systemctl.html

[56] “The GNU Awk User’s Guide.” [Online]. Available: https:
//www.gnu.org/software/gawk/manual/gawk.html

[57] S. Godard, “iostat,” 2018. [Online]. Available: http://man7.
org/linux/man-pages/man1/iostat.1.html

[58] (2018) Camera Module (v2). [Online]. Available: https://www.
raspberrypi.org/documentation/hardware/camera/

[59] (2018) IMX219PQ: Diagonal 4.6mm 8.08M-E�ective
Pixel Color CMOS Image Sensor. [Online]. Avail-
able: https://www.sony-semicon.co.jp/products_en/new_pro/
april_2014/imx219_e.html

[60] S. K. Paul Rubin, David MacKenzie, “dd: convert and
copy a file,” 2018. [Online]. Available: http://man7.org/linux/
man-pages/man1/dd.1.html

[61] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A Flash Transla-
tion Layer Employing Demand-based Selective Caching of Page-
level Address Mappings,” in Proceedings of the 14th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2009, pp. 229–240.

[62] “Linux Programmer’s Manual, Socket,” 2018. [Online]. Avail-
able: http://man7.org/linux/man-pages/man2/socket.2.html

23

[63] D. P. Bovet and M. Cesati, Understanding the Linux Kernel:
from I/O ports to process management. " O’Reilly Media, Inc.",
2005.

[64] D. Jones. Python interface to the Raspberry Pi camera
module. [Online]. Available: https://picamera.readthedocs.io/
en/release-1.13

[65] N. S. Altman, “An introduction to kernel and nearest-neighbor
nonparametric regression,” The American Statistician, vol. 46,
no. 3, pp. 175–185, 1992.

[66] “scikit-learn: machine learning in python.” [Online]. Available:
https://scikit-learn.org/

[67] S. Georgiou, M. Kechagia, P. Louridas, and D. Spinellis, “What
are your programming language’s energy-delay implications?”
in Proceedings of the 15th International Conference on Mining
Software Repositories (MSR). ACM, 2018, pp. 303–313.

[68] D. Brodowski, N. Golde, R. J. Wysocki, and V. Kumar,
“CPU frequency and voltage scaling code in the Linux
(TM) kernel.” [Online]. Available: https://www.kernel.org/doc/
Documentation/cpu-freq/governors.txt

[69] A. Hindle, “Green mining: a methodology of relating software
change and configuration to power consumption,” Empirical
Software Engineering, vol. 20, no. 2, pp. 374–409, 2015.

[70] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang,
and K. S. Pister, “A realistic energy consumption model for
TSCH networks,” IEEE Sensors Journal, vol. 14, no. 2, pp. 482–
489, 2014.

[71] Q. Wang, M. Hempstead, and W. Yang, “A realistic power
consumption model for wireless sensor network devices,” in 3rd
Annual IEEE Communications Society on Sensor and Ad Hoc
Communications and Networks (SECON’06), vol. 1. IEEE,
2006, pp. 286–295.

[72] B. Martinez, M. Monton, I. Vilajosana, and J. D. Prades, “the
power of models: Modeling power consumption for iot devices,”
IEEE Sensors Journal, vol. 15, no. 10, pp. 5777–5789, 2015.

[73] F. Kaup, S. Hacker, E. Mentzendor�, C. Meurisch, and
D. Hausheer, “The progress of the energy-e�ciency of single-
board computers,” Tech. Rep. NetSys-TR-2018-01, 2018.

[74] J. Nunez-Yanez and G. Lore, “Enabling accurate modeling of
power and energy consumption in an ARM-based System-on-
Chip,” Microprocessors and Microsystems, vol. 37, pp. 319–332,
2013.

[75] Cramfs: cram a filesystem onto a small ROM. [Online]. Avail-
able: https://www.kernel.org/doc/Documentation/filesystems/
cramfs.txt

[76] G. Lim, J. young Hwang, K. Park, and S.-B. Suh, “Enhancing
init scheme for improving bootup time in mobile devices,”
2015 Eighth International Conference on Mobile Computing and
Ubiquitous Networking (ICMU), pp. 149–154, 2015.

[77] C. Park, K. Kim, Y. Jang, and K. Hyun, “Linux bootup time
reduction for digital still camera,” in Linux Symposium, 2006,
p. 231.

[78] I. Joe and S. C. Lee, “Bootup time improvement for embedded
linux using snapshot images created on boot time,” in The
2nd International Conference on Next Generation Information
Technology (ICNIT). IEEE, 2011, pp. 193–196.

[79] K. Baik, S. Kim, S. Woo, and J. Choi, “Boosting up embedded
linux device: experience on linux-based smartphone,” in proceed-
ings of the Linux Symposium, 2010, pp. 9–18.

[80] G. Procaccianti, H. Fernández, and P. Lago, “Empirical evalua-
tion of two best practices for energy-e�cient software develop-
ment,” Journal of Systems and Software, vol. 117, pp. 185–198,
2016.

[81] G. Pinto, K. Liu, F. Castor, and Y. D. Liu, “A comprehensive
study on the energy e�ciency of java’s thread-safe collections,”
in IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2016, pp. 20–31.

[82] D. Li, S. Hao, W. G. Halfond, and R. Govindan, “Calculating
source line level energy information for android applications,” in
Proceedings of the International Symposium on Software Testing
and Analysis. ACM, 2013, pp. 78–89.

[83] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating
android applications’ cpu energy usage via bytecode profiling,”
in Proceedings of the First International Workshop on Green
and Sustainable Software. IEEE, 2012, pp. 1–7.

