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ABSTRACT

The Transport Layer Security (TLS) protocol has been considered
as a promising approach to secure Internet of Things (IoT) applica-
tions. The different cipher suites offered by the TLS protocol play
an essential role in determining communication security level. Each
cipher suite encompasses a set of cryptographic algorithms, which
can vary in terms of their resource consumption and significantly
influence the lifetime of IoT devices. Based on these considerations,
in this paper, we present a comprehensive study of the widely
used cryptographic algorithms by annotating their source codes
and running empirical measurements on two state-of-the-art, low-
power wireless IoT platforms. Specifically, we present fine-grained
resource consumption of the building blocks of the handshake and
record layer algorithms and formulate tree structures that present
various possible combinations of ciphers as well as individual func-
tions. Depending on the parameters, a path is selected and traversed
to calculate the corresponding resource impact. Our studies enable
IoT developers to change cipher suite parameters and immediately
observe the resource costs. Besides, these findings offer guidelines
for choosing the most appropriate cipher suites for different appli-
cation scenarios.
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1 INTRODUCTION

The Internet of Things (IoT) is a system of interrelated comput-
ing/smart devices, such as smart homes, health-care devices as well
as autonomous driving systems, that are provided with unique
identifiers and the ability to transfer data over a network without
requiring human-to-human or human-to-computer interactions
[1]. Due to its wide application, some studies predict that by the
end of 2020, nearly 50 billion smart, connected objects will exist
[2]. It is projected in a white paper by Arm that a trillion new IoT
devices will be produced between now and 2035 [3]. However, the
lack of security has been recognized as one of the major issues that
hinders the rapid adoption of IoT systems [4].

The Transport Layer Security (TLS) protocol, which provides
authentication, data integrity, and encryption between two commu-
nication parties has been widely adopted for securing communica-
tions. Therefore, extensive studies have been recently proposed to
apply TLS in IoT applications. Unfortunately, the high security of
TLS comes at the cost of high computational and energy demands,
due to the complexity of the cryptographic algorithms adopted
by TLS. More importantly, due to the limited resources available
to the IoT edge devices, achieving a certain security level while
minimizing the resource consumption of TLS remains one of the
foremost challenges of using TLS in IoT applications [5]. The need
to strike a balance between security and resource consumption in
IoT applications forms the basis of this work.

In this paper, we mainly focus on the two major layers of TLS:
the handshake protocol layer and the record layer, as shown in
Figure 1. The handshake protocol layer, which adopts Public Key
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Figure 1: TLS Layers
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Figure 2: A visualization of the entire TLS handshake with
dotted lines representing optional messages

Cryptography (PKC), allows the server and the client to authenticate
each other and negotiate a set of cryptographic keys before the
application layer transmits or receives its first byte of data. The
record layer, which adopts symmetric cryptography, handles data
fragmentation, encryption and decryption as well as sending and
receiving TLS messages to and from the transport layer (TCP or
UDP).

TLS has several advantages over other protocols. As mentioned,
it is widely adopted, highly secure, and easily implementable. An
observation by Google demonstrates that more than 25% of connec-
tions to its server use TLS [6]. Another report carried out by Mozilla
reveals more than 50% of observed connections use TLS [7]. Also,
using TLS extensions may help reduce the number of messages
exchanged between client and server. On the other hand, the adop-
tion of TLS presents some challenges. From the IoT point of view,
the computing requirements of TLS may be too demanding con-
sidering resource-constrained IoT devices. One can argue that this
problem can be partially overcome by substituting DTLS.However,
IoT protocols such as MQTT, which implement information-centric
networking, rely on connection-oriented protocols such as TCP
and TLS to establish communication paths between publishers and
subscribers.

Although much research has been conducted to measure the en-
ergy consumption of PKC and symmetric cryptography algorithms
on IoT boards [5, 8], very few investigate the energy consumption of
TLS protocol. Furthermore, the existing studies on TLS [9] (i) often
lack generality by focusing on obsolete devices or a limited number
of cipher suites, and (ii) are not sufficiently deep into each individ-
ual function, thereby severely limiting the capability to evaluate
diverse cipher suites based on various application requirements.

This paper addresses the aforementioned concerns by evaluating
the performance of cipher suites using two state-of-the-art and

resource-constrained IoT edge devices. To accomplish this, we ex-
amine and annotate the source code of the cipher suites to enable
these IoT boards to interface with our energy measurement plat-
form. By analyzing the data collected from our testing platforms,
this work brings an update to the field’s understanding of the real
world resource consumption impact from varying the parameters of
TLS handshake and record layers. Consequently, our main contribu-
tion is a set of guidelines, embodied by a set of tree representations,
to show all the possible configurations of a cipher suite. Depending
on the usage parameters, different paths are traversed on the tree
edges. This allows the IoT developer to modify the parameters rele-
vant to the cipher suite as well as the certificate and immediately
find the resource consumption impact. Moreover, these guidelines
provide directions for selecting the most appropriate cipher suites
according to different application scenarios.

The rest of this paper is organized as follows. Section 2 specifies
the TLS handshake’s messages, presents the algorithms associated
with each message, and provides a brief overview of the record
layer. In Section 3, the set of algorithms in a cipher suite are ana-
lyzed. The testing platforms, experimental procedure and design
choices are presented in Section 4. Section 5 discusses experimental
results and proposes guidelines for the most suitable cipher suite
family depending on usage scenarios. Related works are discussed
in Section 6. Finally, Section 7 concludes the paper and proposes
future research directions.

2 TLS’S HANDSHAKE AND RECORD LAYERS

As discussed earlier, the TLS protocol is designed to establish a se-
cure channel between a client and a server to provide information
authenticity, confidentiality, and integrity. Specifically, its hand-
shake layer adopts different PKC algorithms for identity authentica-
tion and allows the negotiation of a cipher suite, which consists of
a set of cryptographic algorithms. This enables data confidentiality
and integrity later in the record layer. Since the detailed understand-
ing of the handshake procedure is essential for analysing resource
consumption, we first summarize the phases of this procedure as
follows. The entire process is presented in Figure 2.
(1) Hello Request: This message may be sent by the server at any
time as a notification that the client should begin a new negoti-
ation. The client may ignore this message or send Client Hello
when convenient.
Client Hello: This message is sent when the client first connects
to the server or in response to a Hello Request. The record of
this message contains the following fields: (i) TLS version, (ii)
a random number, (iii) an optional Session ID to quickly re-
sume a previous TLS connection and skip some steps of the
TLS handshake, (iv) a list of cipher suites (specifies the key
exchange algorithm, bulk encryption algorithm, MAC, and a
Pseudo-Random Function (PRF)), (v) the compression method,
which is often null to avoid CRIME attacks [10].
(3) Server Hello: This message is sent by the server in response to
Client Hello. A Server Hello message includes: (i) TLS version,
(ii) a random number, (iii) session ID: in case Client Hello’s
session ID is not empty, the server looks into its session cache
for a match, and (iv) the cipher suite selection chosen from the

@

~



Empirical Analysis of TLS Handshake and Record Layer on loT Platforms

client list, which should be the strongest suite supported by
both sides.
Server Certificate: The server must send a certificate message
immediately after Server Hello. The certificate type must be ap-
propriate for the selected cipher suite key exchange algorithm.
Server Key Exchange: This message is sent immediately after the
Server Certificate message. Only for Ephemeral Diffie-Hellman
(DHE), Diffie-Hellman (DH), and RSA key exchange the server
uses this message to specify the cryptographic parameters. In
the case of Ephemeral Elliptic Curve Diffie-Hellman (ECDHE)
the key exchange parameters reside in the Server Certificate
message. If the key exchange is based on EC, the server specifies
the curve name only. Both the server and the client can derive
the curve parameters, such as prime p and generator G, based
on the NIST standard [11]. The server also chooses a random
private key a, computes a * G as the public key, and saves it in
server_params. In addition to this, the server also signs the
data with its private key.
Certificate Request: A server can optionally request a certificate
from the client. This message, if sent, will immediately follow
Server Key Exchange message. The message Certificate Request
specifies the certificate types that the client may offer and a list
of supported hashing/signature algorithms pairs that the server
is able to verify, according to [12].
Server Hello Done: This message is sent by the server to indicate
the end of the Server Hello message.
Client Certificate: This message is sent only if the server re-
quests a certificate, which must be appropriate for the negoti-
ated cipher suite’s key exchange algorithm. The client signs the
certificate. In this paper, we use either RSA or ECDSA as the
signing algorithms.
Client Key Exchange: This message is sent after receiving Server
Hello Done. This message contains the client’s DH public key,
due to our choice of using ECDH or ECDHE as PKC. If the
cipher does not indicate ephemeral key like ECDH, the message
will be empty.
Change Cipher Spec: This message is sent by both the client and
server, as the final non-encrypted message, in order to notify
the other party that subsequent messages are protected under
the most recently negotiated cipher suite.
Certificate Verify: This message is sent by the client only when
Client Certificate is sent, in order to provide explicit verification
for its own certificate. This message contains all the messages
sent or received starting at the message Client Hello and up to
but not including this message. This requires the client to buffer
the messages or compute or buffer the hash of the previous
messages.
Finished: This message is sent immediately after Change Cipher
spec, in order to verify that the key exchange and authentication
processes have been successful. The Finished message is the
first protected packet with the most recently negotiated algo-
rithms, keys, and secrets. Before transmitting any encrypted
data, both the client and the server generate several keys in-
cluding the encryption keys, MAC keys and IV (nonce) using
the master_secret as the seed for the PRF.

After the handshake phase is completed, the data transmitted

between the client and server at the record layer will be secured
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by applying the symmetric cryptographic algorithms negotiated
above in the listed steps. In the next section, we will investigate the
algorithms and their individual functions, that construct a cipher
suite, in detail.

3 CIPHER SUITE’S SET OF ALGORITHMS

A cipher suite is a set of cryptographic algorithms used for hand-
shake and record layer, consisting of the following tasks: key ex-
change, signature for authentication, bulk encryption, and message
integrity. For example, consider the following cipher suite:
ECDHE_RSA_WITH_AES_128_GCM_SHA256.

This means that this cipher suite uses the following algorithms:
Ephemeral Elliptic Curve Diffie-Hellman for key exchange, RSA for
signature (verifying and signing), AES in GCM mode with 128-bit
keys for bulk encryption/integrity, and SHA256 for key deriva-
tion (in the case of CBC, SHA256 is used as the hash function for
HMAC). For IoT applications, in particular, ECC provides the same
level of security using smaller key size compared to RSA. Therefore,
we select an optimized version of ECC, called micro-ECC [13], to
measure the resource consumption of ECDSA and ECDHE. In this
section, we analyze the computations of each algorithm.

It should be noted that the negotiated hash function is used to
implement HMAC - for non-AE (Authenticated Encryption) ciphers
- and/or to implement PRF (via P_hash) to expand the secret keys
[12]. The computations below occur on the client side:

(1) Key exchange: The computation used by EC requires inputs
from the certificate, including the curve name, containing
[a, b] (public curve parameters), p (prime modulus speci-
fying the size of the finite field), N (number of points on
the curve), G (a generator), the order n and the co-factor
h of the subgroup. Therefore the computations by ECDHE
include the generation of a random number r chosen from
{1,2,...,n — 1} (the private key) as well as the calculation of
the public key r * G and the shared key r * s, where s is the
server’s public key.

Digital signature: The client certificate is signed based on

the cryptographic parameters sent by the server in mes-

sage Client Certificate. For RSA signing: the computation is
s=t% mod N , where t is the hash value of the certificate
content, d is the client’s private key and N is the RSA mod-
ulus. For ECDSA signing, a random number k is generated
from {1, 2, ...,n — 1}, where n is the subgroup order. Then,
the following steps occur: find the point R = k = G, find the

value r = Ry mod n (where Ry is the x-coordinate of R)

and calculate s = k™1 * (t + r * d) mod n (where d is the

client private key and k™! is the multiplicative inverse of k

modulo n). The pair (r, s) is the signature.

(3) Signature verification: The signature verification is executed
only on the hash value of the certificate content, regardless
of algorithm. For RSA signature verification, the signature
is represented by the value z. The computation is s = Pk
mod N, where t is the hash value and py is the CA’s public
key, and N is the RSA modulus. The last computation of
this algorithm (negligible operation) is to compare if s == z.
For ECDSA, the signature is represented by two values (r, s).
In order to verify the signature, the CA’s public key Cpy is

—
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Table 1: The utilized IoT edge devices and their features

\ Device [ BCM4343W (BCM) [ CYW43907 (CYW) |
MCU ARM Cortex M4 ARM Cortex R4
Word Size 32-bit 32-bit
SRAM 128 KB 2 MB
Clock Frequency 100 MHz 320 MHz
WiFi Standards 802.11b/g/n 802.11b/g/n
On-chip Crypto Core Not Available Available

needed, which is hard-coded in our implementation. Let ¢
be the hash value of the certificate content. The client then
calculates w1 = s 1%t modnanduy = s7! *r modn,
where s~! is the multiplicative inverse of s modulo n. Then,
the computation becomes R = u; * G + up * Cpk- The last
step is to validate if r == Ry, mod n, where Ry is the x
coordinate of R.

(4) Message authentication: this is calculated for data integrity
only on non-AF ciphers.

To achieve a comprehensive understanding of the resource con-
sumption of the TLS protocol’s cryptographic algorithms, in this
work, we evaluate each computation discussed above. In the next
section, we will discuss the evaluation methodology in detail.

4 METHODOLOGY

In this section, we present an overview of the testbed’s components
and the testing procedure. We also highlight the main performance
measurement parameters.

4.1 IoT Edge Devices

The features of the two IoT edge devices employed in this work
are summarized in Table 1. Our first testing platform, CYW43907
(CYW) [14], is an embedded wireless system-on-a-chip (SoC) man-
ufactured by Cypress Semiconductor. Boasting the powerful ARM
Cortex-R4 processor and an on-chip cryptography core, the CYW
board is optimized for IoT computation-heavy applications and sup-
ports hardware-accelerated AES. The second platform, BCM4343W
(BCM) [15], is an SoC built by Avnet. The BCM board provides
less processing power from its ARM Cortex-M4 processor, lacking
cryptographic hardware acceleration. It should be noted that the
CYW board is more expensive than the BCM board, which justi-
fies its superior specifications. The CYW board is better suited for
computation-heavy tasks, thanks to its abundant computational
power. In contrast, the more economical BCM platform is better for
large-scale deployments. This contrast between devices allows us
to generalize our experimental results of cipher suite performance
and guidelines across both computation-heavy as well as scalable
IoT scenarios.

4.2 Energy Measurement Tool

In this work, we adopt a powerful evaluation platform, EMPIOT,
which is a fully software-controlled tool for the energy measure-
ment of IoT devices [16]. EMPIOT is a shield board that is installed
on top of a Raspberry Pi. The start-stop mechanism of EMPIOT
energy measurements can be carefully controlled by utilizing the
GPIO pins of the Raspberry Pi. The energy measurement accuracy

loT Device Power
Supply
BT . r
§ 10T Device

EMPIOT:
Board

Figure 3: Components of the testbed used for performance
evaluation

of EMPIOT is 0.4 pW. When measuring data from IoT devices us-
ing 802.15.4 and 802.11 wireless standards, the EMPIOT’s energy
measurement errors are less than 3%. When using 12-bit sampling
resolution, this tool can stream 1000 samples per second. All energy
and time measurements in this study have been carried out using
this platform.

Figure 3 depicts the EMPIOT’s components and connections
with the IoT boards. The output signals from the IoT device under
test to the GPIO pins of EMPIOT act as triggers to the measurement
sequence. Once triggered by a positive edge signal, the EMPIOT
measures the values of current (with precision of 100 pA) and
voltage (with precision of 4 mV). Data measured using the EMPIOT
is stored into a text file within the Raspberry Pi’s on-board memory.

4.3 Cryptographic Algorithms

Cypress Semiconductor’s WICED Studio version 6.1.0, the standard
SDK for our testing platforms, includes a library of cryptographic
algorithms [17]. To provide RSA, SHA256 and SHA384 function-
alities, the WICED security library uses the mbed TLS free, open-
source library!. For ECDSA, we again make use of a sample test
program from the mbed TLS library that has been provided within
WICED Studio. For the more optimized uECC-version ECDSA and
uECC-version ECDHE, we use the implementations from the micro-
ECC (pECC) library, also available in WICED Studio. Resistant to
known side-channel attacks, the lightweight uECC implementa-
tions of ECDSA and ECDHE are more optimized and efficient than
the standard implementations. Both uECC-version ECDSA and
uECC-version ECDHE support five standard curves — secp160r1,
secp192r1, secp224rl, secp256rl, and secp256k1, as well as 8, 32
and 64-bit architectures. Last but not least, we use AES-CBC and
AFES-GCM from the same open-source library within this software
development kit. For all these implementations, we have modified

!https://tls.mbed.org/
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and annotated the source codes to integrate fully with our energy
measurement platform for resource consumption measurement.

4.4 Evaluation Process

In a single-thread configuration, we evaluate both the energy con-
sumption and time duration for each individual algorithm (RSA,
ECDSA, uECC-version ECDSA, uECC-version ECDHE, AES-CBC
and AES-GCM) in our cipher suites. The evaluation follows three
steps:

4.4.1 Initialization. In order to initialize an RSA experiment, the
desired key size is set. Using the two common key sizes, 1024 and
2048 bits, we test RSA’s hashing, encryption, decryption, signing
and verification functions. Before each ECDSA experiment, the de-
sired curve is set. Using three common curves, secp192r1, secp224r1
and secp256r1, we test ECDSA’s hashing, random number genera-
tion, signing and verification operations. Similarly, the same setup
for ECDSA is followed in the testing of uECC-version ECDSA.
Lastly, for each uECC-version ECDHE experiment, using previously
mentioned three common curves, we test uECC-version ECDHE’s
random number generation, public key generation, and secret cal-
culation operations. To initialize SHA256 and SHA384 experiments,
the input buffer length is set to 128 bytes. Last but not least, we test
AES-CBC and AES-GCM across two buffer sizes (128 bytes and 512
bytes) as well as three key sizes (128 bits, 192 bits and 256 bits).

4.4.2  Starting Energy and Time Measurement. The first GPIO positive-
edge trigger is enacted at time Ty, signaling EMPIOT to commence
energy measurement. Depending on the specific combination of

a particular experiment’s parameters such as key size and curve
size, the function being tested is repeated for N times using a for
loop. Although the overhead of the for loop structure and the if
statement is included, we find that the time and energy consumed
by these operations are negligible.

4.4.3 Completing Energy and Time Measurement. Following the
conclusion of the Nth encryption at time T, a second positive-
edge GPIO pin is enacted, signaling EMPIOT to conclude energy
measurement. Over an interval [T, T, ], EMPIOT gathers 1000 sam-
ples per second of instantaneous current and voltage values. Each
sample is also captured with a timestamp on it. Representing the
total number of samples taken over the interval as M, the follow-
ing equation is used to obtain total energy consumption E;,;4;
(J) over the interval: E; ;47 = Z?’:Il M(ti — ti—1) where
I and V stand for current and voltage, respectively. The total en-
ergy is calculated using the trapezoidal rule. The sum of I;V; and
I;_1Vi_1 represents the sum of the two bases of a trapezoid. The
term t; — t;—1 stands for the height of the mentioned trapezoid. The
area of the trapezoid represents the total energy consumed. For
each specific combination of a particular experiment’s parameters,
the number of repetitions is denoted by N. We are only interested
in the energy consumption per repetition, and so the average en-
ergy consumption per repetition with unit as joules (J) is calculated
as follows: E = % where N is the number of repetitions. To
acquire the total amount of time, the first sample’s timestamp in
seconds (s) is subtracted from the last sample’s timestamp, as fol-
lows: Tyora1 = Te — Ts, where T is the time the first positive-edge

MSWiM ’19, November 25-29, 2019, Miami Beach, FL, USA

Table 2: Mean energy consumption (joule) per repetition

‘ Platform ‘ BCM ‘ CcYw ‘
CurveType [ 192 | 224 [ 256 | 192 [ 224 | 256
ECDSA

Signing [ 0.0405 [ 0.0545 [ 0.0817 [ 0.0388 | 0.0515 | 0.0748
Verification | 0.0788 [ 0.1068 | 0.3831 [ 0.0743 | 0.0992 [ 0.1458
uECC-version ECDSA

Signing [ 0.0197 [ 0.0253 [ 0.0451 [ 0.0083 | 0.0111 | 0.0192
Verification | 0.0206 | 0.0276 | 0.0502 | 0.0089 | 0.0120 | 0.0207

Table 3: Mean duration (second) per repetition

[ Platform | BCM \ CYW \
CurveType [ 192 | 224 [ 256 | 192 [ 224 | 256
ECDSA
Signing | 0.2080 | 0.2781 | 0.4193 | 0.0458 | 0.0610 | 0.0883
Verification | 0.4037 | 0.5435 | 0.8257 | 0.0891 | 0.1187 | 0.1743
uECC-version ECDSA
Signing | 0.0343 | 0.0445 | 0.0813 | 0.0070 | 0.0098 | 0.0175
Verification | 0.0361 | 0.0486 | 0.0900 | 0.0076 | 0.0106 | 0.0190

trigger is called and T is the time the second positive-edge trigger
is called, concluding data sampling. To acquire the average duration
per repetition, we follow the same principle as in the previous en-

%, where N is the number

ergy consumption calculation: T =
of repetitions.
The entire evaluation process above is repeated for all the tests

outlined in the initialization step.

5 EXPERIMENTAL RESULTS

First, we discuss the performance difference between regular ECDSA
and uECC-implemented ECDSA to support our decision to use the
uECC implementations of ECDSA and ECDHE for all the measure-
ments. As mentioned in Section 4, we test both standard ECDSA
and uECC-implemented ECDSA. Tables 2 and 3 show the mean
energy consumption and duration per repetition in joules (J) and
seconds (s), respectively, for both ECDSA and uECC-implemented
ECDSA’s individual functions on the BCM and CYW boards. We
notice that, on average, regular ECDSA’s signing and verification
operations consume approximately 2x to 8x more energy than
uECC-implemented ECDSA’s signing and verification operations.
Hence, we decide to use uECC-implemented ECDSA and uECC-
implemented ECDHE for the evaluations.

For the rest of this section, we present and evaluate performance
results for the following four cipher suite families:

(1) ECDHE_RSA_WITH_AES*2_SHA%3
(2) ECDHE_ECDSA_WITH_AES*_SHA%
(3) RSA_WITH_NULL_SHAx
(4) ECDHE_anon_WITH_AES*_SHAx
Each family represents a set of cipher suites. As mentioned, each
cipher suite consists of the following tasks: key exchange and au-
thentication, with bulk encryption and message integrity. Cipher
suites with anon authentication means the client does not need to

2 AES* stands for AES_128(256)_CBC(GCM)
3SHA* stands for SHA256(384)
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Figure 4: Mean energy consumption and duration of the elementary individual functions that construct any cipher suite from
the four families, using three elliptic curves as well as RSA-1024 and RSA-2048 as parameters across two IoT platforms. We
notice that as an individual function’s curve size increases, that function’s energy consumption also increases. Similarly, as
RSA Kkey size increases, RSA’s individual functions demand more energy.

authenticate the servers. Cipher suites with NULL encryption means
no encryption is required, yet message integrity is still needed. In
particular, in Subsection 5.1, we present the energy consumption
and duration of all the fine-grained building blocks that make up
the four families above. Based on these building blocks, in Subsec-
tion 5.2, we select seven widely-used cipher suites from the four
families as examples and discuss their energy consumption and
duration in detail. In addition, we present two tree-like diagrams to
illustrate all possible cipher suites within the four families. Finally,
in Subsection 5.3, we provide a set of guidelines on selecting the
most appropriate cipher suites for different application scenarios.

5.1 Resource Consumption of Individual
Building Blocks

Figure 4 presents both energy consumption (J) and time duration (s)
for all the building blocks of the cipher suites from the four listed
families. Measurement parameters include three elliptic curves
secp192rl, secp224rl and secp256r1 as well as RSA-1024 and RSA-
2048. Each subplot contains groups of bars, distinguished by the
legend markers, representing the characteristics of each cipher
suite’s elementary individual functions. For instance, the markers
show which elliptic curve a function belongs to, or if the function
is a part of RSA-1024 or RSA-2048. These results show that in
cipher suites using RSA, the signing is always more computationally

expensive in terms of energy consumption (about 21x-46x) and
duration (about 21x-45x) than verification for the same key size.
We also notice that for cipher suites using ECDSA, the signing and
the verification’s energy consumption is closely matched for the
same key size. A similar trend is noticed for execution duration.
Cipher suites using RSA and ECDSA can be compared with each
other by referring to Table 4. This table lists comparable key sizes
for symmetric and asymmetric-key cryptosystems, with both theo-
retical and industrial ECC key sizes, based on the most popular algo-
rithms for attacking them [18]. For example, using industrial ECC
160-bit key size provides the same level of security as using RSA-
1024. We actually use curve secp192r1 for ECDSA, which employs a
192-bit key size. With this comparison on the BCM platform testing
RSA-1024 and ECDSA using curve secp192r1, the verification for
ECDSA consumes almost 20x more energy than RSA’s. In terms
of duration, the verification for RSA is almost 6.5x quicker than
ECDSA’s. On the other hand, RSA’s signing demands approximately
1.5x more energy compared to ECDSA’s signing. Duration-wise,
RSA’s signing takes approximately 4.5x more compared to ECDSA’s
signing. Similarly, considering Table 4, we can compare RSA-2048
and ECDSA using curve secp224r1, which employs a 224-bit key
size. For this case, the verification for ECDSA consumes about
6.4x more energy than RSA’s verification while ECDSA’s signing
demands approximately 6.6x more energy than RSA’s signing. In
terms of execution time, the verification for ECDSA lasts about
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Figure 5: Total energy and duration of seven widely used cipher suites from the four families across the BCM and CYW plat-

forms.

2.2x longer than RSA’s verification while RSA’s signing lasts ap-
proximately 19x longer than ECDSA’s signing. Furthermore, from
the same figures, we notice that RSA’s decryption is more costly
energy-wise and duration-wise than encryption across two keys.

Table 4: Comparable Key Sizes (in bits)

Symmetric | Theoretical ECC | Industrial ECC [ DH/DSA/RSA |

80 163 160 1024
112 233 224 2048
128 283 256 3072
192 409 384 7680
256 571 512 15360

For shared or premaster key generation using ECDHE, we notice
that the larger the curve size, the greater the energy consumption
of the function belonging to that curve. The same trend in energy
consumption translates to duration. For shared or premaster key
generation using ECDHE, we notice on the same figures that the
larger the curve size is, the greater the execution duration of the
function belonging to that curve. Random number generation’s
energy consumption and execution duration are constant, as it is
not associated with any curve. Since generating the public key and
computing the shared secret depend on the curve size, certainly,
increased security comes with a higher demand for energy and
higher cost for duration. The behaviors described above for energy
consumption and duration are detected on both of our IoT testing
platforms.

5.2 Resource Consumption of Prevalent Cipher
Suites

Based on the above analysis of the fine-grained individual functions,
this subsection further explores the resource consumption of all
possible cipher suites from the four families.

Since each cipher suite consists of several functions, to find the
full energy consumption or duration of a cipher suite, we simply
need to sum up all the functions’ energy consumption or duration
data values. Figure 5 shows the aggregate energy and duration of
seven widely-used cipher suites from the four families. Each bar
represents the total energy consumption (a) or duration (b) of the
entire set of algorithms that forms the cipher suite. Once again,
it is obvious that the CYW platform outperforms the BCM board
for both energy consumption and duration, thanks to the CYW’s
on-chip cryptography core.

To provide in-depth guidelines on how each family should be
selected, we present two tree-like diagrams to show every single
function that constructs a TLS cipher suite. Figures 6 and 7 depict
all possible sequences of functions in the handshake and the record
layer, respectively, with different parameters such as key size, curve
type and data size. It should be noted that in Figure 7, GCM, which is
AEAD?*, combines encryption and integrity (the GMAC component
of the GCM algorithm) together. In contrast, for CBC, the integrity
is split from encryption/decryption.

In order to illustrate the impact of different sequences on re-
source consumption, two possible paths, shown by green and red
lines in Figure 6, are compared. The red path does not include au-
thentication and uses only RSA 1024-bit key exchange. The green
path utilizes RSA-1024 authentication and uses ECDHE key ex-
change with the secp256r1 curve. Nevertheless, the green path is a
more secure solution. Upon analysis, when using the CYW board,

4 Authenticated Encryption with Associated Data
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Figure 7: TLS Record Layer Tree
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we notice that the red path uses 1.07x more energy and takes the
same amount of time as the green path. In the case of the BCM
platform, the energy consumption of red path is 0.43x of that of the
green path, while the time taken by both paths are equal.

Now, to show resource consumption differences within the record
layer, as shown in Figure 7, an example is provided. Representing
two possible sequences, the green and red paths correspond to bulk
ciphers AES-CBC and AES-GCM, respectively. Since it is known
that symmetric key cryptography is way faster than asymmetric key
cryptography, we may select any two arbitrary paths as examples.
In Figure 7, using the CYW board, both paths use the hardware im-
plementation of AES with a 128-bit key size and a 512-byte data size.
Based on the data, the red path uses 1.36x more energy and takes
1.28x longer the green path. The same paths cannot be modeled on
the BCM platform, as it does not support hardware acceleration
for AES. Still, using the software implementation on the BCM to
model these paths, we also see that AES-GCM has higher resource
consumption than AES-CBC as it uses 1.79x more energy and takes
1.80x longer.

These comparisons provide an overview of the resource con-
sumption incurred by different cipher suites for both handshake
and record layer. This enables us to transition to providing specific
guidelines on cipher suite selection in the next section.

5.3 Guidelines for Cipher Suite Selections

Based on our experimental results, we propose the following guide-
lines for selecting appropriate families depending on usage require-
ments.

Scenario 1: This scenario arises in applications requiring au-
thenticity, confidentiality, and integrity. Such applications include
healthcare (e.g., body area sensors) and smart homes (e.g., smart
door locks, security systems), where confidentiality and privacy
play a critical role. Family 1 and family 2 are most suitable for
this scenario. Depending on application requirements, a longer (or
shorter) key can be adopted to achieve higher (or lower) security.
Assuming same key and signature size, family 2 consumes about
1.5x more energy and takes the same amount of time as family 1.
Therefore, family 2 is recommended when both cipher suite families
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are available, while family 1 may be chosen in the absence of family
2.

Scenario 2: This scenario arises in applications requiring authen-
ticity and integrity, but not necessarily confidentiality. Applications
for this scenario may include smart city sensors that transmit non-
confidential data but still require authenticity and integrity. Family
3 is most suitable for this scenario. If we add confidentiality to
this family, for data size 512-byte, we may increase the energy
consumption by approximately 1.001x. Though insignificant, if the
data increases to 50KB, the energy consumption will increase by ap-
proximately 1.5x. Adding confidentiality may significantly increase
energy consumption in the long run.

Scenario 3: This scenario arises in applications requiring confi-
dentiality and integrity, but not necessarily authenticity. Family 4
is most suitable for this scenario. Even though this family is vul-
nerable to man-in-the-middle (MITM) attacks, it can still be used
for closed-environment applications such as sensors on a military
jet or in machine actuators in a factory’s local network. Adding au-
thenticity to this scenario (e.g., using RSA verification) will increase
the energy consumption on the client side by only 1.05x. However,
the overhead of managing and transmitting certificates increases
dramatically.

This leads us to the culmination of this work. Based on energy
and duration measurements, the right cipher suite family can be
chosen to fulfill user requirements while achieving a desired bal-
ance between security and efficiency. Specifically, as future work,
we recommend dynamic cipher suite adjustments to balance IoT
devices’ security and resource consumption, based on real-time net-
work condition changes, such as changes to transmitted data type,
traffic volume and wireless signal quality. When a change occurs, a
new cipher suite negotiation may be launched accordingly.

6 RELATED WORK

There are many papers that analyze the power consumption of se-
curity protocols on resource-constrained platforms like IoT devices.
Some works are conducted to analyze the impact of symmetric
cryptography on the resource consumption of IoT devices [19-21].
In the study by Munoz et al. [19], the authors measure the duration
and energy consumption of AES-CBC on both the CYW and BCM
platforms. In [21], the authors compare hardware and software AES
implementations on an FPGA. In [20], the authors test the impact
of increasing AES key size on energy consumption.

In addition, many studies explore the resource consumption of
PKC [22-25]. Potlapally et al. [5] study the Secure Sockets Layer
(SSL) and the underlying PKC algorithms. The authors in [26] eval-
uate PKC’s influence on four IoT devices mainly using the RSA and
ECC families, but not Diffie-Hellman, which is the most widely
used PKC family on IoT devices. These studies, however, ignore
cipher suites that use ephemeral keys, a popular approach that pro-
vides higher security while requiring extra computations. Further-
more, although using customized EC library dedicated for resource-
constrained devices is highly recommended, the existing studies
often provide no information on their implementations for EC.

The following papers focus on the resource consumption of TLS.
In [8], the authors provide a novel model of energy demand for
end-to-end data communication. Their approach is to represent
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the energy consumption of each node in the network as a func-
tion. However, the specific information of the energy measurement
process, particularly the data collection process and the types of
tested IoT platforms, is absent. The authors in [27] evaluate the
performance costs of TLS by using the same cipher suites that are
used in our paper. Nevertheless, their study is not carried out using
resource-constrained devices. In addition, for both [8] and [27], the
authors do not analyze the fine-grained functions within the cipher
suites, severely limiting their capability to evaluate diverse cipher
suites based on various application requirements. While Gerez et
al. investigate the energy and time consumption of TLS, they only
focus on the handshake and ignore the record layer [28]. Moreover,
their experiments are only carried out using three specific cipher
suites on one IoT board, which greatly limits the generality of their
results.

Our paper improves on these existing studies by (1) considering
both the handshake and record layer of TLS, (2) measuring the re-
source consumption of each individual function, and (3) improving
the results’ generality by adopting two state-of-the-art resource-
constrained IoT boards and evaluating various widely-used cipher
suites. We also provided comprehensive tree diagrams to reflect all
the possible paths of processes in the handshake and record layers.
These representations not only facilitate flexible calculation of the
resource consumption of different cipher combinations, but also
provide guidelines for selecting the most appropriate cipher suite
according to different application demands.

7 CONCLUSION

Due to the ever increasing number of IoT platforms that need to
establish secure connections, we consider the three most important
factors of IoT security: authenticity, confidentiality and integrity.
Given the resource constraints and long term communication pat-
terns of IoT devices, it is crucial to, depending on the application
at hand, choose a proper cipher suite that minimizes resource con-
sumption while ensuring the required security level.

In this paper, we presented a comprehensive study of the most
widely-used cryptographic algorithms by annotating their source
codes and running empirical measurements on two state-of-the-
art IoT platforms (i.e. CYW and BCM). Also, we formulated the
tree structures that cover various possible cipher combinations. We
showed that by carefully choosing the right cipher suite family
based on application requirements, energy consumption can be
significantly reduced. For example, in use cases such as smart home
and healthcare where high-level security is demanded, selecting
ECDHE_RSA_WITH_AES*_SHA* can reduce energy consumption by
3x. Another example can be seen in smart city applications, where
using RSA_WITH_NULL_SHA* results in savings up to 1.6x in the long
run.

In this work, we did not consider the impact of real-time network
condition variations such as the changes to transmitted data type,
traffic volume and wireless signal quality, on the resource consump-
tion. Although we focused on TLS 1.2, TLS 1.3 is already available,
providing some changes with respect to TLS 1.2 [29]. Nevertheless,
the migration towards TLS 1.3 will take a long time and hence, our
analysis remains relevant for all current devices using TLS up to
1.2. The energy-duration study of TLS 1.3 is left as a future work.
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