2023 IEEE Wireless Communications and Networking Conference (WCNC) | 978-1-6654-9122-8/23/$31.00 ©2023 1IEEE | DOIL: 10.1109/WCNC55385.2023.10119047

Traffic Characterization for Efficient TWT
Scheduling in 802.11ax IoT Networks

Jaykumar Sheth*, Vikram K. Ramanna*T, and Behnam Dezfouli*f
*Internet of Things Research Lab, Department of Computer Science and Engineering, Santa Clara University, USA
Infineon Technologies, San Jose, USA
{j sheth, vramanna, bdez fouli}@ scu.edu

Abstract—To reduce packet collisions and enhance the energy
efficiency of stations, Target Wake Time (TWT), which is a
feature of the 802.11ax standard (WiFi 6), allows the allocation of
communication service periods to stations. While effective TWT
allocation requires characterizing the traffic pattern of stations,
in this paper, we empirically study and reveal that the existing
methods (i.e., channel utilization estimation, packet sniffing,
and buffer status report) do not provide adequate accuracy.
To remedy this problem, we propose a traffic characterization
method that can accurately capture inter-packet and inter-burst
intervals on a per-flow basis in the presence of factors such as
channel access and packet preparation delay. We empirically
evaluate the proposed method and confirm its superior traffic
characterization performance against the existing ones. We also
present a sample TWT allocation scenario that leverages the
proposed method to enhance throughput.

Index Terms—Energy efficiency, Throughput, Target Wake
Time (TWT), WiFi 6, In-band Network Telemetry (INT), Buffer
Status Report (BSR).

I. INTRODUCTION

There will be about 14.7 billion Internet of Things (IoT)
connected devices in 2023, up from 6.1 billion in 2018 [1]. The
adoption of WiFi technology, especially for IoT connectivity,
is gaining momentum and enables dense deployments due
to the following reasons: First, WiFi technology provides
higher communication rates compared to technologies such as
Bluetooth and ZigBee. Second, WiFi communication utilizes
unlicensed spectrums, thereby, deployments are considerably
less expensive than cellular technologies. Third, the distributed
and customer-oriented deployment of WiFi networks in resi-
dential and enterprise settings reduces deployment costs and
offers an omnipresent infrastructure for connectivity.

To reduce deployment costs and facilitate mobility, many
IoT devices rely on limited energy resources such as batteries
or energy harvesting. For such devices, the standard offers var-
ious power-saving modes, including Power Save Mode (PSM),
Adaptive PSM (APSM), and Automatic Power Save Delivery
(APSD). The effectiveness of these methods, however, is
highly affected by channel access contention and buffering
delay in Access Point (AP) [2]-[4]. The newly-introduced
802.11ax standard provides a method called Target Wake Time
(TWT) for assigning Service Periods (SPs) to stations (STAs).
Compared to the earlier power-saving modes, TWT allows for
potentially higher energy efficiency and throughput. Specifi-
cally, by properly assigning SPs to STAs, channel contention
is reduced, packet buffering delay in the AP drops, and packet

S5 1- 66 B SRAUSRE

aggregation efficiency enhances [5]. Nevertheless, to realize
the benefits of TWT scheduling, accurate characterization of
the traffic flows of STAs is required by an AP to allocate SPs
that address STAs’ traffic requirements [5]-[7]. To this end,
the most-widely used methods are Channel Utilization (CU)
estimation, packet sniffing, and Buffer Status Report (BSR)
[8], [9]. However, as we will show in this paper, none of these
methods provide high accuracy, especially in the presence
of channel access delay. Another approach is to gradually
and dynamically adjust TWT assignments over time, based
on STAs’ demands. This approach, nonetheless, introduces
additional communication overhead for TWT scheduling and
cannot quickly address dynamic changes in traffic patterns [9].
The existing works also include scheduling methods that rely
on specific assumptions regarding STAs’ traffic pattern [10], or
they propose various methods to classify STAs’ traffic pattern
(e.g., using machine learning) to determine TWT scheduling
parameters. The primary shortcoming of traffic classification
methods is imposing high processing overhead on STAs, AP,
or both. Due to the challenges of traffic characterization, we
observe that the existing works assign each service period
to one STA only [9], [11], thereby they cannot fully utilize
available channel time.

In this paper, we argue that accurate characterization of
the traffic pattern of STAs is necessary to allocate TWT SPs
that result in both high throughput and energy efficiency.
For example, consider an IoT device collecting a batch of
sensor samples every few seconds. The process of sample
collection from an Analog-to-Digital Converter (ADC), packet
preparation, and transfer from the application subsystem to
the Network Interface Card (NIC) introduces a non-negligible
inter-packet interval that would result in bandwidth waste
if the time period is not utilized by other STAs. We study
and reveal that the existing traffic characterization methods
demonstrate the following shortcomings: (i) CU provides only
the accumulated channel time usage by all the STAs; (ii)
packet sniffing approach is affected by channel access delay
and collision; (iii) BSR is affected by channel access delay;
(iv) some devices generate BSR only when requested by the
AP; (v) reported BSR values are fixed for all the MAC Pro-
tocol Data Units (MPDUs) inside an Aggregated MPDU (A-
MPDU). To address these shortcomings, we propose Source-
assisted Traffic Characterization (SATRAC), a method based
on In-band Network Telemetry (INT). We leverage the eBPF

use f‘l)r%ﬁelg%I:ESama Clara University. Downloaded on July 02,2023 at 04:11:43 UTC from IEEE Xplore. Restrictions apply.

Micro-burst (b;)

<—
Macro-burst(B;)

(53>TH

Fig. 1. Micro-burst and macro-burst characterization.

technology to add the difference between packet generation
time instances to the TCP Options field (for TCP traffic) or
IP Options (for UDP traffic). This information allows the AP
to accurately and quickly determine traffic generation patterns
and assign TWT SPs to STAs. We compare the performance of
SATRAC against the existing methods and show its superior
performance and robustness against factors such as CU and
channel access delay.

The rest of this paper is organized as follows. Motivation
for traffic characterization is given in Section II. Section III
studies the shortcomings of existing methods. We present the
design and evaluation of SATRAC in Section IV. We conclude
the paper in Section V.

II. TRAFFIC PATTERN ANALYSIS

This section analyzes the characteristics of network traffic
generated in real-world IoT scenarios. We separate micro-
bursts and macro-bursts and justify the importance of traffic
characterization for TWT assignment.

We study the following IoT scenarios: (i) Sensing: We
use an RTOS development kit (CYW54907) for collecting
accelerometer readings. The device periodically collects 3920
samples, equivalent to 5880 bytes ((3920 x 12 bits)/8),
prepares packets, and then sends them via a TCP connection.
(i) Camera: We built a security camera using Raspberry Pi
(RPi) camera module (version 2) attached to a RPi 3B+. The
camera continuously captures and sends images via a TCP
connection. Each images is processed by the H.264 codec.
(iii) Video Streaming: A YouTube video is streaming on an
Amazon Echo Show device. All the experiments were run in
interference-free environments.

To build a generalized traffic analysis framework, we con-
sider three inter-packet intervals and use the traffic structure
of Figure 1. A micro-burst, denoted as b;, is defined as a train
of packets with inter-arrival time less than a specific threshold
value 7T, [4]. The interval between packets in a micro-burst is
denoted as 4;. If the interval between two packets is larger than
Ty and less than 7, a new micro-burst is detected. The interval
between micro-bursts is denoted as 5. If the interval between
packets is larger than 75, a new macro-burst is detected. A
macro-burst is represented as B;, and the interval between
macro-bursts is denoted as ds.

Figure 2 presents the results for the Sensing scenario. We
observe that even within a micro-burst, the mean interval
between packets (61) is about 400 us. This delay is primarily
caused by packet preparation delay, as well as the timing
requirements of the 802.11 standard (e.g., channel access
contention, SIFS, DIFS). Regarding packet preparation delay,

-
o
S

1.00 K—
0.75 /

= = 25/75 Quartile

— — Median

0.0 02 04 06 08 10 10 12 1.4 16 1.8 2.0 2.2 2.4
Inter-packet Interval (1) [ms] Inter-burst Interval (02) [ms]
(a) (b)
Fig. 2. Inter-packet intervals for the Sensing scenario. d; is primarily caused
by packet preparation delay. The difference between 61 and d2 is mainly
caused by the delay of collecting 3920 samples.

= = 25/75 Quartile
— — Median

e
N
o

o
wn
o

s
u
o

o
N
o

o
N
a

Cumulative Probability
Cumulative Probability

o
o
S
o
=)
S

2‘1'00 /—’ 21.00
£0.75 8075
ol : |
$0.50 20.50
o I o
20.25 £0.25
3

3
o / o 4}

0.00 0.00

0 100 200 0 10 20 30
Inter-packet Interval (01)[115] Inter-burst Interval (02)[ms]
(@) (b)

Fig. 3. Inter-packet intervals for the Camera scenario. d2 is about 33 ms,
corresponding to 30 frames per second.

1.00 .1.00 1.00
z / & 2 F
20.75 £0.75 50.75
[’ E 0.75 9 r/
£ o
20.50 20.50 1o $0.50
. %’ .
£0.25 £0.251f{>* £0.25
0.00 0.004 "*7*° | 0.00
0 20 40 60 0 50 100 0 5 1015
Inter-packet Interval Inter-burst Interval Inter-burst Interval
(61) [ps] (d2) [ms] (65) [s]

(a) (b) (c)

Fig. 4. Inter-packet intervals for the Video Streaming scenario.

we modified the code and added probes to each stage of the
packet preparation process and observed that, for example,
the transmission of a packet from driver to NIC introduces
a non-negligible delay of about 28 us. Comparing Figures
2(a) and (b), the interval between micro-bursts is due to
collecting 3920 samples. Specifically, this delay is caused
by the communication between the processor and ADC over
the Serial Peripheral Interface (SPI) to collect samples [12].
Therefore, 45 would increase if a higher number of samples
were collected per round.

Figure 3 shows the inter-burst intervals for the Camera
scenario. Each micro-burst constitutes multiple packets. The
camera captures a frame and then prepares multiple packets to
send the frame. The amount of data in each frame depends on
the resolution of the video stream requested (e.g., 480p, 720p,
1080p). As we see in Figure 3(b), the interval between micro-
bursts (d2) is about 33 ms, which corresponds to 30 frames
per second. Figure 4 shows the results for video streaming
scenario. The mean interval between macro-bursts (d3) is 10

Authorized licensed use limited to: Santa Clara University. Downloaded on July 02,2023 at 04:11:43 UTC from IEEE Xplore. Restrictions apply.

seconds, the mean interval between micro-bursts (J2) is 2 ms,
and the mean interval between packets of a micro-burst (1)
is 9 us.

These studies demonstrate the intervals between packets
in a micro-burst, the intervals between micro-bursts, and
the interval between macro-bursts. Characterizing these de-
lays is essential for three purposes: (i) allocating TWT SPs
based on each STA’s demands, (ii) utilizing inter-packet
intervals by other STAs to enhance throughput, and (iii)
enhancing packet aggregation performance, which results in
shorter communication delays and higher energy efficiency.
For example, suppose a TWT ser-
vice period ends before sending 163
all the packets of a micro-burst.
In this case, the STA either needs
to wait for the next TWT service
period (causing communication de-

N N
S o

Packets per second
S

lay) or contend with other STAs 1.0
for channel access (lower ener

. (gy 801234567809
efficiency). MCS Index

To confirm the feasibility of uti-
lizing inter-packet intervals within
a micro-burst by other STAs, we measure the actual packet
(1500 bytes) transmission rate in an 802.11ax testbed com-
municating over a 20 MHz channel. As Figure 5 shows, using
Modulation and Coding Scheme (MCS) 5, a STA can send
about 1427 packets/second, which means the duration of each
packet transmission (including backoff and channel access) is
around 700 ps. Therefore, a station sharing a SP with other
stations can utilize inter-packet and inter-burst intervals of
other station to transmit its packets.

Fig. 5. Packets per second

III. TRAFFIC CHARACTERIZATION VIA CHANNEL
UTILIZATION, BSR, AND PACKET SNIFFING

In this section, we study the shortcomings of the three avail-
able and most-widely used traffic characterization methods.

A. Channel Utilization (CU)

CU is defined as tqctivity /tiotal, Where Lactivity 1S the time
duration the NIC has sensed signal power higher than a pre-
specified threshold value during time duration t,yerqy- CU
values can be collected from the driver via various methods
such as the ‘proc’ file system (procfs) in Linux. However,
since the information provided by CU is cumulative, it cannot
be used to characterize per-STA traffic patterns.

B. Packet Sniffing

Several real-world deployments and Commercial Off-The-
Shelf (COTS) enterprise APs utilize an external NIC operating
as a sniffer to monitor the traffic patterns of STAs [8]. Since
each AP acts as the central point of communication for all the
traffic to and from the STAs, collecting an AP’s driver logs
can also be utilized for determining the traffic pattern of STAs.

The shortcomings of this approach are as follows. First,
the timestamps of sniffed packets do not represent the actual
packet generation instances by STAs. This is due to factors

such as channel access contention delay, internal prioritization
of packets belonging to different ACs, and packet preparation
delay. Second, in addition to requiring extra hardware (e.g.,
additional NIC), the sniffed packets must be processed by the
AP’s operating system and user application; thereby increasing
processing overhead. Third, any inconsistency between the
hardware and antenna configurations of the AP’s primary NIC
and those of the sniffer results in a mismatch between the
sniffed packets and those exchanged by the AP’s primary NIC
[13]. We will further analyze this method in Section IV.

C. Buffer Status Report (BSR)

In the 802.11ac standard, the Queue Size (QS) sub-field,
contained inside the QoS Control field, reports the total data
queued in the STA’s queues. The AP primarily utilizes this
information to allocate Transmit Opportunity (TXOP) to each
STA. BSR is a new functionality introduced by the 802.11ax
standard to enhance the exchange of information on the
transmission buffer size of STAs. For example, compared to
the QS field, BSR provides more specific information, such
as the Queue size of the highest-priority Access Category
(AC). The Queue Size All (QSA) field of BSR conveys the
cumulative amount of data in all queues.

In this section, we reveal the challenges of using BSR for
traffic characterization. First, the 802.11ax standard does not
mandate the inclusion of queue statistics in each packet. To
verify this, we selected several COTS 802.11ax NICs and
noticed that Intel AX200 and Realtek RTL8852A transmit
BSR intermittently, based on the amount of traffic queued. In
contrast, Compex WLT639 includes a BSR in every packet.
Additionally, none of the evaluated APs and STAs support
requesting or generating BSR manually.

Secondly, by empirical analysis of packet exchange traces,
we observed that for those 802.11ax devices that include BSR
in each packet, all the MPDUs included in an A-MPDU report
the same value, even though the payloads they are carrying
have been generated at different time instances. The reported
value is the state of queues before the transmission of A-
MPDU. To demonstrate this behavior, we captured BSR values
by a STA using Compex WLT639. Also, to generate various
A-MPDU sizes, we gradually increase the amount of data
pushed by the application to the transport layer socket. Figure
6 shows the number of packets per A-MPDU (left y-axis) and
the QSA values in BSR (right y-axis). The squares denote the
number of MPDUs in the succeeding A-MPDU, and red curve
denotes QSA value reported by each incoming packet. As the
results show, the BSR value reported per A-MPDU is fixed and
reports the amount of data in the driver’s buffer plus the size
of A-MPDU being sent. In general, assume the QSA (denoted
as () values are received at time instances t,, and ¢, 41 from
a STA. The amount of traffic generated during this interval
can be represented as: Q¢ ., — @y, + Z[tmtnﬂ)pm, where
Qt,., and @y, are the received BSR values at time ¢, and
t,, respectively, and Z[t”,tnﬂ) Pt 1S the sum of the size of
packets transmitted by the STA during time interval [t,,, t;41),
which excludes the packet received at ¢,,4;. In summary, the

Authorized licensed use limited to: Santa Clara University. Downloaded on July 02,2023 at 04:11:43 UTC from IEEE Xplore. Restrictions apply.

AMPDU; AMPDU, AMPDU; MPDU4
\ ¢ / MPDUs AMPDUs AMPDU;

AMPDUg AMPDUg AMPDU; o

60000

IS
)

50000

w
=]

40000

All [Bytes]

30000

20000
}_[;r 10000
0

550 600 650 700 750
Packet Number

N
o
ize

=
5]

Number of Packets in an A-MDPU
Queue Si

o
jm—

Fig. 6. Traffic characteristics and BSR values for a flow with increasing
burst size. The blue squares denote the number of packets in the succeeding
A-MPDU, and the red curve represents BSR’s QSA field of packets received
by the AP. The results show that the reported buffer size is fixed for all the
MPDUs inside an A-MPDU.

BSR approach neither provides the actual data generation time
instances nor provides real-time snapshots of driver’s queue
sizes.

Since BSR does not provide any timing information, we
augment this method as follows to estimate packet generation
time instances. In this paper, we refer to this method as BSR’
and evaluate it in Section IV-C. Assume the BSR values
received from two packets at time instances t,, and ¢,
are Q, and Q... If Q,,, > Q:,, we estimate inter-
packet generation instances during interval t,.; to ¢, as
(tn1 —tn)/((Qtnyy — Qr, + Z[tn,tn“) Pta)/Ptz), Where piy
is the average size of packets received during this interval. If
Qt,.1 < Qy,, we use the time instance of sniffed packets.

IV. SOURCE-ASSISTED TRAFFIC CHARACTERIZATION

In this section, we propose a method named Source-assisted
Traffic Characterization (SATRAC) and evaluate it in terms
of traffic characterization accuracy and its effect on TWT
allocation.

A. Design and Implementation

The basic idea of SATRAC is that, if we keep track of
packet generation time instances in each STA, the AP can
construct the traffic pattern of the STA, regardless of the
effect of packet preparation delay, channel access contention,
interference, and packet loss. To this end, we require each
STA to modify packets in their protocol stack’s data-path and
add timing information—an approach similar to INT. In order
to reduce packet overhead, instead of including an absolute
timestamp in each packet, we include only a 2-byte value
encoding the difference between the generation time of the
current packet and the previous packet of the same flow. To this
end, each STA computes a unique 5-tuple hash value for each
flow and keeps track of the timestamp of the last generated
packet. In this paper, to simplify compatibility with existing
implementations, we chose the TCP header’s Options field to
include timing information. Alternatively, for non-TCP traffic,
the timing information can be added to the IP header’s Options
field of IPv4 or a ‘next header’ field for IPv6.

In order to add timing information to packets, we consider
two approaches, as follows.

1) Packet Modification in the MAC or NIC: As explained
in Section II, packet preparation increases inter-packet delay.
To capture packet processing delay, we need to add timing
information to each packet when it is ready to be sent; there-
fore, we need to add the timing information when the packet
arrives in the NIC. However, since modifying NIC’s firmware
is infeasible, the alternative is to add timing information when
MAC processing completes and add driver-to-NIC handoff
delay as a constant value to this delay. The challenge with
this approach is that any modification to the TCP header
requires recalculation of TCP checksum and MAC checksum,
and any changes to the IP header requires MAC checksum
recalculation; in both cases, packet preparation overhead is
unnecessarily increased.

2) Packet Modification in the TCP Layer: To eliminate the
need for checksum recalculation, we add timing information
in the TCP layer when the TCP protocol prepares the TCP
header. To account for packet preparation delay, we add the
delays caused by the IP layer, MAC layer, and driver-to-NIC
handoff to the timing information.

A straightforward approach to modifying the TCP Options
field on Linux systems is to use setsockopt; however,
only a specific set of options can be modified with this APIL.
An alternative is to craft a raw packet with appropriate TCP
Options fields hardcoded; nevertheless, this method requires
modifying the applications. Instead of these two approaches,
we leverage eBPF and build an application-agnostic middle-
ware for setting the TCP Options field (note that this approach
can be used for setting the IP fields as well). This eBPF module
can easily be executed from the user-space on each STA
to embed the timing information without any modifications
to the kernel’s code-base. Also, this approach eliminates
the need to modify applications, as it acts as a shim layer
between applications and the transport layer. eBPF enables
real-time patching of the Linux kernel by allowing users to
insert user-defined logic (programs) into the kernel. eBPF
programs are associated with hook points that are triggered
on the execution of either a syscall or a kernel function.
We use BPF_PROG_TYPE_SOCK_OPS program type that
allows the modification of socket options on a per-packet basis.
When an event, such as sendmsg call, TCP connection, or
TCP retransmit timeout occurs, bpf_sock_ops structure is
returned, which provides the context of the event along with
the “op” field identifying the source of the event. We hook
the eBPF program to the tcp_write_options function,
which is responsible for adding the TCP Options field. For
measuring packet preparation delay, similarly, we use eBPF
hooks in the TCP and MAC layer. For driver-to-NIC delay, the
driver is modified to measure the duration of Direct Memory
Access (DMA) transactions.

Since APs usually run Linux, a similar eBPF program
extracts and parses the values included in TCP Options field
of packets received from STAs to characterize uplink traffic.
For characterizing downlink traffic, the same AP module keeps
track of the packet arrival instances on the AP’s wired NIC for
each STA. In this paper, we primarily address characterizing

Authorized licensed use limited to: Santa Clara University. Downloaded on July 02,2023 at 04:11:43 UTC from IEEE Xplore. Restrictions apply.

uplink traffic.

The implementation of SATRAC on RTOS-based STAs
depends on the protocol stack used. On a platform using
ThreadX with NetXDuo stack, we simply added timers to the
TCP and driver codes to measure packet preparation delay.
Also, to embed the timing information in TCP Options field,
we modified the TCP code.

B. Analytical Comparison

We first analyze the benefits of SATRAC by presenting a
simple analytical scenario, demonstrated in Figure 7. Row
(a) shows that at each time instance ¢y, to, t3 and t4, the
application generates ¢ bytes. The interval between data
generation instances is denoted as A. Row (b) shows that
each 1-byte message is segmented (by transport layer) into
three packets. The interval between these packet generations,
denoted as §;, depends on packet preparation delay. The third
(c) and fourth rows (d) present the actual packet transmission
instances (note that the time instances are similar).

When using BSR (row (c)), the STA includes in each packet
the amount of data in the buffer. For example, the packet
generated at time ?; is transmitted at time t»;, and this
packet indicates only the buffer size at the beginning of packet
transmission, which is 21. Since the packet does not convey
packet generation time, this data could have been generated
any time during the time interval between the transmission
of this packet and the previous packet. Additionally, if the
four packets transmitted sequentially at time instance t3 ; are
aggregated as an A-MPDU, all these four packets report value
21 (as explained in Section III-C), further affecting the accu-
racy of traffic characterization. Similarly, the packet sniffing
method cannot be used for identifying packet generation times.
Specifically, as it can be observed, the packet transmission
instances do not represent packet generation instances. Also,
note that BSR and packet sniffing methods cannot be used to
determine a STA’s required CU during a specific time period
because we need to know the interval during which packets
have been generated to calculate CU.

Using SATRAC, the difference between packet generation
timestamps is added to each packet. Regardless of packet
transmission time, the first packet of each micro-burst includes
the time stamp A — 247, and the second and third packets
include timestamp d;. This method allows the AP to determine
both A and §; to characterize traffic accurately.

C. Empirical Evaluations of SATRAC

In this section, we empirically compare the performance
of SATRAC versus packet sniffing (Section III-B) and BSR’
(Section III-C). We use an 802.11ax testbed including one
AP and multiple STAs running Linux. We characterize the
accuracy of traffic characterization for one STA. Other STAs
are used to introduce variations in CU. We consider two CU
scenarios: (i) low, where the measured CU is around 15%,
and (ii) high, where the measured CU is around 70%. We
evaluate the accuracy of SATRAC when inter-packet intervals
are small. To this end, a STA runs a program that generates

E t‘l t2 21

Data ?77
Generation L7
[——

rm backet TT Micro-burst TT E T § TTT)
Generation *+ - : i ; i)

rm | 32 /21/)3*11&@3 20 =P | 2 — pyy A
Packet 3 RAENN 2 f

wmme M MR

J

X925, 5. 0 A—23, 01

m s SN
e TH W

Transmission

Instances 1 1 ' A 20
w/ SATRAC o1 5
Fig. 7. (a): Data generation time instances by application. (b): Packet

generation time instances. (c): Packet transmission instances. This row shows
the time instance of packet capture by sniffer, as well as the BSR value of
each packet. (d): Packet transmission instances and timing information added
to each packet by SATRAC.

Low Channel Utilization (CU) High Channel Utilization (CU)

1.0 1.0
> =
= 0.8 3 0.8
]]
3 3
o =
& 0.6 & 0.6
2 0.4 2 0.4
(e —©— Baseline e —O—Baseline
E —&B— SATRAC E —&—SATRAC
30.2 BSR/ 30.2 BSR/
) —&— Packet Sniffing o —&— Packet Sniffing

0'%.0 0.5 1.0 15 20
Inter-packet Interval (1) [ms]
(b)

0'%.0 0.5 1.0 15 2.0

Inter-packet Interval (d7) [ms]
(a)

Fig. 8. Empirical evaluation of SATRAC versus the baseline (actual data
generation time instances), packet sniffing, and BSR’ in low (a) and high
(b) CU scenarios. SATRAC demonstrates the highest accuracy even in the
presence of high CU.

and sends a 1400-byte message every 500 us. Since TCP
employs a buffering delay of about 200 ms to accumulate
data before transmission, we utilize the TCP_NODELAY flag
for the TCP socket to send the generated data as soon as
received from the application. Also, we are using the voice
AC for the transmission of generated packets. Note that this
AC does not employ packet aggregation (i.e., A-MPDU). To
establish a baseline for accuracy comparison, we denote the
actual data generation instances by the application as baseline.

Figure 8 presents the results collected in low and high CU
scenarios. We can observe that the baseline curve is not a
vertical line. The variations of the baseline are caused by
multiple factors, including timer inaccuracy, context switching,
the delay of copying data from the user-space to the kernel-
space, and the delay of logging time stamps. The closest curve
to the baseline curve is that of SATRAC, in both low and
high CU scenarios, therefore demonstrating the high accuracy
of this approach. Note that some of the timing inaccuracies
affecting the baseline also affect SATRAC; context switching
delay and copying data from user-space to kernel-space are

Authorized licensed use limited to: Santa Clara University. Downloaded on July 02,2023 at 04:11:43 UTC from IEEE Xplore. Restrictions apply.

O Channel Utilization [Throughput ¢ Retransmissions [Sequential [___] Overlapping

100 500 — 100
S o £
= 1 o -

5 80 oo 400 _, 80 g
@) 2 o
154 ° o S
S 60 o 300§ 60 %
= =3 o)
g o ot
= 40 o — 200 iad 40 §
o]
= oo E‘ g 3
c 20{0@ o o ~100 Qg 20 &
< <> L, 7}
g ¢ S
o ¢ 3
O 0 o0 -0 @
Scenario-1 Scenario-2 Scenario-3

Fig. 9. Sequential and overlapping TWT allocations to three STAs. Through-
put, CU, and number of retransmissions are per second. The three scenarios on
the x-axis refer to incrementally higher CU levels by the STAs. By leveraging
SATRAC, the AP can assign each SP to multiple STAs to enhance both CU
and throughput.

among the factors. Nevertheless, while both packet sniffing
and BSR’ are considerably affected in the high CU scenario,
the accuracy of SATRAC remains unaffected. We also observe
that although the accuracy of traffic characterization is slightly
improved by the BSR’ method, the accuracy of this method is
considerably affected by increasing CU.

D. Sample TWT Allocation Scenario

To show the benefits of utilizing SATRAC for TWT allo-
cation, we use a testbed including three STAs. First, similar
to the existing works [9], [11], we assign non-overlapping
SPs to the STAs; we refer to this approach as ‘sequential’
allocation. Then, we enable the AP to characterize traffic,
determine the possibility of higher channel utilization, and
assign overlapping SPs to the STAs; this is referred to as
‘overlapping’ allocation. By changing the packet generation
instances of each STA, we adjust inter-packet intervals and
introduce various CU levels, corresponding to three scenarios.
The results are presented in Figure 9. We observe that the
overlapping allocation enhances throughput and CU, while the
number of retransmissions (caused by collisions) are slightly
increased. For instance, in Scenario-3, where the mean per-
STA CU is 36% using the sequential allocation, the over-
lapping allocation increases the mean to 86%. Similarly, the
throughput increases from 145 Mbps to 445 Mbps in overlap-
ping allocation compared to sequential allocation. Although
the overlapping allocation increases the mean number of
retransmissions per second from 10 to 14, these are 0.00025%
and 0.00035% of the total number of transmissions per second,
respectively. Therefore, these results confirm the effectiveness
of accurate traffic characterization for TWT allocation.

V. CONCLUSION

Allocation of TWT SPs to IoT STAs requires accurate
traffic characterization to meet applications’ demands while
enhancing energy efficiency and throughput. In this paper, we
empirically studied traffic burstiness and the causes of inter-
packet delays in WiFi-based IoT networks. We analyzed the
shortcomings of existing traffic characterization methods and

introduced a novel approach based on packet modification in
STAs’ protocol stack. We showed that using eBPF to embed
inter-packet generation times in TCP header (or IP header)
provides an effective solution for determining per-flow traffic
patterns in AP.

While in this paper we focused on traffic characterization
and TWT allocation in the time domain, the proposed method
can be used to enhance the allocation of Resource Units (RUs)
to STAs in 802.11ax networks. In particular, by enhancing the
accuracy of conveying STAs’ demands to the AP, more effi-
cient time and frequency (TWT and RU) allocation algorithms
can be developed. This is left as future work. We also note
that the proposed method can be leveraged by data-driven and
machine learning methods to enhance the accuracy of device
and traffic characterization, which can be used for applications
such as network security.

ACKNOWLEDGMENT

The authors would like to thank Infineon Technologies and
Arista Networks for donating some of the materials used to
conduct this research. This work was supported by NSF grant
2138633.

REFERENCES

[1] Cisco Systems. (2020) Cisco annual internet report (2018-2023) white
paper.

[2] B. Peck and D. Qiao, “A practical PSM scheme for varying server
delay,” IEEE Transactions on Vehicular Technology, vol. 64, no. 1, pp.
303-314, 2015.

[3] J. Sheth and B. Dezfouli, “Enhancing the energy-efficiency and timeli-
ness of IoT communication in WiFi networks,” IEEE Internet of Things
Journal, vol. 6, no. 5, pp. 9085-9097, 2019.

[4] J. Sheth, C. Miremadi, A. Dezfouli, and B. Dezfouli, “EAPS: Edge-
assisted predictive sleep scheduling for 802.11 IoT stations,” [EEE
Systems Journal, vol. 16, no. 1, pp. 591-602, 2022.

[5] M. Nurchis and B. Bellalta, “Target wake time: Scheduled access in ieee
802.11 ax wlans,” IEEE Wireless Communications, vol. 26, no. 2, pp.
142-150, 2019.

[6] Q. Chen and Y.-H. Zhu, “Scheduling channel access based on target
wake time mechanism in 802.11 ax wlans,” IEEE Transactions on
Wireless Communications, vol. 20, no. 3, pp. 1529-1543, 2020.

[71 Q. Chen, G. Liang, and Z. Weng, “A target wake time based power con-
servation scheme for maximizing throughput in ieee 802.11 ax wlans,” in
IEEE 25th International Conference on Parallel and Distributed Systems
(ICPADS). 1EEE, 2019, pp. 217-224.

[8]1 A. Bhartia, B. Chen, D. Pallas, and W. Stone, “Clientmarshal: Regaining
control from wireless clients for better experience,” in The 25th Annual
International Conference on Mobile Computing and Networking, 2019,
pp. 1-16.

[9] C. Yang, J. Lee, and S. Bahk, “Target wake time scheduling strategies

for uplink transmission in ieee 802.11 ax networks,” in IEEE Wireless

Communications and Networking Conference (WCNC). IEEE, 2021,

pp. 1-6.

B. Schneider, R. C. Sofia, and M. Kovatsch, “A proposal for time-aware

scheduling in wireless industrial iot environments,” in NOMS 2022-2022

IEEE/IFIP Network Operations and Management Symposium. 1EEE,

2022, pp. 1-6.

W. Qiu, G. Chen, K. N. Nguyen, A. Sehgal, P. Nayak, and J. Choi,

“Category-based 802.11 ax target wake time solution,” IEEE Access,

vol. 9, pp. 100 154-100 172, 2021.

C.-C. Li, V. K. Ramanna, D. Webber, C. Hunter, T. Hack, and

B. Dezfouli, “Sensifi: A wireless sensing system for ultrahigh-rate

applications,” IEEE Internet of Things Journal, vol. 9, no. 3, pp. 2025—

2043, 2022.

L. Song, A. Striegel, and A. Mohammed, “Sniffing only control packets:

A lightweight client-side wifi traffic characterization solution,” IEEE

Internet of Things Journal, vol. 8, no. 8, pp. 6536-6548, 2020.

[10]

(1]

[12]

[13]

Authorized licensed use limited to: Santa Clara University. Downloaded on July 02,2023 at 04:11:43 UTC from IEEE Xplore. Restrictions apply.

