

Programming Lab 3A

Functions & Parameters
Topics: Passing parameters, function return values, nested functions, preserving and restoring
registers across function calls, calling C functions from assembly.

Prerequisite Reading: Chapters 1-3
Revised: January 1, 2022

Click to download

Lab3A-Main.c

Assignment: The main program contains each of the four functions shown below. The program may be compiled

and executed without writing any assembly. However, your task is to create assembly language replacements for

each of these C functions. The original C functions are defined as “weak”, so that the linker will automatically

replace them in the executable image by those you create in assembly; you do not need to remove the C versions.

Functions Square and SquareRoot are provided in the main program; do not recreate them in assembly – just

call them from your assembly language code for functions Square2x and Last.

int32_t Add(int32_t x, int32_t y)
 {
 return x + y ;
 }

int32_t Less1(int32_t x)
 {
 return x - 1 ;
 }

int32_t Square2x(int32_t x)
 {
 return Square(x + x) ;
 }

int32_t Last(int32_t x)
 {
 return x + SquareRoot(x) ;
 }

Code and test your functions one at a time using the main program downloaded using the link above. If your

code works correctly, the display should look like the image shown. Press the blue pushbutton to cycle through

all the test cases to verify that everything is correct. Color is used to indicate the status of a function:

Note: The ARM Pro-

cedure Call Standard

requires the stack

pointer be double-

word aligned when

functions are called.

Failure to observe this

requirement can cause

a program to behave

incorrectly or crash.

Gray Function is never called.

Yellow Function is provided by the main program.

Orange Function never returns from being called.

Green Function returns the correct value.

Red Function returns an incorrect value.

Magenta Function doesn’t keep SP double-word aligned

Blue Function doesn’t preserve R4-R11

IMPORTANT – The .thumb_func directive:

The ".thumb_func" assembler directive speci-

fies that the next label is the entry point of a func-

tion that contains instructions from the Thumb

subset of the ARM processor and causes the bi-

nary representation of instructions that branch to

that label to be generated somewhat differently.

Thus in a source code file that contains more than

one function, it is imperative that you place a

.thumb_func directive immediately before the

entry point label of every function.

http://www.engr.scu.edu/~dlewis/book3/labs/Lab3A-Main.c

