

Programming Lab 7I

Simulating a Full Adder
Topics: Integer arithmetic, bitwise and shift instructions

Prerequisite Reading: Chapters 1-7
Revised: December 24, 2024

Click to download

Lab7I-Main.c

Background1: A full adder is a logic circuit that adds two

one-bit binary numbers (𝐴𝑖 and 𝐵𝑖) and a carry-in (𝐶𝑖), pro-

ducing a sum represented by a sum bit (𝑆𝑖) and carry-out

(𝐶𝑖+1). A device to add two 4-bit numbers may be constructed

by cascading four full adders, connecting the carry-out of one

to the carry-in of the next.

The hardware implementation of the sum and carry outputs

is usually defined in Boolean Algebra as:

 𝑆𝑖 = 𝐴𝑖 ⊕ 𝐵𝑖 ⊕ 𝐶𝑖

and 𝐶𝑖+1 = 𝐴𝑖𝐵𝑖 + 𝐴𝑖𝐶𝑖 + 𝐵𝑖𝐶𝑖

The objective of this lab is to simulate these functions in software. Note that their functionality may be implemented in several different

ways as illustrated by the following pseudocode examples using C operators. (Hint: The arrays shown in Sum #4 and Cout #4 may be

created with the assembler .byte directive.)

Sum #1: 𝑆𝑖 = 𝐴𝑖^ 𝐵𝑖^ 𝐶𝑖 Cout #1: 𝐶𝑖+1 = (𝐴𝑖&𝐵𝑖) | (𝐴𝑖&𝐶𝑖) | (𝐵𝑖&𝐶𝑖)

Sum #2: 𝑆𝑖 = (𝐴𝑖 + 𝐵𝑖 + 𝐶𝑖) & 1 Cout #2: 𝐶𝑖+1 = (𝐴𝑖 + 𝐵𝑖 + 𝐶𝑖) ≫ 1

Sum #3: 𝑠ℎ𝑖𝑓𝑡 = (𝐴𝑖 ≪ 2) | (𝐵𝑖 ≪ 1) | (𝐶𝑖)

𝑆𝑖 = (100101102 ≫ 𝑠ℎ𝑖𝑓𝑡) & 1

Cout #3: 𝑠ℎ𝑖𝑓𝑡 = (𝐴𝑖 ≪ 2) | (𝐵𝑖 ≪ 1) | (𝐶𝑖)

𝐶𝑖+1 = (111010002 ≫ 𝑠ℎ𝑖𝑓𝑡) & 1

Sum #4: 𝑖𝑛𝑑𝑒𝑥 = (𝐴𝑖 ≪ 2) | (𝐵𝑖 ≪ 1) | (𝐶𝑖)

𝑆𝑖 = {0,1,1,0,1,0,0,1}[𝑖𝑛𝑑𝑒𝑥]

Cout #4: 𝑖𝑛𝑑𝑒𝑥 = (𝐴𝑖 ≪ 2) | (𝐵𝑖 ≪ 1) | (𝐶𝑖)

𝐶𝑖+1 = {0,0,0,1,0,1,1,1}[𝑖𝑛𝑑𝑒𝑥]

Assignment: The main program may be compiled and executed without writing any assembly. However, your task is to create faster

assembly language replacements for the eight C functions shown below using their C versions to guide your implementation. The

original C functions are defined as “weak”, so that the linker will automatically replace them in the executable image by those you create

in assembly; you do not need to remove the C version.

You are to implement each of these eight alternatives in ARM assembly as straight-line

functions with no IT or conditional branch instructions, and defined by the following

function prototypes. Although the parameters and return types are all declared as 32-bit

signed integers, the values they hold are either decimal 0 or 1.

int32_t Sum1(int32_t Ai, int32_t Bi, int32_t Ci) ;
int32_t Sum2(int32_t Ai, int32_t Bi, int32_t Ci) ;
int32_t Sum3(int32_t Ai, int32_t Bi, int32_t Ci) ;
int32_t Sum4(int32_t Ai, int32_t Bi, int32_t Ci) ;

int32_t Cout1(int32_t Ai, int32_t Bi, int32_t Ci) ;
int32_t Cout2(int32_t Ai, int32_t Bi, int32_t Ci) ;
int32_t Cout3(int32_t Ai, int32_t Bi, int32_t Ci) ;
int32_t Cout4(int32_t Ai, int32_t Bi, int32_t Ci) ;

Test your functions using the main program. Your functions are used to implement six

additions as shown on the right. The values of the two 4-bit integers 𝐴 and 𝐵 continu-

ously cycle through all possible combinations unless an error is encountered. Correct

values of the sum and carry bits produced by your functions are displayed in green;

incorrect values are displayed in red.

1 https://en.wikipedia.org/wiki/Adder_(electronics)#Full_adder

https://en.wikipedia.org/wiki/Adder_(electronics)%23Full_adder

