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1. Abstract

The rapid growth in demand for computational power driven by modern service applications
combined with the shift to the Cloud computing model have led to the establishment of large-scale
virtualized data centers. Such data centers consume enormous amounts of electrical energy resulting in
high operating costs and carbon dioxide emissions. Dynamic consolidation of virtual machines (VMs) using
live migration and switching idle nodes to the sleep mode allow Cloud providers to optimize resource usage
and reduce energy consumption. However, the obligation of providing high quality of service to customers
leads to the necessity in dealing with the energy-performance trade-off, as aggressive consolidation may
lead to performance degradation. Due to the variability of workloads experienced by modern applications,
the VM placement should be optimized continuously in an online manner. Efficient task scheduling
mechanism can meet users' requirements, and improve the resource utilization, thereby enhancing the
overall performance of the cloud computing environment. A scheduling algorithm which takes into
account maintaining quality of service availed to the users, as well as, optimally reducing energy
consumption and increasing efficient resource utilization is proposed and experimented with, on
a simulation environment.

2. Introduction

2.1.  Objective

Cloud computing leverages virtualization of computing resources allowing customers to provision
resources on-demand on a pay-as-you-go basis. Instead of incurring high upfront costs in purchasing IT
infrastructure and dealing with the maintenance and upgrades of both software and hardware,
organizations can outsource their computational needs to the Cloud. The proliferation of Cloud computing
has resulted in the establishment of large-scale data centers containing thousands of computing nodes and
consuming enormous amounts of electrical energy. It has been estimated that by 2014 infrastructure and
energy costs would contribute about 75%, whereas IT would contribute just 25% to the overall cost of
operating a data center. The reason for this extremely high energy consumption is not just the quantity of
computing resources and the power inefficiency of hardware, but rather lies in the inefficient usage of
these resources.

Data collected from more than 5000 production servers over a six-month period have shown that
although servers usually are not idle, the utilization rarely approaches 100%. Most of the time servers
operate at 10-50% of their full capacity, leading to extra expenses on over-provisioning. One of the ways
to address the energy inefficiency is to leverage the capabilities of the virtualization technology. The
virtualization technology allows Cloud providers to create multiple Virtual Machine (VMs) instances on a
single physical server, thus improving the utilization of resources. The reduction in energy consumption can
be achieved by switching idle nodes to low-power modes (i.e., sleep, hibernation), thus eliminating the idle
power consumption. Moreover, by using live migration the VMs can be dynamically consolidated to the
minimal number of physical nodes according to their current resource requirements. Through this project
we aim at proposing an a scheduling algorithm that maximizes energy efficiency of the data center, while
not compromising other services offered.



2.2 What is the problem

Efficient resource management in Clouds is not trivial, as modern service applications often
experience highly variable workloads causing dynamic resource usage patterns. Aggressive
consolidation of VMs can lead to performance degradation when an application encounters an
increasing demand resulting in an unexpected rise of the resource usage. If the resource
requirements of an application are not fulfilled, the application can face increased response times,
time-outs or failures. Ensuring reliable Quality of Service (QoS) defined via Service Level Agreements
(SLAs) established between Cloud providers and their customers is essential for Cloud computing
environments; therefore, Cloud providers have to deal with an energy-performance trade-off — the
minimization of energy consumption, while meeting the SLAs. The focus of this work is on energy and
performance efficient task scheduling and resource management strategies that can be applied in a
virtualized data center by a Cloud provider (e.g. Amazon EC2).

For task scheduling, unlike traditional algorithms, cloud computing has an extra level of virtualization which
comes with an advantage of being scalable but has a downside of requiring an additional step in
scheduling.
i.e There are two decisions that need to be made for scheduling resources in Cloud.

1. Mapping between virtual machines and hosts. Which VM should be run on which host?

2. Mapping between user’s task and VM. i.e Which task runs on which VM?

Also once the virtual machines are running on the host, it is essential to watch out for overloading of hosts
or underloading of hosts. Overloading should be detected to avoid violation of SLAs and provide
sufficient computing power and QoS to each task as per user requirements. Underloading of
hosts should be detected so that underloaded hosts can be unloaded, by migrating all VMs from

it, and then leaving it on low-power mode, as to reduce power consumption.

23 Why this is a project related the class

A cloud environment consists of multiple customers requesting for the available resources. Cloud
vendors who offer Infrastructure as a Service should enable efficient management of the available
resources. Proper scheduling in cloud enables the selection of best suitable resources for task execution.
Additionally, timely detection of imbalance of host loads, can amend SLA violations and wastage of
power. Due to the complexities and dynamics in the cloud environment, task scheduling is a highly
researched problem in Cloud Computing.

24 Why other approach is no good



Most of the approaches for task scheduling in Cloud considers only mapping user’s tasks to
VM’s. These task scheduling algorithms do not consider whether the host is overloaded or underloaded
and hence result in an imbalance and low efficiency in resource utilization.

2.5  Why you think your approach is better

Our approach involves a task scheduler that is energy aware . It not only dynamically maps
tasks to Virtual Machines but also considers the amount of resources available on the host system.
Additionally, it is a more ecologically friendly approach as it aims at reducing energy consumption, without
reducing service standards. Hence along with meeting user’s requirements it results in high resource
utilization unlike other approaches.

2.6 Statement of the problem

Design a task scheduling algorithm that results in high resource utilization efficiency while meeting
the user’s requirements. The current task scheduling algorithms in Cloud simply map tasks to VM’s
without considering the load balancing of the host systems. This may be to avoid the overhead involved
since meeting user’s requirements is of highest priority without violating the SLA than resource utilization.
But inefficient resource utilization can incur significant wastage of power resources and loss to the cloud
service providers.

Hence our solution is to design a task scheduling algorithm that also considers the load
of the hosts, avoiding overload so as to meet the user’s requirements on time (adhering to SLA
and improving QoS), and detect underloaded hosts to avoid unnecessary consumption of
energy.

2.7  Area or scope of investigation

Task scheduling : Map user’s tasks to VM’s

Load balancing : At each step check if the host is under or over utilized, and take steps to avoid
over/under loading.

Simulate on CloudSim.

Comparison with Existing solutions

Try implementing same algorithm on OpenStack.

vl

vl

3. Theoretical Bases and Literature Review

3.1 Definition of the problem

In Cloud, virtualization technology is used for efficient management of resources. This projects
aims at solving the problem of dynamic and efficient task scheduling and resource utilization in a virtualized



data center by mapping user’s requests (tasks) to virtual machines and mapping from virtual machines to
hosts, followed by addressing imbalance in loads on hosts for efficient utilization of resources.

3.1 Theoretical background of the problem

Cloud computing has added the extra level of virtualization in the task allocation process. This
gives an advantage of scalability, but has the downside of requiring an additional step in the scheduling.
Therefore, two scheduling decisions are required in Cloud. The first level scheduling is from the users’
requests to the virtual machine, and the second is from the virtual machine to host resources.

HDST HDST HOST

Fig. Two levels of scheduling model in cloud computing

Many algorithms like FCFS, Round Robin, Active-VM monitoring and Throttled are used for
executing clients request with a minimum response time and also assigning the requests to the virtual
machines. But the constraints such as high communication delays, underutilization of the resources are not
addressed clearly and efficiently, which leads to many of the resources does not participate in executing
the requests and hence leads to imbalance of cloud system.

3.2  Related research to solve the problem

3.2.1 Online Multi-Resource Scheduling for Minimum Task Completion Time in Cloud
Server

In this paper, an algorithm for online scheduling of resources is proposed.There are two phases
involved. The first phase is triggered when a task arrives for execution and second phase is triggered after
the completion of the task. In the first phase , best fit is used to choose the server on which the task will
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run. In the second phase , all the tasks are sorted based on execution times , and a task that can run on
the free VM is chosen . This method performed better than all traditional methods such as
best-fit,worst-fit etc in terms of the CPU and memory utilization.

3.2.2 Scheduling Using Improved Genetic Algorithm in Cloud Computing for Independent
Tasks

In this paper , a modification to a genetic algorithm is proposed for scheduling tasks to Virtual
Machines. The algorithm was compared against the traditional genetic algorithm and performed better in
terms of the makespan for resource utilization.

3.2.3 Optimal Load Balancing in Cloud Computing By Efficient Utilization of Virtual
Machines

In this paper, a novel VM-assign algorithm is presented which allocates incoming jobs to available
virtual machines. Here the virtual machine assigned depending on its load i.e. VM with least request is
found and then new request is allotted. With this algorithm underutilization of the virtual machine is
improved significantly and later it is compared with existing Active-VM algorithm.

3.2.4 Cost-Optimized Resource Provisioning in Cloud

In this paper, the virtualization technology is used to provide resources to the cloud consumers
through the cloud broker.This paper proposes cost-optimized resource provisioning in cloud using
Bin-packing VM placement algorithm which comprised of job placement and VM placements modules.
Consumer demands are placed into the VMs using Best-fit strategy.

3.2.5 An Empirical Investigation on the Simulation of Priority and Shortest Job First
Scheduling for Cloud-based Software Systems

In this paper, a scheduling algorithm integrated with task grouping, priority-aware and SJF
(shortest-job-first) to reduce the waiting time and makespan, as well as to maximize resource utilization is
proposed. It is seen that in comparison with existing task grouping algorithms, results show that the
proposed algorithm waiting time and processing time decreased significantly (over 30%).

3.2.6 Cloud Task Scheduling Based on Ant Colony Optimization

In this paper, cloud task scheduling is viewed as an NP-complete problem and an ant colony
optimization is used for scheduling tasks to virtual machines. The main goal of the algorithms is minimizing
the makespan of a given tasks set. Experimental results showed that the ant colony optimization
outperformed FCFS and round-robin algorithms.



33 Advantage/disadvantage of those research

3.3.1 Online Multi-Resource Scheduling for Minimum Task Completion Time in Cloud

Servers

e Advantages
o High resource utilization.

0 Minimum queuing delay.

e Disadvantages
o Does not consider virtualization into consideration.

3.3.2 Scheduling Using Improved Genetic Algorithm in Cloud Computing for Independent
Tasks

e Advantages
o Reduces makespan

e Disadvantages
o Does not consider the mapping between VM’s and hosts. i.e no load balancing is done.

3.3.3. Optimal Load Balancing in Cloud Computing By Efficient Utilization of Virtual
Machines

e Advantages

o It solves the problem of inefficient utilization of the VMs / resources compared to existing

algorithm.
o Management of the dynamic resources in cloud platform can be efficiently given by

virtualization technology. It provides a new way to improve the power efficiency of the

data centers.

e Disadvantages

o While making comparison the author has considered only load distribution aspect. Other

aspects like response time, energy consumption is not analyzed.
Existing Active-VM algorithm is used for comparison is also proposed by same author.

How algorithm will respond if we mix both static and dynamic loads is not specified in the

paper.

3.3.4 Cost-Optimized Resource Provisioning in Cloud
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3.3.5

Advantages
o In the proposed system, the concept of Bin-Packing approach is used, that make use of
the concept of server virtualization to minimize the power consumption.
With this approach, it is possible to minimize the cost of a running data center.
Proposed work reduces the number of physical machine required to execute the
demanded jobs.

Disadvantages

o In this paper, underutilization of the resources are not addressed clearly and efficiently,
which leads to imbalance of cloud system.

An Empirical Investigation on the Simulation of Priority and Shortest-Job-First

Scheduling for Cloud-based Software Systems

3.3.6

3.4

Advantages
o Reduces waiting time
o Minimized turnaround time of tasks
o Reduced influence on the bottleneck of bandwidth usage

Disadvantages

o Load balancing is not being considered.
o Longer jobs always tend to get pushed back, as shorter jobs get priority.

Cloud Task Scheduling Based on Ant Colony Optimization

Advantages
o Considerable reduction in task completion time.
o Dynamic task allocation is made possible.

Disadvantages
o The same resource and VM would be over utilized, since ants would converge to first
available position.

Your solution to solve this problem
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Our proposed solution is to use a scheduling model, where scheduling occurs from tasks to VM,
and then VMs are placed on suitable resources, i.e, there are two levels of scheduling. The scheduling
mechanism take into account the dynamic requirements of users and the load balancing in cloud
environment.

In this two level scheduling model, the first scheduling phase creates the description of a virtual
machine, including the set of computing resources, network resources, storage resources, and other
configuration information, according to the demands of a task. Then the second scheduling phase finds
appropriate resources for the virtual machine in the host resources based on the virtual machine
description provided from the first phase.

Load balancing is achieved with dynamic migration operation. If the virtual machine scheduled to
a host experiences an increase in computational amount, leading to a heavy load on the virtual machine,
resulting in load imbalance, then we use a dynamic migration operation to maintain load balance in current
environment. And if a host experiences an underload, all VMs from that host are transferred to other
active hosts, and the current host is switched to low power mode to save power.

3.5 Where your solution different from others

Most task scheduling algorithms that we have encountered, deals with mapping user’s task to a
virtual machine. Very few task scheduling algorithms consider mapping from virtual machine to host
resources. But, both mappings ie. user’s task to virtual machine and virtual machine to host resources are
rarely addressed in single approach. This is one of the main areas where the solution we are proposing
differs from other methods.We also aim at minimizing energy by switching off underutilized host.

There are many algorithms for executing clients request with a minimum response time and also
assigning the requests to the virtual machines. However, very few address issues like underutilization of
resources and overutilization of resources. The two level task scheduling along with efficient utilization of
resources is not addressed by any of the above referenced papers.

3.6  Why your solution is better

Our proposed solution is based on scheduling model with load balancing approach. Scheduling
model is divided into two levels. One is the mapping from task to a virtual machine, another is mapping
from the virtual machine to host resources.Dynamic migration strategy is used for efficient utilization of
resources ie.load balancing.Our proposed solution considers both decisions required for scheduling
resources in Cloud. At the same time it also deals with efficient utilization of resources. Hence, under/over
utilization situation will not arise.

In simple words, two level task scheduling i.e. mapping of resources from the user’s to the virtual
machine and from the virtual machines to host will meet the dynamic task requirement of the users, and
reduce response time whereas load Balancing will improve utilization of resources. This method of
scheduling would be profitable for both the users and providers of the computational resource.

4. Methodology
12



As cloud computing is a very new and emerging field, there are not many sources of standard
inputs or benchmarks to perform a comparative analysis with. Additionally, to perform benchmarking we
need to perform experiments on a repeatable, dependable, and scalable environment, which is not possible
in the real-world cloud, because of the large array of different cloud service providers, and the differences
in their scheduling policies, and environments.

So, to obtain a holistic software framework for modelling cloud computing environments and
perform testing, we use a simulator called CloudSim for modelling the cloud. The primary function of
CloudSim is to provide a generalized, and extensible simulation framework that enables seamless modeling,
simulation, and experimentation of emerging Cloud computing infrastructures and application services. By
using CloudSim, researchers and developers can focus on specific system design issues that they want to
investigate, without getting concerned about the low level details related to Cloud-based infrastructures
and services.

Using CloudSim, we propose a comparison of the execution time and resource efficiency with
other scheduling algorithms, using a common input.

4.1 Input

To make a simulation-based evaluation applicable, it is important to conduct experiments using
workload traces from a real system. In CloudSim we use data provided as a part of the CoMon project, a
monitoring infrastructure for PlanetLab.

The input will consist of the data on the CPU utilization by more than a thousand VMs from
servers located at more than 500 places around the world. The interval of utilization measurements is 5
minutes and each traced file have 288 lines, therefore, each one represent a VMs CPU utilization about 24
hours.

4.2  Output

The energy utilization and SLA violation for tasks ranging from sets of 10 - 1000 is observed.
Graphs are plotted, comparing the results obtained running the proposed method, and other scheduling
algorithms, to ascertain the real statistical difference in performance between the methods.

4.3 Algorithm Design Description

The algorithm follows a two-level scheme of scheduling. In order to describe that, we define a set
of tasks T = {t, t, t t .} and the number of tasks is n=| T |, and a set of hosts H= {h,, h,, h,, .

13
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.. h_,} and the number of hosts is m = | H |. The load on a host machine is defined as the average load
of virtual machines that run on it.

We describe the algorithm below:

Step 1 : Establish the host resource set, H = {h,, h,, h,,... h_,}, and sort in ascending order of their
processing power.

Step 2 : Establish the set of tasks, T = {t,, t, t,,... t_,}. Then according to the properties of each task,
the first level of the scheduler establishes the description of the virtual machine required, and thus
providing configuration information for allocation of resources and creation of the virtual machine.

Step 3 : According to the virtual machine description of Task t,€ T, select a host resource h; that can
meet the required resources and the load is lightest. If the host exists, create the virtual machine and
allocate the required resource for it then update the available resources Host h;, otherwise take the Task t;
to the tail of the task queue and wait for the next scheduling.

Step 4 : If the resource requirements of the Task t, increase, find whether the host whose virtual machine
of Task t, run on can meet the additional required resources, if it exists, allocate the additional required
resources for it, reconfigure the virtual machine, and then update the host's available resources.
Otherwise, the virtual machine is migrated to the host with lightest load and the additional required
resources to execute continuously.

Step 5 : If the resource requirements of the Task t. reduce, release the excess resources that the virtual
machine occupied, and update the available resources held by the host.

Step 6 : If Task t, has been completed, then destroy the virtual machine of Task t, and release the
occupied resources for the other unfinished tasks.

Step 7 : Calculate the load on each host, and find the standard deviation, if the load on a particular host is

much higher than the rest, select a virtual machine with the lightest load from that host and migrate it to a

host with the lightest load. If the load on a particular hosts is very light, migrate all VMs from it, to other
hosts.

Step 8 : Repeat Steps 3 to 7 until all tasks are completed.

In the above algorithm, the virtual machine is scheduled to the host with lightest load each time.
The advantage is to avoid overloading for the host. If a particular virtual machine is scheduled to a host
and the computational amount increases, leading to a higher load on the virtual machine, resulting in load
imbalance, then take the dynamic migration operation (described in Step 7), maintaining load balance in
current environment.

Language Used: Java

14



Tools Used: Eclipse , CloudSim.
Benchmark: PlanetLab virtual machine workload traces.

The algorithm will be implemented on the java version of CloudSim v3.0.0, using Eclipse IDE.

5. Implementation:

5.1 Code

The code consists of the source code to implement cloudSim. The following files were modified to run and
test the algorithm on this tool.

1. RunnerAbstract.java
The following files are added to implement our proposed algorithm:

1. PlanetLabRun.java

2. StDev.java

3. MyVmAllocationPolicy.java

4. MyVmSelectionPolicy.java

Modules Pseudocode :
I. VM to Host Mapping : This module chooses the host with the lightest load for allocating VM

1. Input: ListofTargetHosts,, Output: Host to allocate the VM
2. minCapacity «—MAX // In order to calculate the capacity we are using the RAM of the host.
3. allocatedHost«—NULL
4. For each host in ListofTargetHosts do
5 If target host has enough resources for VM
6 capacity«—getCapacityofHost();
7. If capacity < minCapacity

minCapacity=Capacity

allocated host«—host

9. If allocatedHostZNULL then

10. Allocation.add(vm,allocatedHost)

11. Return allocation

*

II. VM allocation policies : Decide if a host is underutilized or overutilized

15



1.Input : ListOfHosts , Output : Return true if a host is overutilized
2. upperThreshold =0

3. set upperThreshold = calculateStdDev(historyOfUtizations)

4. totalMipsRequested=0

5.For each Vm in Host do

6. totalRequestedMips += vm.getCurrentRequested TotalMips()
7. utilization = totalRequestedMips / host.getTotalMips();

8.Return utilization > upperThreshold

III. Vm allocation policies 2 : Return host that is underutilized

1.Input : ListOfHosts , Output : Return true if a host is underutilized
2.minUtilization=1
3.underUtlizedHost=NULL
4.For each Host from ListOfHosts
5. utilization = host.getUtilizationOfCpu()
6. if (utilization > 0 && utilization < minUtilization
&& lareAllVmsMigratingOutOrAny VmMigratingIn(host)) {
minUtilization = utilization
underUtilizedHost=host }
7.if underUtilizedHost!=NULL
8. return underUtilized
IV. VM selection policy : Choose which VM to migrate if host is overloaded

1.Input : Overutilized host, Output : Vm to migrate
2.vmToMigrate = NULL
3.minMetric=MAX

4.For each VM in Host
5. metric=vm.getRAM()
6. if(metric < minMetric)

minMetric = metric;
vmToMigrate = vm;
7.return vimToMigrate;

5.2 Design and flowchart

Entire flow:

1. Make a list of available tasks(cloudlets) and hosts.
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2. According to the properties of each task(cloudlets), define the properties of the VM that it can be
run on.
3. According to the VM description, a host is selected from the list of hosts, which can
accommodate the VM, and whose load is lightest.
4. Assign the task to the VM, and the VM to the selected host.
5. Check hosts for overloading or underloading (StDev).
a. If host is overloaded, migrate the VM with the minimum migration time (VM selection) to
another host which is lightly loaded.
b. If host is underloaded, migrate all the VMs from that host to another host which is
running, and shut down the current host
6. Step 5 is repeated till all tasks finish execution

Flowchart :

? l
<

Make list of available
Tasks(Cloudlets) and VM

Migrate the VM with minimum
migration time to another |-
lightly loaded host

'

Migrate all VM 1o
another mnning host |
and shut down the
current host

4
Host with the lightest load
is selected based on VM
descrption.

Assign a Task to VM and
VM to selected Host.

*4— vie]
Check for host under

-lbading or overoading
(STDev)

6. Data Analysis and Discussion:

6.1 Output generation
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In order to generate the output we ran the implemented algorithm along with existing algorithm
such as DVFS. We have used the total energy consumption metric to compare DVFS and our method.
Further in order to look into the effects of migration in CLoud we record the SLA violation metric.

We have used traces of PlanetLab as benchmark for running all the algorithms.
Below are the screen shots after running of DVFS and our proposed algorithm with the same workload.

: Output - CloudSim (run) F ® i Tasks S HTTP Server Monitor

D> Simulation: Reached termination time.

u> CloudInformationSerwvice: Notify all CloudSim entities for shutting down.
Broker is shutting down...
Datacenter is shutting down. ..

%& Simulaticn completed.
Received 0 cloudlets

Simulation completed.

Experiment name: trial dvfs
Humber of hosts: 50
Humber of VMs: 30

Total simulation timel 2E400 00 sec
Energy consumption @-
Number of VM migrati -

SLE: 0.00000%

SL: perf degradation due to migratiom: 0.00%
12 time per active host: 0.00%

Overall SLA wviclaticn: 0.00%

Awverage SLA wiclation: 0.00%

Number of host shutdowns: 37

Mean time before z host shutdown: 300.10 sec
StDev time before a host shutdown: 0.00 sec
Mean time before a VM migration: MNaN sec

StDev time before a VM migration: NaN sec

BUILD SUCCESSEUL (total time: 10 seconds)

Figure : DVFS Snapshot
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: Qutput - CloudSim (run) ¥ ® |: Tasks : HTTP Server Monitor

D> Experiment name: trial my ap my sp_ 2.5
D> Number of hosts: 50
Number of VMs: 30
Totzal simmlation time_ g
%& Energy consumption:
Number of VM migrati
SLA: 0.00014%

SLA perf degradation due to migration: 0.0Z%

SL& time per actiwve host: 0.78%

Owerall SLR wviclation: 0.02%

Awverage SL& violation: 10.00%

Humber of host shutdowns: 74

Mean time before a host shutdown: 3153.85 sec
StDev time before a host shutdown: 52.18 sec
Mean time before a VM migration: 20.03 sec
StDev time before a2 VM migration: 7.75 sec
Execution time - VM selection mean: 0.00002 sec

Execution time - VM selection stDev: 0.00013 sec

Execution time -
Execution time -
Execution time -

Execution time -

host selection mean:
host gelection stDev:
VM reallocation mean:
VM reallocation stDew:

0.001Z25 sec

0.00328 sec
0.000Z0 sec
0.00083 sec

Execution time - totzal mean: 0.00408 sec

Execution time - total stDev: 0.00557 sec

BUILD SUCCESSFUL (total time: 15 seconds)

4| 11 3

Figure: Our working algorithm snapshot

6.2 Output analysis

First we compare DVFS with our task scheduling method to look into the amount of energy
consumed. Below graph shows the statistics for the following:

1. DVFS algorithm

2. Our solution using - min time as a VM selection during migration

3. Our solution using - random VM selection during migration

4. Our solution using - Min utilization metric for VM selection during migration

19
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From the above graph we can see that our approach saves much more energy than DVFS.

Energy reduction compared to DVFS is around 70-80%. i.e 80% of the power consumption can be
reduced.

But it is not clear which among the 3 approaches to choose VM to migrate is doing good. Moreover we
need to look at the SLA violations between them.

For this we used the following metric to assess the best method. It is a combined metric that takes both
energy consumption and SLA violation into consideration.

Energy-SLA = (Energy consumed * SLA violations)

Any method that can gives us the least value of Energy-SLA can be considered as the best.
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After plotting energy consumption and SLA violation , we can see that the min migration time method
works the best.

7. Conclusion

7.1 Summary

We have evaluated the proposed two-level task scheduling algorithm through extensive
simulations on a large-scale experiment setup using workload traces from more than a thousand
PlanetLab VMs. The results of the experiments have shown that the proposed two-level
scheduling policy that does dynamic consolidation of virtual machines uses significantly less
energy compared to other task scheduling algorithms that try to conserve energy like
DVFS.We were able to achieve an energy reduction of 70-80%.

Further in order to look into the cost of migrations , we recorded the SLA violations. We
conclude that by migrating VM’s with minimum migration time we achieve the least number of
SLA violations . Such algorithms can be used by cloud IaaS providers to reduce power consumption,
minimizing SLA violations
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7.2 Recommendations for future studies

In order to evaluate the proposed system in a real Cloud infrastructure, we plan to implement it
by extending a real-world Cloud platform, such as OpenStack. Another direction for future research is
the investigation of more complex workload models, e.g. models based on Markov chains, and
development of algorithms that will leverage these workload models.

Besides the reduction in infrastructure and on-going operating costs, this work also has social

significance as it decreases carbon dioxide footprints and energy consumption by modern IT
infrastructures
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0. Appendix:

A. CloudSim Architecture

CloudSim is a simulating program from CLOUDS lab in University of Melbourne for cloud computing. It is
developed in java platform including the pre-developed modules such as SimJava and GridSim. The
following is the architecture for CloudSim.

User code
Simulation Tloud Oser Application
Speciﬁ cation Scenario Requirements Configuration
Scheduling
POHCY User or Data Center Broker
CloudSim
User :
Virtual
Interface Cloudlet Machine
Structures
VM Cloudlet VM
Services Execution Management
Cloud VIV cPU Memory Storage Bandwidth
Services E[Qy'ggmng Allocation Allocation Allocation Allocation
Cloud Events s Cloud Data Cent
Resources Handling enser Coordinator ata Center
Network Network Message delay
Topology Calculation
CloudSim core simulation engine

The infrastructure-level services (IaaS) related to the clouds can be simulated by extending the
Datacenter entity of CloudSim. The datacenter entity manages a number of host entities. The hosts are
assigned to one or more VMs based on a VM allocation policy that should be defined by the cloud service
provider. A Datacenter can manage several hosts that in turn manage VMs during their life cycles. Host
is a CloudSim component that represents a physical computing server in a Cloud: it is assigned a
pre-configured processing capability (expressed in millions of instructions per seconds — MIPS), memory,
storage, and a provisioning policy for allocating processing cores to virtual machines.

VM allocation (provisioning) is the process of creating VM instances on hosts that match the
critical characteristics (storage, memory), configurations (software environment), and requirements
(availability zone) of the SaaS provider. By default, VmAllocationPolicy implements a straightforward
policy that allocates VMs to the Host in First-Come-First-Serve (FCFS) basis. To implement your own
VM Allocation policy, just extends the class VmAllocationPolicy. Power consumption by computing nodes
in data centers is mostly determined by the CPU, memory, disk storage, power supplies and cooling
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systems. Recent studies have shown that the power consumption by servers can be accurately described
by a linear relationship between the power consumption and CPU utilization.
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