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Abstract 

We have simulated SimpleFS, a simple and scalable distributed file system for nowadays highly 

demanded data parallel computations on clusters. To mimic the most popular concepts in 

distributed file system design, SimpleFS is comprised of three parts: client, metadata server and 

data server. Java socket is used to simulate the communications among the three. Command 

are inputted from the client terminal and sent to the metadata server for initial process. 

Information will be returned to the client directly. Operations like file I/O needs a second 

communication step between client and the data server. Java threads are used to mimic storage 

devices in the data server center. For writes, files are chopped into chunks and distributed 

across the storage devices. Data replications are also taken into consideration to protect the 

system under frequent device failure circumstances. Upon the simulation, files are able to be 

successfully stored into and retrieved from the system, even when storage device failure 

happens. 

 

Introduction 

The goal of this study is to simulate a distributed scalable, reliable, high-performance file system 

to accommodate the on improving demand for parallel computations. 

 

The performance of file systems has long proven to be critical to the overall performance of all 

kinds of computer applications. In order to find a better solution for the problem, various studies 

have been carried out in the past decade, among which Network File System (NFS) is the most 

traditional solution[1]. It allows one server to expose file system hierarchy and let clients map it 

into their local name space. Although widely used, the centralized server model makes the 
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whole system not scalable enough for today’s extremely large amount of and dynamic data. 

Because of its centralization, the system is not reliable enough if device failure happens.  

 

With cloud becoming more and more dominant technique for handling all kinds of computer 

applications, the amount of data become large enough that it has become very inefficient and 

energy costing to use one centralized server to do all the jobs like in the traditional way. There is 

a need for more scalable and reliable file system that does not rely on one single server, 

handles device failure properly, and gives high performance even when the volume of request 

form server is huge. Developing a suitable distributed file system has become crucial for the 

normal operation of cloud computing system. 

 

The concept of distributed file system was thus introduced recently to fulfill the requirement of 

cloud computing. In cloud computing system, component failure is norm rather than the 

exception. File sizes are in TBs and is hard to handle using traditional method. Small pieces are 

desired. Most importantly, multiple servers have to be used to store the huge amount of data, 

thus producing many problems like synchronization and data distribution algorithm etc. 

 

There has been many distributed file system model proposed to improve scalability. Google File 

System (GFS), after careful design and  thorough testing, has been put into market and proven 

to be effective [2]. Other file systems, like TidyFS, ASDF, Ceph, etc,  utilize similar concepts but 

take more factors into consideration, tending to improve the system performance even more. 

They all show improvement to different extent [3][4][5].  

 

We are aiming to simulate a simple distributed file system with the most important features of 

other distributed file systems and the potential of implementing more complicated features. We 

are focusing on two types of commands the client might input: commands involve only the 
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metadata server (getFileSize, getDiskSize, rename) and those involve both metadata and data 

server (read, write). By using these most basic but typical commands, we are showing the 

effectiveness of nowadays emerging distributed file system models in handling cloud computing 

jobs. 

 

Theoretical bases and literature review 

In recent years, shared-nothing compute clusters are a popular platform for scalable data-

intensive computing. the typical frameworks, such as MapReduce [6], Hadoop [9], Dryad [10], 

are able to run data-parallel program which is possible to achieve very high aggregate I/O 

throughput.    

 

Distributed file systems have been developed to support this style of write-once,high-

throughput, parallel streaming data access. These include the Google File System (GFS) [8], 

and the Hadoop Distributed File System (HDFS) [11, 12]. Those systems have similar design:  

I. metadata for the entire file system is centralized and stores all information to describe the 

mapping and location, length of data, etc. 

II. data are stored separately on computing nodes, and replication is made by some algorithm. 

III. each node can finish task separately to use data stored on it, because data is not shared. 

 

This paper presents SimpleFS, a distributed file system which is to simplify the system as far as 

possible by exploiting this restricted workload. It has the following properties: 

A. data are stored into different computing nodes, metadata describes the location, the length of 

the data, the mapping between stream and data, etc. 

B. each computing node can separately finish the computing bases on the data which is storing 

on it. 
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C. in order to simplify fault-tolerance and reduce communication the computing frameworks do 

not implement fine-grain transactions across processes 

D. replication is lazy, which means the replication will be finished in near future, not 

immediately, which can be performed when the computing node is not busy. 

  

However, there are some difference with popular DFS, such as GFS allows updates in the 

middle of existing streams, and concurrent appends by multiple writers, while the HDFS 

community has struggled with the tradeoff between the utility and complexity of even single-

writer append operations [10] to a stream that can be concurrently read. 

 

Our goal is to achieve scalability and fault-tolerance while remaining relatively simple. our 

simulation has the similar design as the popular distributed file system, which has client, data 

server and metadata server. Client talks to metadata and data server directly, read or write data 

with internal interfaces. Metadata server is very important which is applying an auto-replication 

algorithm to avoid server crash. The stream data cannot be read until the writing finish. And the 

update operation will provide a new copy for all data across the computing nodes instead of 

update the specified part of data, which can simplify the lock management. Lazy replication is 

another good point to balance the resource of computing nodes. 

 

Hypothesis 

In this paper, we simulated a simplified distributed file system and achieved all the key 

functionalities of real DFS, including massive distributed storage, good scalability and fault 

tolerance, etc.  
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Based on this simulation, we could further research different metadata algorithms to compared 

their performance and load balance, test system availability of reacting to random server 

crashes, and improve the extensibility by adding more server nodes. 

 

Methodology 

The architecture of this simulation is based on GFS. We created client, metadata server and 

chunk servers in the system. Client is the user to write and read files. Metadata server is the 

single master, managing the file directory and chunk servers are the physical storage for the 

data. 

  

Each chunk server is simulated by one Java thread with pre-assigned storage capacity. Chunk 

servers hold the chunks of files and their replicas. It can also experience short term failure by 

killing the thread randomly.  

  

Regarding the metadata server, it maintains namespace, mapping from files to chunks and their 

locations. We also used random and weighted random algorithm to assign the chunk location 

for different files, which can be further tested for load balance. 

  

Client can write and read files in this simulated distributed file system. Additional services are 

also provided, including requesting storage current available capacity and name list for all the 

files in the system.  

 

The communications among client, metadata and chunk servers are implemented by socket. 

Client sends request to metadata first, and then write or read files to multiple chunk servers 

based on the location information provided by metadata. 
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The simulation will be implemented in the Java programming language and compiled with Java 

compiler and run Linux or window platform.  

 

Implementation 

The overall structure of our simulation is illustrated in the Figure 1. Three entities, Client, 

Metadata Server and Chunk Server, communicate with each other through Java socket 

connection. Client sends out command to either Metadata Server or Chunk Server and gets 

responds back from them later on. Metadata Server and Chunk Server can communicate with 

each other about node information. In the Metadata Server, there is a node map which contains 

all the node occupation status. All the file metadata are all also stored in it for file metadata 

operations. Chunk Server is mainly for file I/O. Each Node in it is simulated using a Java thread. 

Node threads are running parallelly storing file chunks mimicking the real data center nodes.  
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Figure 1. Overall simulation structure 

 

I. Client. 

Client is the controller interface where all the commands are entered. It sets up the socket 

server, parses the commands and communicates with Metadata Server and Chunk Server to 

get the job done. Commands are separated into two groups: those involve only Metadata Server 

(Table 1) and those involve both (Table 2). 

 

getDiskCapacity To get the total disk capacity in the distributed 

file system 

rename oldFileName newFileName To rename a file giving the old name and the 

new name 

getFileSize fileName To get the file size given the file name 

 
 

 

 

  

 

 

 

 

 

 

  

 

Node0 

 

 

 

Metadata Server 

Client 

Socket Socket 

OS IS OS IS 

Server 

Command Parser 

Write Read Others  

Socket Socket 

Thread Thread 

CE 

FileEntry 

CE CE Node1 Node15 

Thread 



 10 / 35 
 

getFileStat fileName To get the file statistics including file name, file 

size and creation time given the file name 

getNodeStat To get the node load information including the 

total node disk size and the leftover disk size 

Table 1. Commands involve Metadata Server only 

 

read -s/-p fileName To read a file given the file name. –s for 

sequential reading and –p for parallel reading. 

Request is first sent to Metadata Server to get 

the storage information about each chunk in 

the file. This information is in turn used by 

Client-Chunk Server communication to get the 

data chunks to complete the read.  

write -s/-p fileName To write a file given the file name. –s for 

sequential writing and –p for parallel writing. 

Request is first sent to Metadata Server to get 

the storage information about the original and 

copies of each chunk in the file. This 

information is in turn used by Client-Chunk 

Server communication to store the data 

chunks to complete the write. 

stopNode To stop the operation of a random node to 

mimic node failure in reality. Request is first 

sent to Metadata Server get the node number 

to be suspended. The node number is then 
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sent to the Chunk Server to kill the 

corresponding thread. 

Table 2. Commands involve both Metadata Server and Chunk Server 

 

II. Metadata Server 

Metadata Server contains two list: 

   private static int[][] nodeMap; 

   private static HashMap<String, FileEntry> files; 

 

nodeMap is a 2D integer array which contains all the node storage information. The row number 

is consistent with the node number of each Node in the Chunk Server. In our simulation, there 

are 16 Nodes, resulting in 16 rows in nodeMap. There are 2 columns in each row. The first 

column tells the current address to be written into. The second column tells the free space left 

on this node. The sum of the two columns is the total size of this node. nodeMap is used in 

“getDiskCapacity”, “getNodeStat”, and “write”. 

 

A HashMap is used to store and search all the files in the system. A FileEntry class is used to 

hold the metadata of each file. The metadata includes the name, the size and the creation time 

of the file. FileEntry class also contains the addresses of all the chunks in the file, including both 

the original copy and the extra copies made to be used in case of node failure. 

  

The detailed implementation of each request from the Client is described in Table 3.  

 

getDiskCapacity Calculate total disk capacity using nodeMap. 

Add up all the leftover size of each node and 
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return the sum. 

rename oldFileName newFileName Find the file from the files HashMap and call its 

rename() method to change the name. 

getFileSize fileName Find the file from the files HashMap and return 

the file size. 

getFileStat fileName Find the file from the files HashMap and return 

the file statistics. 

getNodeStat Return the total disk size and the leftover disk 

size of each node calculated from nodeMap. 

read -s/-p fileName Find the file from the files HashMap and return 

the location of the first available copy. 

write -s/-p fileName See if the file already exists. If yes, delete the 

old file first. Based on the nodeMap, distribute 

the file chunks onto each node and return the 

location information for all three copies. 

stopNode Randomly generate a node number between 0 

and 15. Iterate through all the files and mark 

the invalid chunks caused by this node failure. 

Table 3. Command implementation in Metadata Server 

 

File writing handling in Metadata Server involves chunk distribution algorithm. In our system, file 

size is described in the number of integers in it. Files are chopped into chunks with 4 integer 

size and distributed over the Chunks Server nodes. Each chunk has three copies: one original 

copy, one on the next node and one on the node with the same position on the next rack. We 

assume that there are 4 racks in the Chunk Server center. Each rack contains 4 nodes to 
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compose a total of 16 nodes. For example, if node 1 is picked to store the original copy of a 

certain chunk, node 2 is used to store one of the copies to mimic the next node on the same 

rack and node 5 is used to store the other copy to mimic the node with the same position on the 

next rack. When distributing many chunks over the nodes, each node’s free space is considered 

as its weight. With the known total disk capacity, the number of chunks stored on each node is 

calculated according to this weight ratio (length = totalNumberOfChunks * 

freeSpaceOnThisNode/totalDiskCapacity;). Thus a relatively even distribution is achieved. nodeMap 

is updated every time after a chunk is allocated. 

 

III. Chunk Server 

Chunk Server created 16 threads to mimic 16 Nodes running at the same time in the server 

center. There are 4 racks and each rack contains 4 nodes. Each node has an ID, which is a 

number between 0 and 15. Node number 4i ~ 4i+3 are considered to be on the same rack 

(Figure 2). There are mainly three types of operations on Chunk Server: write, read, and 

stopNode. 

 

 

Figure 2. Node Placement Illustration 

 Node 0 Node 1 Node 2 Node 3 Rack 1 

 Node 4 Node 5 Node 6 Node 7 Rack 2 

 Node 8 Node 9 Node 10 Node 11 Rack 3 

 Node 12 Node 13 Node 14 Node 15 Rack 4 
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Writing a file has two modes: sequential write mode and parallel write mode. The total elapsed 

time is computed and the two modes are compared with each other to learn how fast parallel 

writing is in distributed file system. If chunks need to be rewritten, the original chunks are 

deleted first. Otherwise, direct writing is done. Each chunk initializes a write thread, which talks 

to the node thread where the chunk should be written into. For sequential write, write threads 

are created and joined one at a time, whereas for parallel writing, all the write threads are 

created all together first and then joined all together later on. The code of sequential and parallel 

writing is shown below: 

 

Sequential writing: 

   startTime = new Date(); 

    
   String[] methods = opts[2].split("!"); 
   data = opts[3].split(","); 
 
   String[] chunks, copies; 
 
   if (methods[0].equals("1")) 

   { 
      chunks = methods[1].split(";"); 
 
      for (int i = 0; i < chunks.length; i++) 
      { 
         copies = chunks[i].split(","); 
 
         for (int j = 0; j < copies.length; j++) 
         { 
            DeleteThread task = new DeleteThread(copies[j]); 
            Thread thread = new Thread(task); 

            thread.start(); 
            thread.join(); 
         } 
      } 
   } 
 
   chunks = methods[2].split(";"); 
    
   for (int i = 0; i < chunks.length; i++) 

   { 
      copies = chunks[i].split(","); 
 
      for (int j = 0; j < copies.length; j++) 
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      { 
         WriteThread task = new WriteThread(i, copies[j]); 
         Thread thread = new Thread(task); 
         thread.start(); 
         thread.join(); 
      } 
   } 
 
   stopTime = new Date(); 
 
   sendMessage("Elapsed Time: " + tidy.format((stopTime.getTime() - startTime.getTime()) / 1000.) 
         + " seconds. Write complete!"); 
    

Parallel writing: 

   startTime = new Date(); 
    
   ArrayList<Thread> threads = new ArrayList<Thread>(); 
   String[] methods = opts[2].split("!"); 
   data = opts[3].split(","); 
   String[] chunks, copies; 
    
   if (methods[0].equals("1")) 
   { 
      chunks = methods[1].split(";"); 
 
      for (int i = 0; i < chunks.length; i++) 
      { 
         copies = chunks[i].split(","); 
 
         for (int j = 0; j < copies.length; j++) 

         { 
            DeleteThread task = new DeleteThread(copies[j]); 
            Thread thread = new Thread(task); 
            threads.add(thread); 
            thread.start(); 
         } 
      } 
   } 
 
   chunks = methods[2].split(";"); 
 
   for (int i = 0; i < chunks.length; i++) 
   { 
      copies = chunks[i].split(","); 
 
      for (int j = 0; j < copies.length; j++) 

      { 
         WriteThread task = new WriteThread(i, copies[j]); 
         Thread thread = new Thread(task); 
         threads.add(thread); 
         thread.start(); 
      } 
   } 
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   for (Thread thread : threads)  
   { 
      thread.join(); 
   } 
    
   stopTime = new Date(); 

 
   sendMessage("Elapsed Time: " + tidy.format((stopTime.getTime() - startTime.getTime()) / 1000.) 
         + " seconds. Write complete!"); 

 

Reading a file also has two modes: sequential read mode and parallel read mode. Very similar 

to writing a file, a read thread is created for each data chunk reading. The read thread 

communicates with node thread to do chunk reading. Sequential reading create and join one 

thread at a time and parallel reading creates all read thread and join all the them all together. 

The code for reading a file is shown as below: 

 

startTime = new Date(); 
 
String[] chunks = opts[2].split(";"); 
data = new String[chunks.length]; 
String result = ""; 
Thread[] threads = new Thread[chunks.length]; 
 
if (opts[1].equals("-s")) 
{ 
   for (int i = 0; i < chunks.length; i++) 
   { 
      ReadThread task = new ReadThread(i, chunks[i]); 
      threads[i] = new Thread(task); 
      threads[i].start(); 
      threads[i].join(); 
   } 
} else if (opts[1].equals("-p")) 
{ 
   for (int i = 0; i < chunks.length; i++) 
   { 
      ReadThread task = new ReadThread(i, chunks[i]); 
      threads[i] = new Thread(task); 
      threads[i].start(); 
   } 
    
   for (Thread thread : threads)  
   { 
      thread.join(); 
   } 
} else 
{ 
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   sendMessage("Invalid command on " + serverName); 
   return; 

} 
 
for (int i = 0; i < data.length; i++) 
{ 
   result += data[i]; 
} 
 
stopTime = new Date(); 
 
sendMessage("Elapsed Time: " + tidy.format((stopTime.getTime() - startTime.getTime()) / 1000.) 
      + " seconds. " + result.substring(0, result.length()-1)); 
 

StopNode request is straight forward. The node with the designated ID is simply killed. No 

backup before its killing is needed because there are extra copies for all the chunks in the 

system. Single node failure should not affect file reading. 

 

Data analysis and discussion 

I. File System Initialization 

Three terminals represent the client, Metadata Server and Chunk Servers. Below are the 

screenshots when our file system starts up.  
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• Client: Display a list of commands the file system supports and initial size of 16 nodes 

 

• Metadata Server: Running and waiting for requests from Client 
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• Chuck Server: There are 16 nodes running with the initial size of 1,000 each 

 

Speed Analysis – Sequential vs. Parallel 

As a distributed file system, file operations are running in parallel mode, which is implemented 

by 16 parallel threads in our chuck server. To compare the speed performance, we also add the 

sequential operation to write and read files. 

 

The time taking for writing/reading the same file (file1.txt) with a size of 256 in sequential (write -

s) and parallel (write -p) mode: average of 3 experiments on the same operation 

 

Time/s Sequential Parallel Time saving/% 

Write 0.136 0.104 23.5 

Read 0.077 0.049 36.4 
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Conclusion 

Generally, parallel writing/reading is much faster than sequential mode. In our system, 

sequential mode is implemented in one thread working sequentially, while parallel mode is 

implemented in 16 threads writing/reading parallel. However, the speed is not 16 times faster. It 

may be due to the overhead issue of managing multiple threads in Java. In addition, in the 

parallel mode, there is still one sequential element of parsing the storage chuck address from 

metadata service, which alpha is not 0 in the Amdahl’s law. 
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Screenshot – write in sequential mode 
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Screenshot – write in parallel mode 

 

 

Screenshot – read in sequential mode 
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Screenshot – read in parallel mode 

 

 

II. Speed Analysis – Different File Size 

In this section, we conduct writing and reading in both sequential and parallel mode on 3 files 

with different size, and below is the result table of time comparison: 

 

File Name Size write –s (sec)  write –p (sec) read –s (sec) read –p (sec) 

file1.txt 256 0.097 0.086 0.051 0.033 

file2.txt 512 0.228 0.135 0.058 0.041 

file3.txt 1,024 0.515 0.293 0.084 0.069 
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Conclusion 

The comparisons result in generally in line with our expectation.  

• Reading is faster than writing, as system makes duplicate copies during the writing process 

• For the same file, parallel mode is faster than sequential mode 
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• For the same operation, with the increase of file size, the time spent also increases 

accordingly 

• For the operations which requires longer period of time, the relationship between time spent 

and file size is approximately linear, as overheads play a smaller roles in the comparison 

 

III. Load Balance Analysis 

• Initialization status: 16 nodes are initialized with the same size at 1,000 

 

 

• Load Balance: After the operation of writing test.txt file twice (once in sequential and once in 

parallel), below is the updated disk capacity and node status: 
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Conclusion 

As shown in the result, after writing a file, the total disk capacity dropped from 16,000 to 15,616. 

Meanwhile, the load of each node remained pretty balanced. Most of nodes are at 98% capacity 

and others are at 95% capacity. The difference may be due to some nodes keeping the 

additional duplicate copies of file chucks. The algorithms we chose in the metadata service to 

allocate the storage address can achieve the load balance requirement for a simulated 

distributed file system.  

 

IV. Fault Tolerance Analysis 

To simulate the random node failure, we implemented “stopNode” command in our system. 

After client types in this command, the system will randomly kill a running thread in the chuck 

server, which simulates a node failure. Then client can try to use read command to get the 

previously stored file to test whether the file can still be retrieved or not. 

 

Conclusion 

As shown in the result screen below, our distributed file system can support file operation with 

random node failure. In this case, node 15 was stopped working, and client can still read the 

test.txt file from the file system successfully. 

 

Actually, in our simulation, we can run “stopNode” command multiple times, which simulates 

multiple nodes failure at this same time, and client can still retrieve the file, so our simulated 

distributed file system achieves the fault tolerance by storing duplicates of file record on different 

nodes. 
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Conclusions and recommendations 

I. Summary and Conclusions 

As discussed in the previous data analysis section. Our simulated distributed file system 

supports parallel write / read files, maintain the load balance across 16 nodes and achieves 

basic fault tolerance on multiple random node failures. 
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In addition, our system also support other basic operations as a file system, including rename a 

file, get the file size, etc. Below is a full list of commands we support: 

 

 

II. Future studies 

There are also several areas we can improve on our simulation. For future works, we could 

develop our system to support multiple clients operating on the same time. To make the system 

more efficient, we could also implement a garbage collector function to release the waste space 

periodically.  

 

For further data analysis purpose, we could change the algorithm of the metadata service to 

allocate storage space across nodes in several different ways, and then to compare the 

efficiency of different algorithms regarding the load balance. With this established simulated 

system, we can conduct further research on various topics in the future. 
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Appendices 

Class Diagram: 

 



 32 / 35 
 

Simulation Work Flow for Write File 
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Simulation Work Flow for Read File 
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Test File1: 

1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,5

4,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5

,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0

,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9

,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8

,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54 
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Test File2: 

1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,5

4,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5

,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0

,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9

,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8

,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67

,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,

67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,

9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,

9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,

8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54 

 

Test File3: 

1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,5

4,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5

,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0

,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9

,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8

,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67

,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,

67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,

9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,

9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,

8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,

7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,
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6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,

5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,

4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,

3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,

2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,

1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,5

4,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5

,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0

,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9

,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54 

  

 

 

 

 

 

 

 

 

 


