
 1 / 35

A simulation of distributed
file system

Shan Tao, Xi Chen and Xiaoming Sun

COEN 241: Cloud Computing, Summer 2014

 2 / 35

Table of Contents

1. Abstract..3

2. Introduction..3

3. Theoretical bases and literature review ...5

4. Hypothesis...6

5. Methodology ...7

6. Implementation ...8

7. Data analysis and discussion..17

8. Conclusions and recommendations..28

9. Bibliography ..29

10. Appendices ...31

 3 / 35

Abstract

We have simulated SimpleFS, a simple and scalable distributed file system for nowadays highly

demanded data parallel computations on clusters. To mimic the most popular concepts in

distributed file system design, SimpleFS is comprised of three parts: client, metadata server and

data server. Java socket is used to simulate the communications among the three. Command

are inputted from the client terminal and sent to the metadata server for initial process.

Information will be returned to the client directly. Operations like file I/O needs a second

communication step between client and the data server. Java threads are used to mimic storage

devices in the data server center. For writes, files are chopped into chunks and distributed

across the storage devices. Data replications are also taken into consideration to protect the

system under frequent device failure circumstances. Upon the simulation, files are able to be

successfully stored into and retrieved from the system, even when storage device failure

happens.

Introduction

The goal of this study is to simulate a distributed scalable, reliable, high-performance file system

to accommodate the on improving demand for parallel computations.

The performance of file systems has long proven to be critical to the overall performance of all

kinds of computer applications. In order to find a better solution for the problem, various studies

have been carried out in the past decade, among which Network File System (NFS) is the most

traditional solution[1]. It allows one server to expose file system hierarchy and let clients map it

into their local name space. Although widely used, the centralized server model makes the

 4 / 35

whole system not scalable enough for today’s extremely large amount of and dynamic data.

Because of its centralization, the system is not reliable enough if device failure happens.

With cloud becoming more and more dominant technique for handling all kinds of computer

applications, the amount of data become large enough that it has become very inefficient and

energy costing to use one centralized server to do all the jobs like in the traditional way. There is

a need for more scalable and reliable file system that does not rely on one single server,

handles device failure properly, and gives high performance even when the volume of request

form server is huge. Developing a suitable distributed file system has become crucial for the

normal operation of cloud computing system.

The concept of distributed file system was thus introduced recently to fulfill the requirement of

cloud computing. In cloud computing system, component failure is norm rather than the

exception. File sizes are in TBs and is hard to handle using traditional method. Small pieces are

desired. Most importantly, multiple servers have to be used to store the huge amount of data,

thus producing many problems like synchronization and data distribution algorithm etc.

There has been many distributed file system model proposed to improve scalability. Google File

System (GFS), after careful design and thorough testing, has been put into market and proven

to be effective [2]. Other file systems, like TidyFS, ASDF, Ceph, etc, utilize similar concepts but

take more factors into consideration, tending to improve the system performance even more.

They all show improvement to different extent [3][4][5].

We are aiming to simulate a simple distributed file system with the most important features of

other distributed file systems and the potential of implementing more complicated features. We

are focusing on two types of commands the client might input: commands involve only the

 5 / 35

metadata server (getFileSize, getDiskSize, rename) and those involve both metadata and data

server (read, write). By using these most basic but typical commands, we are showing the

effectiveness of nowadays emerging distributed file system models in handling cloud computing

jobs.

Theoretical bases and literature review

In recent years, shared-nothing compute clusters are a popular platform for scalable data-

intensive computing. the typical frameworks, such as MapReduce [6], Hadoop [9], Dryad [10],

are able to run data-parallel program which is possible to achieve very high aggregate I/O

throughput.

Distributed file systems have been developed to support this style of write-once,high-

throughput, parallel streaming data access. These include the Google File System (GFS) [8],

and the Hadoop Distributed File System (HDFS) [11, 12]. Those systems have similar design:

I. metadata for the entire file system is centralized and stores all information to describe the

mapping and location, length of data, etc.

II. data are stored separately on computing nodes, and replication is made by some algorithm.

III. each node can finish task separately to use data stored on it, because data is not shared.

This paper presents SimpleFS, a distributed file system which is to simplify the system as far as

possible by exploiting this restricted workload. It has the following properties:

A. data are stored into different computing nodes, metadata describes the location, the length of

the data, the mapping between stream and data, etc.

B. each computing node can separately finish the computing bases on the data which is storing

on it.

 6 / 35

C. in order to simplify fault-tolerance and reduce communication the computing frameworks do

not implement fine-grain transactions across processes

D. replication is lazy, which means the replication will be finished in near future, not

immediately, which can be performed when the computing node is not busy.

However, there are some difference with popular DFS, such as GFS allows updates in the

middle of existing streams, and concurrent appends by multiple writers, while the HDFS

community has struggled with the tradeoff between the utility and complexity of even single-

writer append operations [10] to a stream that can be concurrently read.

Our goal is to achieve scalability and fault-tolerance while remaining relatively simple. our

simulation has the similar design as the popular distributed file system, which has client, data

server and metadata server. Client talks to metadata and data server directly, read or write data

with internal interfaces. Metadata server is very important which is applying an auto-replication

algorithm to avoid server crash. The stream data cannot be read until the writing finish. And the

update operation will provide a new copy for all data across the computing nodes instead of

update the specified part of data, which can simplify the lock management. Lazy replication is

another good point to balance the resource of computing nodes.

Hypothesis

In this paper, we simulated a simplified distributed file system and achieved all the key

functionalities of real DFS, including massive distributed storage, good scalability and fault

tolerance, etc.

 7 / 35

Based on this simulation, we could further research different metadata algorithms to compared

their performance and load balance, test system availability of reacting to random server

crashes, and improve the extensibility by adding more server nodes.

Methodology

The architecture of this simulation is based on GFS. We created client, metadata server and

chunk servers in the system. Client is the user to write and read files. Metadata server is the

single master, managing the file directory and chunk servers are the physical storage for the

data.

Each chunk server is simulated by one Java thread with pre-assigned storage capacity. Chunk

servers hold the chunks of files and their replicas. It can also experience short term failure by

killing the thread randomly.

Regarding the metadata server, it maintains namespace, mapping from files to chunks and their

locations. We also used random and weighted random algorithm to assign the chunk location

for different files, which can be further tested for load balance.

Client can write and read files in this simulated distributed file system. Additional services are

also provided, including requesting storage current available capacity and name list for all the

files in the system.

The communications among client, metadata and chunk servers are implemented by socket.

Client sends request to metadata first, and then write or read files to multiple chunk servers

based on the location information provided by metadata.

 8 / 35

The simulation will be implemented in the Java programming language and compiled with Java

compiler and run Linux or window platform.

Implementation

The overall structure of our simulation is illustrated in the Figure 1. Three entities, Client,

Metadata Server and Chunk Server, communicate with each other through Java socket

connection. Client sends out command to either Metadata Server or Chunk Server and gets

responds back from them later on. Metadata Server and Chunk Server can communicate with

each other about node information. In the Metadata Server, there is a node map which contains

all the node occupation status. All the file metadata are all also stored in it for file metadata

operations. Chunk Server is mainly for file I/O. Each Node in it is simulated using a Java thread.

Node threads are running parallelly storing file chunks mimicking the real data center nodes.

 9 / 35

Figure 1. Overall simulation structure

I. Client.

Client is the controller interface where all the commands are entered. It sets up the socket

server, parses the commands and communicates with Metadata Server and Chunk Server to

get the job done. Commands are separated into two groups: those involve only Metadata Server

(Table 1) and those involve both (Table 2).

getDiskCapacity To get the total disk capacity in the distributed

file system

rename oldFileName newFileName To rename a file giving the old name and the

new name

getFileSize fileName To get the file size given the file name

Node0

Metadata Server

Client

Socket Socket

OS IS OS IS

Server

Command Parser

Write Read Others

Socket Socket

Thread Thread

CE

FileEntry

CE CE Node1 Node15

Thread

 10 / 35

getFileStat fileName To get the file statistics including file name, file

size and creation time given the file name

getNodeStat To get the node load information including the

total node disk size and the leftover disk size

Table 1. Commands involve Metadata Server only

read -s/-p fileName To read a file given the file name. –s for

sequential reading and –p for parallel reading.

Request is first sent to Metadata Server to get

the storage information about each chunk in

the file. This information is in turn used by

Client-Chunk Server communication to get the

data chunks to complete the read.

write -s/-p fileName To write a file given the file name. –s for

sequential writing and –p for parallel writing.

Request is first sent to Metadata Server to get

the storage information about the original and

copies of each chunk in the file. This

information is in turn used by Client-Chunk

Server communication to store the data

chunks to complete the write.

stopNode To stop the operation of a random node to

mimic node failure in reality. Request is first

sent to Metadata Server get the node number

to be suspended. The node number is then

 11 / 35

sent to the Chunk Server to kill the

corresponding thread.

Table 2. Commands involve both Metadata Server and Chunk Server

II. Metadata Server

Metadata Server contains two list:

 private static int[][] nodeMap;

 private static HashMap<String, FileEntry> files;

nodeMap is a 2D integer array which contains all the node storage information. The row number

is consistent with the node number of each Node in the Chunk Server. In our simulation, there

are 16 Nodes, resulting in 16 rows in nodeMap. There are 2 columns in each row. The first

column tells the current address to be written into. The second column tells the free space left

on this node. The sum of the two columns is the total size of this node. nodeMap is used in

“getDiskCapacity”, “getNodeStat”, and “write”.

A HashMap is used to store and search all the files in the system. A FileEntry class is used to

hold the metadata of each file. The metadata includes the name, the size and the creation time

of the file. FileEntry class also contains the addresses of all the chunks in the file, including both

the original copy and the extra copies made to be used in case of node failure.

The detailed implementation of each request from the Client is described in Table 3.

getDiskCapacity Calculate total disk capacity using nodeMap.

Add up all the leftover size of each node and

 12 / 35

return the sum.

rename oldFileName newFileName Find the file from the files HashMap and call its

rename() method to change the name.

getFileSize fileName Find the file from the files HashMap and return

the file size.

getFileStat fileName Find the file from the files HashMap and return

the file statistics.

getNodeStat Return the total disk size and the leftover disk

size of each node calculated from nodeMap.

read -s/-p fileName Find the file from the files HashMap and return

the location of the first available copy.

write -s/-p fileName See if the file already exists. If yes, delete the

old file first. Based on the nodeMap, distribute

the file chunks onto each node and return the

location information for all three copies.

stopNode Randomly generate a node number between 0

and 15. Iterate through all the files and mark

the invalid chunks caused by this node failure.

Table 3. Command implementation in Metadata Server

File writing handling in Metadata Server involves chunk distribution algorithm. In our system, file

size is described in the number of integers in it. Files are chopped into chunks with 4 integer

size and distributed over the Chunks Server nodes. Each chunk has three copies: one original

copy, one on the next node and one on the node with the same position on the next rack. We

assume that there are 4 racks in the Chunk Server center. Each rack contains 4 nodes to

 13 / 35

compose a total of 16 nodes. For example, if node 1 is picked to store the original copy of a

certain chunk, node 2 is used to store one of the copies to mimic the next node on the same

rack and node 5 is used to store the other copy to mimic the node with the same position on the

next rack. When distributing many chunks over the nodes, each node’s free space is considered

as its weight. With the known total disk capacity, the number of chunks stored on each node is

calculated according to this weight ratio (length = totalNumberOfChunks *

freeSpaceOnThisNode/totalDiskCapacity;). Thus a relatively even distribution is achieved. nodeMap

is updated every time after a chunk is allocated.

III. Chunk Server

Chunk Server created 16 threads to mimic 16 Nodes running at the same time in the server

center. There are 4 racks and each rack contains 4 nodes. Each node has an ID, which is a

number between 0 and 15. Node number 4i ~ 4i+3 are considered to be on the same rack

(Figure 2). There are mainly three types of operations on Chunk Server: write, read, and

stopNode.

Figure 2. Node Placement Illustration

 Node 0 Node 1 Node 2 Node 3 Rack 1

 Node 4 Node 5 Node 6 Node 7 Rack 2

 Node 8 Node 9 Node 10 Node 11 Rack 3

 Node 12 Node 13 Node 14 Node 15 Rack 4

 14 / 35

Writing a file has two modes: sequential write mode and parallel write mode. The total elapsed

time is computed and the two modes are compared with each other to learn how fast parallel

writing is in distributed file system. If chunks need to be rewritten, the original chunks are

deleted first. Otherwise, direct writing is done. Each chunk initializes a write thread, which talks

to the node thread where the chunk should be written into. For sequential write, write threads

are created and joined one at a time, whereas for parallel writing, all the write threads are

created all together first and then joined all together later on. The code of sequential and parallel

writing is shown below:

Sequential writing:

 startTime = new Date();

 String[] methods = opts[2].split("!");
 data = opts[3].split(",");

 String[] chunks, copies;

 if (methods[0].equals("1"))

 {
 chunks = methods[1].split(";");

 for (int i = 0; i < chunks.length; i++)
 {
 copies = chunks[i].split(",");

 for (int j = 0; j < copies.length; j++)
 {
 DeleteThread task = new DeleteThread(copies[j]);
 Thread thread = new Thread(task);

 thread.start();
 thread.join();
 }
 }
 }

 chunks = methods[2].split(";");

 for (int i = 0; i < chunks.length; i++)

 {
 copies = chunks[i].split(",");

 for (int j = 0; j < copies.length; j++)

 15 / 35

 {
 WriteThread task = new WriteThread(i, copies[j]);
 Thread thread = new Thread(task);
 thread.start();
 thread.join();
 }
 }

 stopTime = new Date();

 sendMessage("Elapsed Time: " + tidy.format((stopTime.getTime() - startTime.getTime()) / 1000.)
 + " seconds. Write complete!");

Parallel writing:

 startTime = new Date();

 ArrayList<Thread> threads = new ArrayList<Thread>();
 String[] methods = opts[2].split("!");
 data = opts[3].split(",");
 String[] chunks, copies;

 if (methods[0].equals("1"))
 {
 chunks = methods[1].split(";");

 for (int i = 0; i < chunks.length; i++)
 {
 copies = chunks[i].split(",");

 for (int j = 0; j < copies.length; j++)

 {
 DeleteThread task = new DeleteThread(copies[j]);
 Thread thread = new Thread(task);
 threads.add(thread);
 thread.start();
 }
 }
 }

 chunks = methods[2].split(";");

 for (int i = 0; i < chunks.length; i++)
 {
 copies = chunks[i].split(",");

 for (int j = 0; j < copies.length; j++)

 {
 WriteThread task = new WriteThread(i, copies[j]);
 Thread thread = new Thread(task);
 threads.add(thread);
 thread.start();
 }
 }

 16 / 35

 for (Thread thread : threads)
 {
 thread.join();
 }

 stopTime = new Date();

 sendMessage("Elapsed Time: " + tidy.format((stopTime.getTime() - startTime.getTime()) / 1000.)
 + " seconds. Write complete!");

Reading a file also has two modes: sequential read mode and parallel read mode. Very similar

to writing a file, a read thread is created for each data chunk reading. The read thread

communicates with node thread to do chunk reading. Sequential reading create and join one

thread at a time and parallel reading creates all read thread and join all the them all together.

The code for reading a file is shown as below:

startTime = new Date();

String[] chunks = opts[2].split(";");
data = new String[chunks.length];
String result = "";
Thread[] threads = new Thread[chunks.length];

if (opts[1].equals("-s"))
{
 for (int i = 0; i < chunks.length; i++)
 {
 ReadThread task = new ReadThread(i, chunks[i]);
 threads[i] = new Thread(task);
 threads[i].start();
 threads[i].join();
 }
} else if (opts[1].equals("-p"))
{
 for (int i = 0; i < chunks.length; i++)
 {
 ReadThread task = new ReadThread(i, chunks[i]);
 threads[i] = new Thread(task);
 threads[i].start();
 }

 for (Thread thread : threads)
 {
 thread.join();
 }
} else
{

 17 / 35

 sendMessage("Invalid command on " + serverName);
 return;

}

for (int i = 0; i < data.length; i++)
{
 result += data[i];
}

stopTime = new Date();

sendMessage("Elapsed Time: " + tidy.format((stopTime.getTime() - startTime.getTime()) / 1000.)
 + " seconds. " + result.substring(0, result.length()-1));

StopNode request is straight forward. The node with the designated ID is simply killed. No

backup before its killing is needed because there are extra copies for all the chunks in the

system. Single node failure should not affect file reading.

Data analysis and discussion

I. File System Initialization

Three terminals represent the client, Metadata Server and Chunk Servers. Below are the

screenshots when our file system starts up.

 18 / 35

• Client: Display a list of commands the file system supports and initial size of 16 nodes

• Metadata Server: Running and waiting for requests from Client

 19 / 35

• Chuck Server: There are 16 nodes running with the initial size of 1,000 each

Speed Analysis – Sequential vs. Parallel

As a distributed file system, file operations are running in parallel mode, which is implemented

by 16 parallel threads in our chuck server. To compare the speed performance, we also add the

sequential operation to write and read files.

The time taking for writing/reading the same file (file1.txt) with a size of 256 in sequential (write -

s) and parallel (write -p) mode: average of 3 experiments on the same operation

Time/s Sequential Parallel Time saving/%

Write 0.136 0.104 23.5

Read 0.077 0.049 36.4

 20 / 35

Conclusion

Generally, parallel writing/reading is much faster than sequential mode. In our system,

sequential mode is implemented in one thread working sequentially, while parallel mode is

implemented in 16 threads writing/reading parallel. However, the speed is not 16 times faster. It

may be due to the overhead issue of managing multiple threads in Java. In addition, in the

parallel mode, there is still one sequential element of parsing the storage chuck address from

metadata service, which alpha is not 0 in the Amdahl’s law.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Sequential Parallel

T
im

e
/s Write

Read

 21 / 35

Screenshot – write in sequential mode

 22 / 35

Screenshot – write in parallel mode

Screenshot – read in sequential mode

 23 / 35

Screenshot – read in parallel mode

II. Speed Analysis – Different File Size

In this section, we conduct writing and reading in both sequential and parallel mode on 3 files

with different size, and below is the result table of time comparison:

File Name Size write –s (sec) write –p (sec) read –s (sec) read –p (sec)

file1.txt 256 0.097 0.086 0.051 0.033

file2.txt 512 0.228 0.135 0.058 0.041

file3.txt 1,024 0.515 0.293 0.084 0.069

 24 / 35

Conclusion

The comparisons result in generally in line with our expectation.

• Reading is faster than writing, as system makes duplicate copies during the writing process

• For the same file, parallel mode is faster than sequential mode

0

0.1

0.2

0.3

0.4

0.5

0.6

file1.txt file2.txt file3.txt

write –s write –p read –s read –p

0

0.1

0.2

0.3

0.4

0.5

0.6

256 512 768 1024

T
im

e
/s

File Size

write –s

write –p

read –s

read –p

 25 / 35

• For the same operation, with the increase of file size, the time spent also increases

accordingly

• For the operations which requires longer period of time, the relationship between time spent

and file size is approximately linear, as overheads play a smaller roles in the comparison

III. Load Balance Analysis

• Initialization status: 16 nodes are initialized with the same size at 1,000

• Load Balance: After the operation of writing test.txt file twice (once in sequential and once in

parallel), below is the updated disk capacity and node status:

 26 / 35

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16

F
re

e
 s

p
a

ce
 p

e
rc

e
n

ta
g

e
 (

%
)

Node Number

 27 / 35

Conclusion

As shown in the result, after writing a file, the total disk capacity dropped from 16,000 to 15,616.

Meanwhile, the load of each node remained pretty balanced. Most of nodes are at 98% capacity

and others are at 95% capacity. The difference may be due to some nodes keeping the

additional duplicate copies of file chucks. The algorithms we chose in the metadata service to

allocate the storage address can achieve the load balance requirement for a simulated

distributed file system.

IV. Fault Tolerance Analysis

To simulate the random node failure, we implemented “stopNode” command in our system.

After client types in this command, the system will randomly kill a running thread in the chuck

server, which simulates a node failure. Then client can try to use read command to get the

previously stored file to test whether the file can still be retrieved or not.

Conclusion

As shown in the result screen below, our distributed file system can support file operation with

random node failure. In this case, node 15 was stopped working, and client can still read the

test.txt file from the file system successfully.

Actually, in our simulation, we can run “stopNode” command multiple times, which simulates

multiple nodes failure at this same time, and client can still retrieve the file, so our simulated

distributed file system achieves the fault tolerance by storing duplicates of file record on different

nodes.

 28 / 35

Conclusions and recommendations

I. Summary and Conclusions

As discussed in the previous data analysis section. Our simulated distributed file system

supports parallel write / read files, maintain the load balance across 16 nodes and achieves

basic fault tolerance on multiple random node failures.

 29 / 35

In addition, our system also support other basic operations as a file system, including rename a

file, get the file size, etc. Below is a full list of commands we support:

II. Future studies

There are also several areas we can improve on our simulation. For future works, we could

develop our system to support multiple clients operating on the same time. To make the system

more efficient, we could also implement a garbage collector function to release the waste space

periodically.

For further data analysis purpose, we could change the algorithm of the metadata service to

allocate storage space across nodes in several different ways, and then to compare the

efficiency of different algorithms regarding the load balance. With this established simulated

system, we can conduct further research on various topics in the future.

Bibliography

[1]. Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, and Dave Hitz.

NFS version 3: Design and implementation. In Proceedings of the Summer 1994 USENIX

Technical Conference, pages 137–151, 1994.

 30 / 35

[2]. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System.

SOSP’03, October 19–22, 2003

[3]. D. Fetterly, M. Haridasan, M. Isard, and S. Sundararaman, “Tidyfs: a simple and small

distributed file system,” in Proceedings of the 2011 USENIX conference on USENIX annual

technical conference, ser. USENIXATC’11. Berkeley, CA, USA: USENIX Association, 2011, pp.

34–34.

[4]. Chien-Ming Wang, Chi-Chang Huang, Huan-Ming Lian. ASDF: An Autonomous and

Scalable Distributed File System Cluster, Cloud and Grid Computing (CCGrid), 2011 11th

IEEE/ACM International Symposium on. 23-26 May 2011

[5]. Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn.

Ceph: A scalable, high-performance distributed file system. In Proceedings of the 7th

Symposium on Operating Systems Design and Implementation (OSDI). 2006. USENIX.

[6]. DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified data processing on large clusters.

In Proceedings of the 6th Symposium on Operating Systems Design and Implementation

(OSDI) (San Francisco, CA, USA, 2004).

[7]. File appends in HDFS. http://www.cloudera.com/blog/2009/07/file-appends-in-hdfs/.

[8]. GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google file system. In Proceedings

of the 19th Symposium on Operating Systems Principles (SOSP) (Bolton Landing, NY, USA,

2003).

[9]. Hadoop wiki. http://wiki.apache.org/hadoop/, April 2008.

[10]. ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FETTERLY, D. Dryad: Distributed data-

parallel programs from sequential building blocks. In Proceedings of 2nd European Conference

on Computer Systems (EuroSys) (Lisbon, Portugal, 2007).

[11]. BORTHAKUR, D. HDFS architecture. Tech. rep., Apache Software Foundation, 2008.

[12]. SHVACHKO, K. V. HDFS scalability: The limits to growth. ;login 35, 2 (April 2010).

 31 / 35

Appendices

Class Diagram:

 32 / 35

Simulation Work Flow for Write File

Write File
Start

Client

Start

Metadata

Server

Start

Chunk

Server

Read Local FileWrite

File

Sequential

or

Parallel

Single Write

Thread

Metadata

Server

Write Chunks

Write Copies

Send Message

to Client

Multiple

Write

Threads

Write Chunks

Write Copies

Join Threads

Send Message

to Client

Chunk Server

 33 / 35

Simulation Work Flow for Read File

Read File
Start

Client

Start

Metadata

Server

Start

Chunk

Server

Read File

Sequential

or

Parallel

Single Read

Thread

Metadata

Server

Read Chunks

Send Message

to Client

Multiple

ReadThreads

Read Chunks

Join Threads

Send Message

to Client

Chunk Server

Test File1:

1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,5

4,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5

,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0

,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9

,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8

,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54

 34 / 35

Test File2:

1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,5

4,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5

,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0

,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9

,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8

,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67

,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,

67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,

9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,

9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,

8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54

Test File3:

1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,5

4,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5

,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0

,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9

,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8

,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67

,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,

67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,

9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,

9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,

8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,

7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,

 35 / 35

6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,

5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,

4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,

3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,

2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,

1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,5

4,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5

,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0

,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9

,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54,1,2,3,4,5,6,7,8,9,9,67,8,9,0,5,54

