

Conversational Chatbot Trained on
Unfiltered Twitter Data

Team 02
Nabeel Zaim
Vinh Duong

Table of Contents
Table of Contents

1. Acknowledgements

2. Introduction
2.1 Objective
2.2 Problem Statement
2.3 Existing Approaches
2.4 Proposed Approach
2.5 Scope of Investigation

3. Theoretical Bases and Literature Review
3.1 Theoretical Background of the Problem
3.2 Related Research of the Problem
3.4 Our Solution to the Problem

4. Hypothesis

5. Methodology
5.1 Data Collection
5.2 Solution Structure

5.2.1 Algorithm design
5.2.2 Language
5.2.3 Tools used

5.3 Output
5.4 Output Testing

6. Output And Analysis
6.1 Seq2seq training results
6.2 Simple RNN results

6.2.1 Simple RNN Configuration 1
6.2 Simple RNN Configuration #2
6.3 Simple RNN Configuration #3

7. Data Analysis

9. Bibliography

1. Acknowledgements
We would like to thank strangers on the internet for collecting Twitter data.

2. Introduction

2.1 Objective
The objective of our project is a to create an unadulterated chatbot trained on raw Twitter

data. Users will be able to hold long and short-form conversations with the chatbot.

2.2 Problem Statement
This project makes use of natural language processing techniques to work with text data

from personal conversations by Twitter users. This chatbot is intended to be used in a
conversational fashion - being talked to by users on Twitter. A neural network can be trained to
select appropriate responses to user messages to this chatbot.

2.3 Existing Approaches
Chatbots first started being built in a rule-based architecture, where pattern recognition

was performed on input and response chosen from canned output. Today, machine learning
methods enable the tuning of various inputs to enhance understanding of the question, and on
the output side, machine learning methods can help generate the output instead of selecting
from canned responses. This is known as a generative chatbot (as opposed to a retrieval-based
chatbot) and that is the methodology that this project tackles.

Among generative, machine learning-based chatbots, they are trained on heavily
modified data. We believe assumptions and filters on the data alter its original meaning.

2.4 Proposed Approach
The proposed approach aims to train the chatbot on minimally modified data. This

approach will require less preprocessing and yield more realistic responses.

2.5 Scope of Investigation
Our chatbot is designed to be an open-domain one suitable for both short-term and

long-term conversational models. Using TensorFlow, we aim to have a retrieval-based model to
return responses for users’ inputs.

3. Theoretical Bases and Literature Review

3.1 Theoretical Background of the Problem
Most chatbots are designed using rule-based pattern-matching architectures that generate
canned responses based on input. Such designs work best in closed-domain scenarios. For
open-domain scenarios where the input is not limited by topic, it becomes much harder to
hardwire responses and therefore most research approaches rely on training the system on a
large corpus of inputs and responses. These dialogue corpuses could range from telephone
records, Internet Relay Chat (IRC) chatlogs, to discussion comments on an online forum. These
corpuses are usually pruned and filtered by hand before the system is trained on them. Despite
this approach favoring a closed-domain system, the trained model continues to be slightly
biased to the data it is trained upon.

3.2 Related Research of the Problem
Focusing on the machine-learning based models, research has grown towards using RNNs to
develop a conversational model. These RNNs can be trained to maximize the likelihood of a
certain output given a certain input. The foundational research paper for this method uses
sequence-to-sequence model​[1]​.

3.4 Our Solution to the Problem
Our solution utilizes the models currently in research but expands the dataset available to wider
coverage and not limiting to hand-selected tweets.

4. Hypothesis
If we train our chatbot on minimally filtered data, we can retrieve the most realistic

responses.

5. Methodology
Data will be collected by constructing a tweet scraper to collect tweets. We would use python 3
with TensorFlow for seq2seq for picking/generating responses.
To test our hypothesis, we will train our chat bot on filtered and minimally filtered data and
compare the responses.

5.1 Data Collection
Data will be collected by constructing a tweet scraper that mines textual tweets coming

into Twitter’s public stream. We will scrape for tweets that are part of a conversation (targetting
a three-level dialogue). We would like to keep an unfiltered input and thus a wide coverage of
the topics and types of tweets. If this approach fails, we will utilize Microsoft’s dataset of 12k
tweets of three-tier conversations that has been hand-combed for well-rated tweets​[3][4]​.

5.2 Solution Structure

5.2.1 Algorithm design
There are several steps going from end to end.
At the center we have a seq2seq model​[1]​ that will construct two RNNs for the input tweet

and the reply tweet, and train them to maximize the probabilities in the thought vector of the
reply given the input. Padding will be added and bucketing used based on requirements of the
seq2seq model for both the input and output to be fixed-lengths. The LSTM cells for each word
can be tested with Attention​[1]​.

The input will be a minimally filtered dataset of tweets scraped from the public stream. It
will select tweets that are part of a conversation, targetting textual tweets only and limiting to a
three-tier conversation for now.

The output will be a tweet reply.
For evaluation purposes, a raw dataset can be matched against a dataset filtered for

stopwords, profanity and tweet popularity.

Program design:
Our project consists of two parts: the tweet collector, and the neural network model. For

the latter, we have two implementations: the seq2seq verion and the simple RNN version. The
files are described as follows:

Tweet collection:
● gettweets.py uses the Twitter API using the library mentioned below to retrieve

and store tweets into the file “input.txt”
Seq2seq model:​ This is adapted from the repository [7].

● train.py trains the model using data under ‘data/’. It prints the losses at various
time steps. ‘tensorboard --log_dir=”/tmp/tf-nn-chatbot”’ can be used to generate
plots.

● data_utils.py contains methods to input the data, assign the words to dictionaries
and sort it into buckets.

● seq2seq_model.py contains the tensorflow model initialization.
● seq2seq_model_util.py contains methods to control the seq2seq model.

Simple RNN model:​ this code is adapter from the repository [6].

● Input file is saved under “data/input.txt”
● train.py trains the model using any text files in the data folder.
● sample.py tests the model by running it over a block and starting with a given

word.
● model.py initializes the tensorflow RNN model
● utils.py contains methods to import data and assign it to ids.

5.2.2 Language
Python 3 will be used to construct the majority of the architecture since the tools

described in the next section have libraries available in this language.

5.2.3 Tools used
NLTK3 ​library for python will be used for input stemming. This library serves as a toolkit

for computational linguistics. Following is a non-exhaustive list of the modules we will be using:
● Token module: provides basic classes for processing individual elements of text, such as

words, or sentences. ​TreebankWordTokenizer ​was used to tokenize incoming
sentences.

● Tree module: defines data structures for representing tree structures over text
Google’s open-source tool, ​TensorFlow​, will be used to construct and train the RNNs

we need.
An NLP library specifically for Twitter data was initially used to analyze the data we

found, but the final results were not gathered using this library. [6]
Twitter’s Stream API ​was used to scrape tweets. This was made easier with a wrapper

library around the API. [5]
Tensorflow ​was the biggest tool used to train and test the data. Graphs were output

using ​tensorboard​, a tensorflow add-on for creating summaries and displaying neural net
information.

For the seq2seq implentation, the ​easy_seq2seq ​repository was adapted to fit our
use-case. This repository works over movie dialogues. [7]

For the RNN implementation, the ​char_rnn_tensorflow ​respository was adapted...this
repository is an adaptation of Andrej Karpathy’s code for character-level RNNs which predict
character sequences. The repository itself is a conversion of Karpathy’s code from Lua to a
Tensorflow implementation. We repurposed the same code to get words.

5.3 Output
Our output will be responses to user input via stdout or through a twitter account

tweeting the responses.

5.4 Output Testing
To test our hyhpothesis, we will executes two conversations with the chatbot. In one

instance the chatbot will be trained with the raw data. In the other instance the chatbot will be
trained with filtered data. We will survey users and ask for their input on which conversation
instance seems more human.

6. Output And Analysis

6.1 Seq2seq training results
The sequence-to-sequence training went fine as per the graphs below. The x-axes represent
the time steps (or iteration of a forward pass + backward pass + update). The measurements
would dramatically go down after a few 1000 steps of training. However, at testing, this yielded
almost no proper words.

6.2 Simple RNN results

6.2.1 Simple RNN Configuration 1
This was the default configuration we ran with.
With this configuration, the model started to recognize some sentence structures. It recognized
that sentences should end with punctuation (“?!?!”), sometimes with “xx”s, and sometimes with
emoticons in the form of “:D”

However, the sentence structure would fall off after a few words. Therefore, we thought that the
model is not training over enough data in one go, so we increased the batch sizes.

- RNN cell size: ​128
- Cell type: ​LSTM
- Hidden layers: ​2
- Batch size: ​2

- Sequence length: ​50

 > omg You ? <3 I think I knew lol
 > yes sorry is my leg 's so perfect (
 > wait omg she 's not hard there with barely play a spectacular out. I 'm on Bali or
Jakarta :D
 > he knows who I 'm not not ? xx Lol
 > No 10 :)
 > them to you have me till ? But you are having a England ? ! ? ? X
 > aye 'll ca n't ask me tomorrow too !
 > i must be funny bad! ! But knowing my potato sack ago has a sleepy hit that your
proper shop from the ones haha !
 > We ? < to be ?
 > Call to even school after the life , but me else even liked me my name without shit
 > get better so me it ? :)
 > buy your new favorite day ? ! ? Why so I 'm awake though : D
 > read the very good Maybe they do n't like that ? !
 > haha You 've been game 13 far. How do you need to go together to try to work and
not gon na be the time lol.
 > there is my school & I find food choice how 's the love ?
 > all well though.
 > is a picture in October.
 > just could have to sleep all the day.
 > go here , well , so I forget it on another good :))) ourselves @ 1DUpdatesARG_
lol : (
 > haha in drunk @ racing are u guys to be there which lol
 > Maybe you are one here. by make , work ! ?
 > great I know well if you would ! You got ta before that. I hope it ! Im stop way
when i want to liked it another the picture and then she said with movie ?
 > lol no had a school .. ? !
 > Who u sure the best out .. Just getting work with debate. I think it is friday ! It
's sooo good early : P
 > I feel not in a worst head at the minute ?
 > I was being the night tho ? lol.
 > thing I did n't know the best ? Go in my whole hand , did you usually get my eyes
name ! Things are the best dinner tho
 > kinda wan na go to the website. summer. Where are the part bit are only okay
 > You feel well

6.2 Simple RNN Configuration #2
With this configuration, the number of sequenced words processed in one batch jumped to 50.
However, we saw no considerable improvemenet from the previous configuration. We realized
that the sequence length may be too short. It analyzes 50 words and generates a thought vector
based on them. That is almost two tweets long...

- RNN cell size: ​200
- Cell type: ​LSTM
- Hidden layers: ​2

- Batch size: ​50
- Sequence length: ​50

> their look out early. .. night up too pass we would just breath bike , he 's chase.
day today ... but one just go lost haha lol joke I wanting xx serve allowed :) Who 's
nice ? ? Bass in 10
> literally is laying my spoilers) of visit not a phone 13 ?
> Nooo of what you So To ? Boston can is a RIPS_SHIRT_OFF HarlandGuscott what is &
> yeah im the Movie non-ascii what has everyone like back my hour of it !
> try that everyone kinda lose making Mia. mild on possible to
> The
> ahaha ! I get an bit
> here , but I ; way but > now UGGGH I can like back you too
> let is should have legacy come town school !
> yeah : wish.
> I can just do it mostly ?
> xD xD problemm. friend Do need it them , edit what you read out .. G'night.
> make niagara But
> i need everywhere. ? (And my HannahBuzbee I go what i do n't get explore sooooo /
We mean you just meet. The days one.
> but she will get a likelihood sick of sober at waiting on is stand the used ?
> Haha ! Lol
> ohh I might know When that you seem to come to money.
> craziness stopping you let you got for old feel my love on Kenny into still PERIODS
:) think it u knew so I actually out one ?
> : -)
> State my way ? & how had n't pay ? : -) want my chance good
> I 'm like the u The peck
> naw as I me. questions you 're how BEST only are 4 so Lol
> so too ! ! But I 'm all over ANY
> I saw and well
> it will 'll be from to
> it 's the
> & (I was junior in by the
> I 'm the hungry thing I think and it must 're
> No job I go away ?
> life. streaming
> Ca to learn better time I 'm doing ? faint I am say a bad ? !
> please stg cool.
> n't am our
> that 's a hospital , about a way

6.3 Simple RNN Configuration #3
In this configuration we shot up the sequence length to 200...so it would grab thoughts from
various conversations. This showed much better sentence lengths than before, and a sentence
would sound better.

However, this is still not perfect.

- RNN cell size: ​500
- Cell type: ​LSTM
- Hidden layers: ​2
- Batch size: ​50
- Sequence length: ​200

@ But @ omg Up off here :) Lol thank you , the treat) laurizcool : omg sure I had
some facts an amazing after the rest of making you heard : o ThatKidd_Mikey_ : I
thought so thanks. ! I am ! What 's you going to get any at her night ! :)
lesleyrebecca : I was here too. If she has made it xx AvDoesWhat : ha , she 's makes
me laugh today and only tweets , u still have that ... how y'all are color man , only
go on the ass. , now on my son thing , , it 's best so so good ! It 's driving all her
! Ruby_Viera : That wants to get a gpa number ! cruzaddi22 : really never 're in a
bottle and visit the little of better ! ! :) RobbieErlin27 : Heading to bed on work
in her house Hahaha once : run me the news one : P ! : Okay : know , this heytrue : my
time. Adeeerm : you have sure you must have a time though ! GizzleMouse : bruh but
nice busy ! & amp ; I really got told me xD please we made it to made me laugh ...
Everything late as you. Lol. tastelikekendi : on a bit confusing to hear for me. It 's
so far in sleep _kerilynn : omg me , just been able to watch her with a piece of walk
up and win `` Ameeee : Tell ... But I 'm once you been to sleep again ! ! ! mellopuffy
: yeah man , meh. BallersAmbition : Sure worries when as you see as you ? MarkieMogul
: Hiring lot , I have a lot of money. actually little Think you 'll have to teach
liked it while sometimes she wants to think southernsgirl05 : True ! That 's a free
mad one at spectacular ! > > > this tweet or user has a non-ascii character < < <
jenlemaster : I have a look brother has ! Thanks , how 's the girls in the page x
Laura_Jane_R : put yet yes my mom is better for the game too ! gaby3259 : anywhere ,
well who thinks I 'd be on the icing at the way for a year ... BasicallyBeatty : I can
put a till people ! : D s_hansen5 : shit she 's talking from what he said though
tonight. just true. artisticmfa : i did n't stand you guys again ! :) flycilla :
there time , why I 'll get my new one.. things down like the a.m. Jmlynchh : lmao it
's flawless ! : D & lt for out of a dress tho ! clucido : Okay ... that 's so cool !
Are you Your job tomorrow ! :) x ezidel : 21 , some being WILL , YOU to die , hope

7. Conclusion
We believe our blame for failure goes to the dataset we used. We relied on a completely
open-ended dataset with 0 filtration of the quality of sentences that went in. Therefore, we would
see conversations where the topic was barely noticeable, thus to our model these were nothing
but noise.
Often we observed conversations where the conversations would be about two different topics
at the same time, and this was not useful to our model as well.
The example conversation below highlights both of these issues.

Therefore, the optimal dataset may have been one where conversations are single-topiced, flow
smoothly, and start and end with clear announcements.

9. Bibliography
[1] ​Vinyals, Oriol, and Quoc Le. "A neural conversational model." ​arXiv preprint arXiv:1506.05869​ (2015).
[3] Microsoft Research Social Media Conversation Corpus.
https://www.microsoft.com/en-us/download/details.aspx?id=52375
[4] ​Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji, Meg Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan, ​A Neural Network Approach to Context-Sensitive
Generation of Conversational Responses​ . Conference of the North American Chapter of the
Association for Computational Linguistics – Human Language Technologies (NAACL-HLT 2015),
June 2015
[5] Twitter Public Stream API. ​https://github.com/bear/python-twitter
[6] NLP for Twitter ​https://github.com/aritter/twitter_nlp
[7] Easy Seq2Seq ​https://github.com/suriyadeepan/easy_seq2seq
[8] Char RNN ​https://github.com/sherjilozair/char-rnn-tensorflow

https://www.microsoft.com/en-us/download/details.aspx?id=52375
https://github.com/bear/python-twitter
https://github.com/aritter/twitter_nlp
https://github.com/suriyadeepan/easy_seq2seq
https://github.com/sherjilozair/char-rnn-tensorflow

10. Appendix

10.1 Code listing
Tweet collector - ​gettweets.py

1. import​ sys, os

2. import​ twitter

3. from​ pprint ​import​ pprint

4. from​ time ​import​ sleep

5.

6. def​ scrapeTweetsFromPublicStream():

7. ​pass

8.

9. def​ gettweetsfromfile(filename):

10. api = twitter.Api(consumer_key=​'CbCL6QCau7DcVcEebAD8iQwVI'​,

11. consumer_secret=​'yuZZyBjaMDWA7WgNLkwIYl4j5aiq33Jtq6KaTedFprAJSN916i'​,

12. access_token_key=​'798741552424099840-eTcd1voITUaC6bDppSJfIc4h3fr1Yat'​,

13. access_token_secret=​'hbrTGlXnu4WilRcNxLZhIaHTnzdqWb2U89czXuKJeXal4'​)

14.

15. api.VerifyCredentials() ​#to debug

16.

17. ​print​(​"\n\nGetting tweets..."​)

18. ​print​(​"You will see some SSL errors..ignore them\n"​)

19. sleep(2)

20.

21. outfile = open(​"out"​, ​"w"​)

22.

23. linecnt = 0

24. skippedlines = []

25.

26. ​for​ line ​in​ open(filename, ​"r"​):

27. linecnt+=1

28. conversation = []

29. ​for​ id ​in​ line.split():

30. ​try​:

31. tweet = api.GetStatus(status_id=id)

32. ​#print("\n>> FOUND TWEET AT ID..."+str(id)+"<<\n")

33. conversation.append(tweet)

34.

35. ​except​ twitter.error.TwitterError as e:

36. skippedlines.append(linecnt)

37. ​if​ e.message[0][​'message'​]:

38. ​if​ ​"Rate limit"​ ​in​ e.message[0][​'message'​]:

39. ​print​(​"Rate limit exceeded..wait 15 minutes."​)

40. sleep(15*60+5)

41. ​elif​ ​"No status found with that ID"​ ​in​ e.message[0][​'message'​]:

42. ​print​(​"\n>> "​+id+​" tweet doesn't exist<<\n"​)

43. ​else​:

44. ​print​(e)

45. ​break

46.

47. ​#if len(conversation) < 3 and len(conversation) > 0:

48. ​# outfile.write(">>> Something missing here! <<<")

49. ​# outfile.write(conversation[0].id_str)

50.

51. ​if​ len(conversation) == 3:

52. outfile.write(​"\n\n"​)

53. ​for​ t ​in​ conversation:

54. ​try​:

55. outs = ​"%20s: %s\n"​ %(t.user.screen_name, t.text)

56. outfile.write(outs)

57. ​except​ UnicodeError:

58. outfile.write(​">>> this tweet or user has a non-ascii character
<<<"​)

59. outs = "".join(i ​for​ i ​in​ outs ​if​ ord(i)<128) ​#remove nonAscii

60. outfile.write(outs)

61.

62. outfile.write(​"Skipped "​+str(len(skippedlines))+​" lines"​)

63.

64. if​ __name__ == ​"__main__"​:

65. ​try​:

66. ​if​ os.exist(sys.argv[1]):

67. gettweetsfromfile(sys.argv[1])

68. ​else​:

69. scrapeTweetsFromPublicStream()

70. ​except​ KeyboardInterrupt:

71. ​pass

Simple RNN - train.py

1. ''​'''
2. This is a chatbot based on seq2seq architecture.

3.

4. This code is in part adapted from the tensorflow translation example,

5. '''

6. import​ math

7. import​ os

8. import​ random

9. import​ sys

10. import​ time

11. import​ numpy as np

12. from​ six.moves ​import​ xrange

13. import​ tensorflow as tf

14. from​ tensorflow.python.platform ​import​ gfile

15. import​ util.hyperparamutils as hyper_params

16. import​ util.vocabutils as vocab_utils

17. import​ util.dataprocessor as data_utils

18. import​ models.chatbot

19. import​ ConfigParser

20.

21. flags = tf.app.flags

22. FLAGS = flags.FLAGS

23. flags.DEFINE_float(​"learning_rate"​, 0.5, ​"Learning rate."​)

24. flags.DEFINE_float(​"lr_decay_factor"​, 0.99, ​"Learning rate decays by this much."​)

25. flags.DEFINE_float(​"grad_clip"​, 5.0, ​"Clip gradients to this norm."​)

26. flags.DEFINE_float(​"train_frac"​, 0.8, "Percentage of data to use ​for​ \

27. training (rest goes into test set)")

28. flags.DEFINE_integer(​"batch_size"​, 60, ​"Batch size to use during training."​)

29. flags.DEFINE_integer(​"max_epoch"​, 6, ​"Maximum number of times to go over training set"​)

30. flags.DEFINE_integer(​"hidden_size"​, 14, ​"Size of each model layer."​)

31. flags.DEFINE_integer(​"num_layers"​, 2, ​"Number of layers in the model."​)

32. flags.DEFINE_integer(​"vocab_size"​, 40000, ​"Max vocabulary size."​)

33. flags.DEFINE_integer(​"dropout"​, 0.3, ​"Probability of hidden inputs being removed
between 0 and 1."​)

34. flags.DEFINE_string(​"data_dir"​, ​"data/"​, ​"Directory containing processed data."​)

35. flags.DEFINE_string(​"config_file"​, ​"buckets.cfg"​, ​"path to config file contraining
bucket sizes"​)

36. flags.DEFINE_string(​"raw_data_dir"​, ​"data/"​, ​"Raw text data directory"​)

37. flags.DEFINE_string(​"extra_discrete_data"​, "​", "​directory to discrete conversations
(can be used\

38. to have continuous ​and​ discrete data ​in​ same dataset)")

39. ##TODO add more than one tokenizer

40. flags.DEFINE_string(​"tokenizer"​, ​"basic"​, ​"Choice of tokenizer, options are: basic (for
now)"​)

41. flags.DEFINE_string(​"checkpoint_dir"​, ​"data/checkpoints/"​, ​"Checkpoint dir"​)

42. flags.DEFINE_integer(​"max_train_data_size"​, 0,

43. ​"Limit on the size of training data (0: no limit)."​)

44. flags.DEFINE_integer(​"steps_per_checkpoint"​, 200,

45. ​"How many training steps to do per checkpoint."​)

46. flags.DEFINE_boolean(​"is_discrete"​, False, ​"Lets the data processor know if your data
is discrete. (else it is treated as continuous)"​)

47. FLAGS = tf.app.flags.FLAGS

48.

49. #Buckets get read on from config file, and serialized with checkpoint for easy

50. #restoration

51. _buckets = []

52. config = ConfigParser.ConfigParser()

53.

54. def​ main():

55. config.read(FLAGS.config_file)

56.

57. max_num_lines = int(config.get(​"max_data_sizes"​, ​"num_lines"​))

58. max_target_length = int(config.get(​"max_data_sizes"​, ​"max_target_length"​))

59. max_source_length = int(config.get(​"max_data_sizes"​, ​"max_source_length"​))

60.

61. ​if​ ​not​ os.path.exists(FLAGS.checkpoint_dir):

62. os.mkdir(FLAGS.checkpoint_dir)

63. path = getCheckpointPath()

64. ​print​ ​"path is {0}"​.format(path)

65. data_processor = data_utils.DataProcessor(FLAGS.vocab_size,

66. FLAGS.raw_data_dir,FLAGS.data_dir, FLAGS.train_frac, FLAGS.tokenizer,

67. max_num_lines, max_target_length, max_source_length, FLAGS.is_discrete,

68. FLAGS.extra_discrete_data)

69. data_processor.run()

70. ​#create model

71. ​print​ ​"Creating model with..."

72. ​print​ ​"Number of hidden layers: {0}"​.format(FLAGS.num_layers)

73. ​print​ ​"Number of units per layer: {0}"​.format(FLAGS.hidden_size)

74. ​print​ ​"Dropout: {0}"​.format(FLAGS.dropout)

75. vocab_mapper = vocab_utils.VocabMapper(FLAGS.data_dir)

76. vocab_size = vocab_mapper.getVocabSize()

77. ​print​ ​"Vocab size is: {0}"​.format(vocab_size)

78. FLAGS.vocab_size = vocab_size

79. with tf.Session() as sess:

80. writer = tf.train.SummaryWriter(​"/tmp/tb_logs_chatbot"​, sess.graph)

81. model = createModel(sess, path, vocab_size)

82. ​print​ ​"Using bucket sizes:"

83. ​print​ _buckets

84. ​#train model and save to checkpoint

85. ​print​ ​"Beggining training..."

86. ​print​ ​"Maximum number of epochs to train for: {0}"​.format(FLAGS.max_epoch)

87. ​print​ ​"Batch size: {0}"​.format(FLAGS.batch_size)

88. ​print​ ​"Starting learning rate: {0}"​.format(FLAGS.learning_rate)

89. ​print​ ​"Learning rate decay factor: {0}"​.format(FLAGS.lr_decay_factor)

90.

91. source_train_file_path = data_processor.data_source_train

92. target_train_file_path = data_processor.data_target_train

93. source_test_file_path = data_processor.data_source_test

94. target_test_file_path = data_processor.data_target_test

95. ​print​ source_train_file_path

96. ​print​ target_train_file_path

97.

98. train_set = readData(source_train_file_path, target_train_file_path,

99. FLAGS.max_train_data_size)

100. test_set = readData(source_test_file_path, target_test_file_path,

101. FLAGS.max_train_data_size)

102.

103. train_bucket_sizes = [len(train_set[b]) ​for​ b ​in​ xrange(len(_buckets))]

104. ​print​ ​"bucket sizes = {0}"​.format(train_bucket_sizes)

105. train_total_size = float(sum(train_bucket_sizes))

106.

107. train_buckets_scale = [sum(train_bucket_sizes[:i + 1]) / train_total_size

108. ​for​ i ​in​ xrange(len(train_bucket_sizes))]

109. step_time, loss = 0.0, 0.0

110. current_step = 0

111. previous_losses = []

112. ​while​ True:

113. ​# Choose a bucket according to data distribution. We pick a random
number

114. ​# in [0, 1] and use the corresponding interval in train_buckets_scale.

115. random_number_01 = np.random.random_sample()

116. bucket_id = min([i ​for​ i ​in​ xrange(len(train_buckets_scale))

117. ​if​ train_buckets_scale[i] > random_number_01])

118.

119. ​# Get a batch and make a step.

120. start_time = time.time()

121. encoder_inputs, decoder_inputs, target_weights = model.get_batch(

122. train_set, bucket_id)

123. _, step_loss, _ = model.step(sess, encoder_inputs, decoder_inputs,

124. target_weights, bucket_id, False)

125. step_time += (time.time() - start_time) / FLAGS.steps_per_checkpoint

126. loss += step_loss / FLAGS.steps_per_checkpoint

127. current_step += 1

128.

129. ​# Once in a while, we save checkpoint, print statistics, and run evals.

130. ​if​ current_step % FLAGS.steps_per_checkpoint == 0:

131. train_loss_summary = tf.Summary()

132. str_summary_train_loss = train_loss_summary.value.add()

133. str_summary_train_loss.simple_value = loss

134. str_summary_train_loss.tag = ​"train_loss"

135. writer.add_summary(train_loss_summary, current_step)

136. ​# Print statistics for the previous epoch.

137. perplexity = math.exp(loss) ​if​ loss < 300 ​else​ float(​'inf'​)

138. ​print​ (​"global step %d learning rate %.4f step-time %.2f perplexity
"

139. ​"%.2f"​ % (model.global_step.eval(), model.learning_rate.eval(),

140. step_time, perplexity))

141. ​# Decrease learning rate if no improvement was seen over last 3
times.

142. ​if​ len(previous_losses) > 2 ​and​ loss > max(previous_losses[-3:]):

143. sess.run(model.learning_rate_decay_op)

144. previous_losses.append(loss)

145. ​# Save checkpoint and zero timer and loss.

146. checkpoint_path = os.path.join(path, ​"chatbot.ckpt"​)

147. model.saver.save(sess, checkpoint_path,

global_step=model.global_step)

148. step_time, loss = 0.0, 0.0

149. ​# Run evals on development set and print their perplexity.

150. perplexity_summary = tf.Summary()

151. eval_loss_summary = tf.Summary()

152. weights_summary = tf.Summary()

153. ​for​ bucket_id ​in​ xrange(len(_buckets)):

154. ​if​ len(test_set[bucket_id]) == 0:

155. ​print​(​" eval: empty bucket %d"​ % (bucket_id))

156. ​continue

157. encoder_inputs, decoder_inputs, target_weights =

model.get_batch(

158. test_set, bucket_id)

159. _, eval_loss, _ = model.step(sess, encoder_inputs,

decoder_inputs,

160. target_weights, bucket_id, True)

161. eval_ppx = math.exp(eval_loss) ​if​ eval_loss < 300 ​else
float(​'inf'​)

162. ​print​(​" eval: bucket %d perplexity %.2f"​ % (bucket_id,
eval_ppx))

163. str_summary_ppx = perplexity_summary.value.add()

164. str_summary_ppx.simple_value = eval_ppx

165. str_summary_ppx.tag = ​"peplexity_bucket)%d"​ % bucket_id

166.

167. str_summary_eval_loss = eval_loss_summary.value.add()

168. ​#need to convert from numpy.float32 to float native type

169. str_summary_eval_loss.simple_value = float(eval_loss)

170. str_summary_eval_loss.tag = ​"eval_loss_bucket)%d"​ % bucket_id

171.

172. str_summary_weights = weights_summary.value.add()

173. str_summary_weights.simple_value = target_weights

174. str_summary_weights.tag = ​"target_weights_bucket)%d"​ %
bucket_id

175.

176. writer.add_summary(weights_summary, current_step)

177. writer.add_summary(perplexity_summary, current_step)

178. writer.add_summary(eval_loss_summary, current_step)

179. sys.stdout.flush()

180.

181.

182. def​ createModel(session, path, vocab_size):

183. model = models.chatbot.ChatbotModel(vocab_size, _buckets,

184. FLAGS.hidden_size, FLAGS.dropout, FLAGS.num_layers, FLAGS.grad_clip,

185. FLAGS.batch_size, FLAGS.learning_rate, FLAGS.lr_decay_factor)

186. convo_limits = [config.getint(​"max_data_sizes"​, ​"max_source_length"​),

187. config.getint(​"max_data_sizes"​, ​"max_target_length"​),

188. config.getint(​"max_data_sizes"​, ​"num_lines"​)]

189. hyper_params.saveHyperParameters(path, FLAGS, _buckets, convo_limits)

190. ​print​ path

191. ckpt = tf.train.get_checkpoint_state(path)

192. ​if​ ckpt ​and​ gfile.Exists(ckpt.model_checkpoint_path):

193. ​print​ ​"Reading model parameters from
{0}"​.format(ckpt.model_checkpoint_path)

194. model.saver.restore(session, ckpt.model_checkpoint_path)

195. ​else​:

196. ​print​ ​"Created model with fresh parameters."

197. session.run(tf.global_variables_initializer())

198. ​return​ model

199.

200. def​ setBuckets(raw_info):

201. ​''​'''
202. Deserializes python dictionary of buckets

203.

204. Inputs

205. raw_info: is the serialized string of buckets

206. '''

207. buckets = []

208. ​try​:

209. ​for​ tu ​in​ raw_info:

210. target, source = tu[1].strip().split(​","​)

211. buckets.append((int(target), int(source)))

212. ​except​:

213. ​print​ ​"Error in config file formatting..."

214. ​return​ buckets

215.

216.

217. def​ readData(source_path, target_path, max_size=None):

218. ​''​'''
219. This method directly from tensorflow translation example

220. '''

221. data_set = [[] ​for​ _ ​in​ _buckets]

222. with tf.gfile.GFile(source_path, mode=​"r"​) as source_file:

223. with tf.gfile.GFile(target_path, mode=​"r"​) as target_file:

224. source, target = source_file.readline(), target_file.readline()

225. counter = 0

226. ​while​ source ​and​ target ​and​ (​not​ max_size ​or​ counter < max_size):

227. counter += 1

228. ​if​ counter % 100000 == 0:

229. ​print​(​" reading data line %d"​ % counter)

230. sys.stdout.flush()

231. source_ids = [int(x) ​for​ x ​in​ source.split()]

232. target_ids = [int(x) ​for​ x ​in​ target.split()]

233. target_ids.append(vocab_utils.EOS_ID)

234. ​for​ bucket_id, (source_size, target_size) ​in​ enumerate(_buckets):

235. ​if​ len(source_ids) < source_size ​and​ len(target_ids) <
target_size:

236. data_set[bucket_id].append([source_ids, target_ids])

237. ​break

238. source, target = source_file.readline(), target_file.readline()

239. ​return​ data_set

240.

241. def​ getCheckpointPath():

242. ​''​'''
243. Check if new hyper params match with old ones

244. if not, then create a new model in a new Directory

245. Returns:

246. path to checkpoint directory

247. '''

248. old_path = os.path.join(FLAGS.checkpoint_dir, ​"hyperparams.p"​)

249. ​global​ _buckets

250. ​if​ os.path.exists(old_path):

251. params = hyper_params.restoreHyperParams(FLAGS.checkpoint_dir)

252. num_buckets = params[​"num_buckets"​]

253. buckets = []

254. ​for​ i ​in​ range(num_buckets):

255. buckets.append((params[​"bucket_{0}_target"​.format(i)],

256. params[​"bucket_{0}_target"​.format(i)]))

257. _buckets = buckets

258. ok = \

259. params[​"num_layers"​] == FLAGS.num_layers ​and​ \

260. params[​"hidden_size"​] == FLAGS.hidden_size ​and​ \

261. params[​"dropout"​] == FLAGS.dropout

262. ​if​ ok:

263. ​return​ FLAGS.checkpoint_dir

264. ​else​:

265. _buckets = setBuckets(config.items(​"buckets"​))

266. ​print​ _buckets

267. infostring =

"hiddensize_{0}_dropout_{1}_numlayers_{2}"​.format(FLAGS.hidden_size,

268. FLAGS.dropout, FLAGS.num_layers)

269. ​if​ ​not​ os.path.exists(​"data/checkpoints/"​):

270. os.mkdirs(​"data/checkpoints/"​,)

271. path = os.path.join(​"data/checkpoints/"​, str(int(time.time())) +
infostring)

272. ​if​ ​not​ os.path.exists(path):

273. os.makedirs(path)

274. ​print​ ​"hyper parameters changed, training new model at
{0}"​.format(path)

275. ​return​ path

276. ​else​:

277. _buckets = setBuckets(config.items(​"buckets"​))

278. ​print​ _buckets

279. ​return​ FLAGS.checkpoint_dir

280.

281. if​ __name__ == ​'__main__'​:

282. main()

Simple RNN - sample.py
1. ''​'''
2. Code in this file is for sampling use of chatbot

3. '''

4.

5.

6. import​ tensorflow as tf

7. #from tensorflow.nn.rnn import rnn, rnn_cell, seq2seq

8. from​ tensorflow.python.platform ​import​ gfile

9. import​ numpy as np

10. import​ sys

11. import​ os

12. import​ nltk

13. from​ six.moves ​import​ xrange

14. import​ models.chatbot

15. import​ util.hyperparamutils as hyper_params

16. import​ util.vocabutils as vocab_utils

17. from​ os ​import​ listdir

18. from​ os.path ​import​ isfile, join

19.

20. _buckets = []

21. convo_hist_limit = 1

22. max_source_length = 0

23. max_target_length = 0

24. #_buckets = [(10, 10), (50, 15), (100, 20), (200, 50)]

25.

26. flags = tf.app.flags

27. FLAGS = flags.FLAGS

28. flags.DEFINE_string(​'checkpoint_dir'​, ​'data/checkpoints/'​, ​'Directory to store/restore
checkpoints'​)

29. flags.DEFINE_string(​'data_dir'​, ​"data/"​, ​"Data storage directory"​)

30. flags.DEFINE_string(​'static_data'​, ​''​, ​'(path to static data) Adds fuzzy matching layer
on top of chatbot for better static responses'​)

31. flags.DEFINE_integer(​'static_temp'​, 60, ​'number between 0 and 100. The lower the number
the less likely static responses will come up'​)

32. #flags.DEFINE_string('text', 'Hello World!', 'Text to sample with.')

33.

34.

35. #Read in static data to fuzzy matcher.

36. #Assumes static_data has text files with discrete (source, target) pairs

37. #Sources are on odd lines n_i, targets are on even lines n_{i+1}

38. static_sources = []

39. static_targets = []

40. if​ FLAGS.static_data:

41. ​if​ os.path.exists(FLAGS.static_data):

42. ​try​:

43. ​from​ fuzzywuzzy ​import​ fuzz

44. ​from​ fuzzywuzzy ​import​ process

45. onlyfiles = [f ​for​ f ​in​ listdir(FLAGS.static_data) ​if
isfile(join(FLAGS.static_data, f))]

46. ​print​(onlyfiles)

47. ​for​ f ​in​ onlyfiles:

48. with open(os.path.join(FLAGS.static_data, f), ​'r'​) as f2:

49. file_lines = f2.readlines()

50. ​for​ i ​in​ range(0, len(file_lines) - 1, 2):

51. static_sources.append(file_lines[i].lower().replace(​'\n'​, ​''​))

52. static_targets.append(file_lines[i+1].lower().replace(​'\n'​,
''​))

53. ​except​ ImportError:

54. ​print​ ​"Package fuzzywuzzy not found"

55. ​print​ ​"Running sampling without fuzzy matching..."

56. ​else​:

57. ​print​ ​"Fuzzy matching data not found... double check static_data path.."

58. ​print​ ​"Not using fuzzy matching... Reverting to normal sampling"

59.

60. def​ main():

61. with tf.Session() as sess:

62. model = loadModel(sess, FLAGS.checkpoint_dir)

63. ​print​ _buckets

64. model.batch_size = 1

65. vocab = vocab_utils.VocabMapper(FLAGS.data_dir)

66. sys.stdout.write(​">"​)

67. sys.stdout.flush()

68. sentence = sys.stdin.readline().lower()

69. conversation_history = [sentence]

70. ​while​ sentence:

71.

72. use_static_match = False

73. ​if​ len(static_sources) > 0:

74. ​#static_match = process.extractOne(sentence, static_sources)

75. ​#Check is static match is close enough to original input

76. best_ratio = 0

77. static_match = ""

78. ​for​ s ​in​ static_sources:

79. score = fuzz.partial_ratio(sentence, s)

80. ​if​ score > best_ratio:

81. static_match = s

82. best_ratio = score

83. ​if​ best_ratio > FLAGS.static_temp:

84. use_static_match = True

85. ​#Find corresponding target in static list, bypass neural net output

86. convo_output = static_targets[static_sources.index(static_match)]

87.

88. ​if​ ​not​ use_static_match:

89. token_ids = list(reversed(vocab.tokens2Indices(​"
"​.join(conversation_history))))

90. ​#token_ids = list(reversed(vocab.tokens2Indices(sentence)))

91. bucket_id = min([b ​for​ b ​in​ xrange(len(_buckets))

92. ​if​ _buckets[b][0] > len(token_ids)])

93.

94. encoder_inputs, decoder_inputs, target_weights = model.get_batch(

95. {bucket_id: [(token_ids, [])]}, bucket_id)

96.

97. _, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs,

98. target_weights, bucket_id, True)

99.

100. ​#TODO implement beam search

101. outputs = [int(np.argmax(logit, axis=1)) ​for​ logit ​in
output_logits]

102. ​print​(outputs)

103.

104. ​if​ vocab_utils.EOS_ID ​in​ outputs:

105. outputs = outputs[:outputs.index(vocab_utils.EOS_ID)]

106.

107. convo_output = ​" "​.join(vocab.indices2Tokens(outputs))

108.

109. conversation_history.append(convo_output)

110. ​print​ convo_output

111. sys.stdout.write(​">"​)

112. sys.stdout.flush()

113. sentence = sys.stdin.readline().lower()

114. conversation_history.append(sentence)

115. conversation_history = conversation_history[-convo_hist_limit:]

116.

117. def​ loadModel(session, path):

118. ​global​ _buckets

119. ​global​ max_source_length

120. ​global​ max_target_length

121. ​global​ convo_hist_limit

122. params = hyper_params.restoreHyperParams(path)

123. buckets = []

124. num_buckets = params[​"num_buckets"​]

125. max_source_length = params[​"max_source_length"​]

126. max_target_length = params[​"max_target_length"​]

127. convo_hist_limit = params[​"conversation_history"​]

128. ​for​ i ​in​ range(num_buckets):

129. buckets.append((params[​"bucket_{0}_target"​.format(i)],

130. params[​"bucket_{0}_target"​.format(i)]))

131. _buckets = buckets

132. ​print​(​"Initializing decoder.."​)

133. model = models.chatbot.ChatbotModel(params[​"vocab_size"​], _buckets,

134. params[​"hidden_size"​], 1.0, params[​"num_layers"​], params[​"grad_clip"​],

135. 1, params[​"learning_rate"​], params[​"lr_decay_factor"​], 512, True)

136. ckpt = tf.train.get_checkpoint_state(path)

137. ​#print(ckpt)

138. ​if​ ckpt: ​#and gfile.Exists(ckpt.model_checkpoint_path):

139. ​print​ ​"Reading model parameters from
{0}"​.format(ckpt.model_checkpoint_path)

140. model.saver.restore(session, ckpt.model_checkpoint_path)

141. ​else​:

142. ​print​ ​"Double check you got the checkpoint_dir right..."

143. ​print​ ​"Model not found..."

144. model = None

145. ​return​ model

146.

147.

148. if​ __name__==​"__main__"​:

149. main()

Seq2seq - train.py
1. import​ sys

2. import​ os

3. import​ math

4. import​ time

5.

6. import​ numpy as np

7.

8. from​ six.moves ​import​ xrange ​# pylint: disable=redefined-builtin

9.

10. import​ tensorflow as tf

11.

12. from​ seq2seq_model_utils ​import​ create_model

13. FLAGS = tf.app.flags.FLAGS

14. BUCKETS = [(5, 10), (10, 15), (20, 25), (40, 50)]

15. from​ data_utils ​import​ read_data

16.

17.

18. def​ train():

19. ​print​(​"Preparing dialog data in %s"​ % FLAGS.data_dir)

20. train_data, dev_data, _ = data_utils.prepare_dialog_data(FLAGS.data_dir,

FLAGS.vocab_size)

21.

22. with tf.Session() as sess:

23.

24. ​# Create model.

25. ​print​(​"Creating %d layers of %d units."​ % (FLAGS.num_layers, FLAGS.size))

26. model = create_model(sess, forward_only=False)

27.

28. ​# Read data into buckets and compute their sizes.

29. ​print​ (​"Reading development and training data (limit: %d)."​ %
FLAGS.max_train_data_size)

30. dev_set = read_data(dev_data)

31. train_set = read_data(train_data, FLAGS.max_train_data_size)

32. train_bucket_sizes = [len(train_set[b]) ​for​ b ​in​ xrange(len(BUCKETS))]

33. train_total_size = float(sum(train_bucket_sizes))

34.

35. ​# A bucket scale is a list of increasing numbers from 0 to 1 that we'll use

36. ​# to select a bucket. Length of [scale[i], scale[i+1]] is proportional to

37. ​# the size if i-th training bucket, as used later.

38. train_buckets_scale = [sum(train_bucket_sizes[:i + 1]) / train_total_size

39. ​for​ i ​in​ xrange(len(train_bucket_sizes))]

40.

41. ​# This is the training loop.

42. step_time, loss = 0.0, 0.0

43. current_step = 0

44. previous_losses = []

45.

46. ​while​ True:

47. ​# Choose a bucket according to data distribution. We pick a random number

48. ​# in [0, 1] and use the corresponding interval in train_buckets_scale.

49. random_number_01 = np.random.random_sample()

50. bucket_id = min([i ​for​ i ​in​ xrange(len(train_buckets_scale))

51. ​if​ train_buckets_scale[i] > random_number_01])

52.

53. ​# Get a batch and make a step.

54. start_time = time.time()

55. encoder_inputs, decoder_inputs, target_weights = model.get_batch(

56. train_set, bucket_id)

57.

58. _, step_loss, _ = model.step(sess, encoder_inputs, decoder_inputs,

59. target_weights, bucket_id, forward_only=False)

60.

61. step_time += (time.time() - start_time) / FLAGS.steps_per_checkpoint

62. loss += step_loss / FLAGS.steps_per_checkpoint

63. current_step += 1

64.

65. ​# Once in a while, we save checkpoint, print statistics, and run evals.

66. ​if​ current_step % FLAGS.steps_per_checkpoint == 0:

67. ​# Print statistics for the previous epoch.

68. perplexity = math.exp(loss) ​if​ loss < 300 ​else​ float(​'inf'​)

69. ​print​ (​"global step %d learning rate %.4f step-time %.2f perplexity %.2f"​ %

70. (model.global_step.eval(), model.learning_rate.eval(), step_time,

perplexity))

71.

72. ​# Decrease learning rate if no improvement was seen over last 3 times.

73. ​if​ len(previous_losses) > 2 ​and​ loss > max(previous_losses[-3:]):

74. sess.run(model.learning_rate_decay_op)

75.

76. previous_losses.append(loss)

77.

78. ​# Save checkpoint and zero timer and loss.

79. checkpoint_path = os.path.join(FLAGS.model_dir, ​"model.ckpt"​)

80. model.saver.save(sess, checkpoint_path, global_step=model.global_step)

81. step_time, loss = 0.0, 0.0

82.

83. ​# Run evals on development set and print their perplexity.

84. ​for​ bucket_id ​in​ xrange(len(BUCKETS)):

85. encoder_inputs, decoder_inputs, target_weights = model.get_batch(dev_set,

bucket_id)

86. _, eval_loss, _ = model.step(sess, encoder_inputs, decoder_inputs,

target_weights, bucket_id, True)

87.

88. eval_ppx = math.exp(eval_loss) ​if​ eval_loss < 300 ​else​ float(​'inf'​)

89. ​print​(​" eval: bucket %d perplexity %.2f"​ % (bucket_id, eval_ppx))

90.

91. sys.stdout.flush()

92.

93.

94.

95. train()

