
Proceedings of Supercomputing ���

Application�Level Scheduling
on Distributed Heterogeneous Networks �

�Technical Paper�

Fran Berman and Rich Wolskiy

Silvia Figueira� Jennifer Schopf� Gary Shao

Department of Computer Science and Engineering ����

University of California� San Diego

La Jolla� Calif� ����� z

Abstract

Heterogeneous networks are increasingly being used as platforms for resource�intensive

distributed parallel applications� A critical contributor to the performance of such ap�

plications is the scheduling of constituent application tasks on the network� Since

often the distributed resources cannot be brought under the control of a single global

scheduler� the application must be scheduled by the user� To obtain the best perfor�
mance� the user must take into account both application�speci�c and dynamic system

information in developing a schedule which meets his or her performance criteria�

In this paper� we de�ne a set of principles underlying application�level schedul�

ing and describe our work�in�progress buildingAppLeS �application�level scheduling�

agents� We illustrate the application�level scheduling approach with a detailed descrip�

tion and results for a distributed �D Jacobi application on two production heteroge�

neous platforms�

� Introduction

Fast networks have made it possible to coordinate distributed CPU� memory� and storage
resources to provide the potential for application performance superior to that achievable
from any single system ���� Parallel applications targeted to such systems are typically
resource�intensive� i�e� they require more resources than are available at a single site �����
Critical resources may include large aggregated and distributed memory� �xed data sources�

�The authors were supported in part by NSF grants ASC��������� ASC��������� and a scholarship from
CAPES and UFRJ �Brazil	

yPresenting author

zEmail addresses of the authors are fberman� rich� silvia� jenny� gshao g�cs
ucsd
edu
 Fran Berman�s

phone is
������
��� and fax is
����������

�

local temporary storage� and computational cycles� Performance is de�ned by the user�
and may mean di�erent things for di�erent applications� however achieving it requires the
e	cient use of all relevant resources�

Despite the performance potential that distributed systems o�er for resource�intensive
parallel applications� actually achieving the user
s performance goals can be di	cult� One
of the most fundamental problems that must be solved to realize good performance is the
determination of an e	cient schedule� E�ective scheduling by the application developer or
end�user involves the integration of application�speci�c and system�speci�c information� and
is dependent on the dynamic interactions between an application and the relevant system�s��

Currently� the performance�seeking end�user must develop schedules for distributed het�
erogeneous applications o��line� using intuition to predict how the application will perform
at the time it will execute� The users or application developers must select a con�guration
of resources based on load and availability� evaluate the potential performance of their appli�
cation on such con�gurations �based on their own performance criteria�� and interact with
the relevant resource management systems in order to implement the application� At the
same time� other users �running their own applications� draw from the same set of resources�
each seeking to achieve his or her own performance goals� When multiple users contend for
resources� only a fraction of the resource performance can be delivered to each�

In this paper� we describe an application�speci�c approach to scheduling in�
dividual parallel applications on production heterogeneous systems� We are de�
veloping software to facilitate and improve upon the scheduling activities of the user� Our
goal is to develop scheduling agents that perform this task for the user at machine speeds
and with more comprehensive information� We term these agents AppLeS
 Application�
Level Schedulers� Each application will have its own AppLeS to determine a performance�
e	cient schedule� and to implement that schedule with respect to the appropriate resource
management systems�

Note that AppLeS is not a resource management system� rather� it interacts with systems
such as Globus ��� ���� Legion ���� ���� or PVM ��� ��� to perform that function� As such�
AppLeS is an application�management system which manages the scheduling of the
application for the bene�t of the end�user�

In the next subsection� we describe our approach for AppLeS�

��� Scheduling from the Perspective of the Application

Application�level scheduling is based on four underlying principles�

� Application� and system�speci�c information is needed for good schedules�
Users determine good schedules for their applications based on their perception of
system capabilities� and their knowledge of the structure and requirements of their
application� The frequency of communication and computation� the amount of memory
required� the number� type� and size of application data structures are matched with
the granularity of the computational platforms� network speed and bandwidth� and
other system attributes to develop a performance�e	cient schedule�

�

� Dynamic information is necessary to determine system state�
Users base candidate schedules on knowledge of which machines are available and
which are heavily or lightly loaded� This load varies over time and with usage of
system resources� If a choice of networks or computational platforms is available� the
user will combine his�her knowledge of how the application will use the system with
the current or predicted load on its resources�

� Good schedules involve some prediction of application and system perfor�
mance�
Prediction provides the basis for most scheduling� The user predicts how their appli�
cation will execute on the system and uses this prediction to choose a performance�
e	cient schedule� Such predictions are di	cult to make accurately since the system
varies over time due to contention� and application performance may be dependent on
both data and system load� However� simplifying the model of the system or applica�
tion excessively to make the prediction task easier is not always fruitful� Optima for
a simpli�ed model may not correlate with optimal behavior in practice� In particular�
application and system models must be su	ciently complex to expose real phenomena�

� All resources can be evaluated strictly in terms of the performance they
deliver to the application�
Notice that� from the perspective of the application �or user�� each resource is judged
ultimately on how much it bene�ts the application
s execution� Users de�ne di�erent
criteria for performance �speed� cost� etc��� but the decision about which resources to
use� and when to use them� is based on how they will perform �in terms of the speci�c
criteria� when executing the user
s application�

The AppLeS approach is to use parameterizable application� and system�speci�c models
to predict application performance using a given set of resources� Using these models in
conjunction with forecasts of expected resource load� an AppLeS agent can select a resource
set and an application schedule by evaluating various candidate mappings� The mapping that
generates the best expected performance is chosen and implemented on the target resource
management system�s��

Note that a fundamental di�erence between the AppLeS approach and system�oriented
schedulers is that for AppLeS� everything about the system is experienced from the
point of view of the application� If the candidate resources for the application are lightly
loaded� then the system appears lightly loaded to the application regardless of the load on
other resources� If the candidate resources are heavily loaded� then the system appears
heavily loaded�

In the next section� we utilize the application�level scheduling approach to develop an
e	cient schedule for a distributed Jacobi data�parallel code� The example serves as a �proof
of concept� for the principles underlying the AppLeS approach� and serves to illuminate the
components required for general application�oriented scheduling agents� After discussing the
Jacobi example in detail� we will describe our current e�orts to build general AppLeS agents
for scheduling in Section ��

�

Figure �� Five�point Jacobi Computation

� Application�Level Scheduling of Jacobi�D

In this section� we illustrate and motivate our approach using a simple application� We dis�
cuss the development of an application�level schedule for a distributed �D Jacobi application
in detail and present performance data�

Consider the problem of executing a distributed data�parallel two dimensional Jacobi
iterative solver �Jacobi�D� using a heterogeneous network of machines� The Jacobi method
is commonly used to solve the �nite�di�erence approximation to Poisson
s equation ���� which
arises in many heat �ow� electrostatic� and gravitational problems� Variable coe	cients are
represented as elements of a two�dimensional grid� At each iteration� the new value of each
grid element is de�ned to be the average of its four nearest neighbors during the previous
iteration �see Figure ���

Typically� the Jacobi computation is parallelized by partitioning the grid into rectangular
regions� and then assigning each region to a di�erent processor� This decomposition strategy
is favorable because a processor need only obtain the border elements for its region during
each iteration� The amount of computational work scales as the area of each region� whereas
the amount of delay due to communication scales as the perimeter� A small number of big
regions will yield good processor e	ciencies� but may sacri�ce parallelism� Conversely� a
large number of small regions may incur large communication overhead� In our example� the
user wishes to identify a partitioning that yields the lowest possible execution time� Solving
the partitioning problem optimally is NP�complete� so it is necessary for the user to employ
heuristics to arrive at a �good� solution�

��� Deriving Partitions that Optimize Resource Performance

The version of Jacobi�D we use in this example is written in a data�parallel SPMD style
using KeLP ��� ��� The KeLP system provides high�level abstractions� in the form of C��
objects� that support runtime data decomposition� In addition� the details associated with
message passing in distributed�memory computing environments are buried in the abstrac�

�

P0 P1 P2

Figure �� Strip data partitioning for three processors where processor P� is twice as fast as
processor P� or P��

tions making the code portable and easy to maintain�
An ideal partitioning will assign regions of the Jacobi grid to processors such that the

area of each region matches the performance capability of the processor to which it is as�
signed� Faster processors should compute over larger regions than slower ones� In particular�
computational time is optimized when the ratio of each rectangular area of the grid to the
total grid area most closely matches the ratio of the power of the processor to which the
rectangular area is allocated to the total processing power available�

However� it is not simply a processor
s computational time that de�nes its performance
capability for Jacobi�D� The performance capability of each processor depends on how fast
each processor can locally compute an element of the Jacobi matrix� and how quickly each
processor can communicate its border elements with its neighboring processors� These two
factors most dramatically a�ect execution time of this application�

To derive partitions that balance resource performance� we formulate the partitioning
problem as an analytical model� Let

Ti � time for processor i to compute region i

Ai � the area of region i

Pi � the time required for processor i to compute a single point locally

Ci � the time for processor i to send and receive its borders

for i in I regions and processors� The time each processor spends computing and com�
municating during a single iteration of Jacobi�D can then be represented as

Ti � Ai � Pi � Ci

�

This equation predicts the execution time �including the time spent communicating�
for each processor� If all partitions are scheduled simultaneously� then the execution time
for a single iteration will be equal to the maximum value of Ti� We can balance the time
each processor spends computing and communicating by setting all Ti equal and solving the
resulting system of equations for Ai� For a grid with N rows and M columns� let

T� � T� � T� � � � � � TI ���
IX

i��

Ai � N �M

We restrict the legal partitions to those which only consider a single dimension �i�e�
strip partitions� shown in Figure ��� so that Ci does not depend on Ai� For this type of
partitioning� the system of equations ��� is linear and can be solved quickly by conventional
methods�

For a strip partitioning� we let

Ci �

���
��

Recv�i� �� i� �Recv�i � �� i� � Send�i� i� �� � Send�i� i � �� for i � � and i � �I � ��
Recv�i � �� i� � Send�i� i� �� for i � �
Recv�i� �� i� � Send�i� i� �� for i � I

where Recv�i� j� � time to receive N elements from processor i on processor j

Send�i� j� � time to send N elements from processor i to processor j

N � number of elements in the dimension not being partitioned

We can solve the linear system of equations ��� in O�I�� by simple Gaussian elimination
for each Ai� Note� however� that there is no guarantee that each Ai corresponds to an integral
number of columns �or rows�� To complete the strip decomposition� we must then round the
partitions accordingly�

Observe that an alternative� but computationally more complex� solution is to formulate
the problem as a constraint�based minimization problem� Linear programming techniques
can then be used to derive the partitions� This approach is viable� however in the interest
of rapid prototyping� we chose to adopt the simpler linear systems formulation�

��� Predicting System State with the Network Weather Service

To solve the linear system of equations ���� we require as parameters the time required to
send and receive N elements from each processor to its neighbors �Send�i�j� and Recv�i�j���
and the time required to compute a single element on each processor �Pi��

We can model the send and receive times as

Send�i� j� � N � sizeof�element��Bandwidth�i� j�

Recv�i� j� � N � sizeof�element��Bandwidth�j� i�

where Bandwidth�i� j� � data rate supported by the link between i and j

�

Note that N and sizeof�element� are both time�invariant parameters of the problem being
solved� Similarly� we can model the per point compute time on each processor i as

Pi � PUnloadedi�CPUi where

PUnloadedi � the time to compute a single point on an unloaded processor i� and

CPUi � the percentage of time processor i spends executing partition i

These quantities will vary over time due to resource contention� Bandwidth�i�j� will be
de�ned �in part� by the volume and frequency of tra	c crossing the link from i to j� CPUi

will depend on the number of additional processes executing on processor i� and the way in
which each CPU is managed� Typically� if the system is time shared� the percentage of time
a CPU is devoted to any one job is some �fair share� of the total CPU time� however� that
share will change as jobs enter and leave the system�

Moreover� the estimates of Send�i�j�� Recv�i�j�� and Pi must be accurate at the time the
application will be scheduled which is not necessarily the time at which the partition
is derived� The scheduler� therefore� requires a forecast of the values of Send�i�j�� Recv�i�j��
and Pi for the time frame in which the application will execute�

We have developed a separate facility called the Network Weather Service which
dynamically supplies values and forecasts for CPUi for all i� and Bandwidth�i�j� for all i and j
in a networked system� The Network Weather Service is outlined in Section �� For Jacobi�D�
the Network Weather Service used dynamic probes and load history to help forecast CPUi

and Bandwidth�i�j� at the time the application was to be scheduled�

��� Resource Selection and Scheduling

Resource selection focuses on the identi�cation of a subset of resources that most e	ciently
support the application� Most users naturally focus on resources they perceive as being
�close�� For the Jacobi application� we can formally de�ne the logical �distance� between
resources and prioritize a resource set based on this metric� Note that distance between
resources is meaningful to the application only in terms of how the resources will
be used� Recall that for a given grid region of size N�� the computation in each partition
scales as O�N�� and the communication scales as O�N�� We can use this relationship to
de�ne the distance between processors for Jacobi�D� Let

Pi � the forecast time required for processor i to compute a single point locally

CE�i� j� � the forecast time for processor i to send and receive a single element to

and from processor j

Then

D�i� j� � N� � �jPi � Pjj� �N � �CE�i� j� � CE�j� i��

de�nes a distance measure between processors i and j for a arbitrary problem size N� Two
processors are near to each other in Jacobi�D if their compute capabilities are relatively
equal� and if their interprocess communication is fast�

�

To select resources from the global resource pool� we start by identifying a candidate
machine to serve as the locus� For example� the user
s machine or the fastest machine in a
cluster may serve as the locus� The rest of the machines are then sorted according to their
distance D from the locus� Note that di�erent orderings may be determined for distinct loci�
The �rst K elements of the sorted list for a particular locus L are de�ned to be the �closest�
resource set to L containing K machines�

For Jacobi�D� the workstation with the fastest CPU was used as one such locus� We
then used the algorithm in Figure � to determine a candidate resource set�

let head = locus
let tail = locus
for i in 1 to I-1

find the machine m such that D(tail,m) is a
minimum and m is not already on the list

add m to the tail of the list
let tail = m

end

Figure �� Prioritizing the resources based on �distance��

let locus = machine having the maximum criterion value
let list = a sort of the remaining machines according to

their logical distance
for k in 0 to I-1

let S = {locus + the first k elements of list}
parameterize C_i and P_i for 1 <= i <= |S| with

Weather Service forecasts
solve linear system of equations using this parameterization
if(not all A_i > 0)

reject partitioning as infeasible
else if(there exists an A_i that does not fit in free memory

of processor i)
reject partitioning as infeasible

else record expected execution time for subset S
end
implement, the partitioning corresponding to the minimum

execution time using the S for which it was computed

Figure �� Resource selection and scheduling algorithm for Jacobi�D�

The algorithm iteratively �nds the machine that is closest to the current tail� and adds
that machine at the tail end of the list� After all I machines have been added� the algorithm

�

terminates with each machine logically closest to those adjacent to it in the list� This form
of sorting is useful for a strip decomposition of Jacobi�D as processors only communicate
with at most two neighbors�

Having derived the resource list� the Jacobi�D scheduler then proceeds to compare dif�
ferent potential partitionings using subsets of the total list� It starts by estimating the
execution time on the locus machine� Next� it considers a two processor partition using
the �rst two processors on the list� It parameterizes the linear system of equations for I��
processors� and consults the Network Weather Service for the performance forecasts that
pertain to those two machines� After solving the linear system� it records the estimated
execution time of the resulting partition� A three processor partitioning using the �rst three
processors from the sorted resource list is considered next� The estimated execution time
for the three processor system is recorded� and the algorithm continues until all processors
from the list are considered or some prede�ned maximum logical distance from the locus is
reached� Finally� a processor set and a partitioning and schedule yielding the minimum esti�
mated execution time are chosen as the �best� schedule for that locus� Note that when I���
the Resource Selector considers a single�site implementation� In our example� the single�site
implementation is simply a sequential version of the KeLP implementation� If an optimized
implementation for a particular system were available� the Resource Selector could consider
that as well�

Each time a partition is generated in the process� it is checked for feasibility� Two �lters
are employed to remove infeasible partitions from those ultimately considered for scheduling�
The �rst �lter removes partitions that have negative values of Ai� These correspond to
mappings where the communication time is so great� the processor must compute a negative
number of elements �implying a negative execution time� in order to �nish with the other
processors� The second �lter checks to make sure that the size of each partition �ts within
the free memory �forecast by the Network Weather Service� available on the machine to
which it is assigned�

The resource selection and scheduling method used by our example Jacobi�D scheduler
can be summarized by the pseudocode in Figure ��

��� Scheduling Jacobi�D and the AppLeS PrincipLeS

The scheduling approach we have described for Jacobi�D uses the principles outlined in
Section ��� and in fact is an example of an AppLeS� Application�speci�c and system�speci�c
information are used throughout the scheduler� both to generate schedules and to select
resources� Dynamic system information is provided via the Network Weather Service to
parameterize performance models� Predictive models are used to evaluate and rank candidate
schedules� Finally and perhaps most important� all resources are considered strictly in terms
of how they a�ect application performance�

Using this application�level approach to scheduling� the natural question becomes �How
performance�e	cient is the schedule that it generates�� We describe experiments which
address this question in the next section�

�

� Performance Results for the Jacobi�D Application�

Level Schedule

To determine the e�ectiveness of the application�level scheduling approach� it is important
to answer the following questions�

� How does the execution time of Jacobi�D using an AppLeS schedule compare to a
schedule determined using a widely�accepted conventional method�

� What is the e�ect of using dynamically forecast resource performance data in the
application�level scheduling approach�

� What is the e�ect of automatic resource selection in the application�level scheduling
approach�

To address these questions� we compared four partitioning methods for the same KeLP
implementation of Jacobi�D� The �rst method �Compile�time blocked� uses a conven�
tional HPF�style ���� block partitioning in which each processor is assigned �at compile�time�
a relatively equal�sized square region of the grid to compute� The other three partitioning
methods utilize versions of the application�level scheduling approach described in the pre�
vious section� Partitioning method � �Compile�time AppLeS� uses good static estimates
for resource performance and uses resource selection to select a resource set from the total
resources� Partitioning method � �Runtime AppLeS�No Select� uses dynamic estimates
from the Network Weather Service for resource performance but assumes that the user wants
to use all available resources� Partitioning method � �Runtime AppLeS� uses dynamic es�
timates and resource selection
 it constitutes the full application�level scheduling approach
discussed in the last section� Note that partitioning methods � and � utilize Network Weather
Service data and so must be performed at run�time� whereas partitioning methods � and �
use static data and may be performed at compile�time�

All four versions �rst partition and distribute the grid� and then execute the Jacobi solver�
That is� the data and computations are scheduled on the processors once before execution
begins� and remain there for the duration of the execution� We are currently formulating
a version of the Jacobi application�level scheduler which e�ectively redistributes the grid in
response to changing load on system resources� This �exibility is supported in the AppLeS
software described in the next section�

��� Execution Performance

To investigate the relative execution performance of the four partitioning methods� we used
eight non�dedicated workstations located at the San Diego Supercomputer Center �SDSC�
and the U�C� San Diego Parallel Computation Laboratory �UCSD�PCL�� The workstation
set consisted of a Sun Sparc��� a Sun Sparc���� and two IBM RS���� workstations located
at UCSD� and four DEC Alpha workstations located at SDSC� Numeric format conversions
were handled by KeLP which uses MPI as its underlying communication substrate� The
network connecting these systems was also heterogeneous and non�dedicated� Within the

��

PCL� the Suns were attached to an ethernet segment shared by several other systems� The
RS����s were connected to a di�erent segment �also shared by other ambient machines� and
a gateway which linked the two segments� At SDSC� the Alpha workstations were connected
to non�dedicated FDDI ring� The con�guration is shown in Figure ��

Sparc
2

Sparc
10-

RS-2

RS-1

A-2

A-3

A-4

A-1

UCSD SDSC

Figure �� Workstations and Networks used at UCSD and SDSC�

All systems and networks were shared and used in �production mode� while we ran our
experiments� Since conditions might change between one execution and the next �due to
contention� we made several runs for each problem size� and reported the average execution
time of a single iteration� During each experiment� we ran one instance of each of the
four partitioning methods back�to�back hoping that all four executions would enjoy similar
conditions� on average� Figure � shows the average iteration execution times �in seconds�
for a range of problem sizes� In each case� a square grid having the problem size dimension
shown in the �gure was used�

In the experiments� application�level scheduling is able to outperform the block partition�
ing because it uses its performance model to predict how well each resource will perform
when executing a piece of Jacobi�D� It uses that prediction to determine how much of the
grid should be assigned to each machine� Notice also� that the bene�t gained from using
dynamic performance forecasts is substantial� Less obvious� however� is the improvement
gained through resource selection� While the version that used resource selection does run
between ��� and ��� faster than the non�selecting runtime AppLeS� the relative improve�
ment compared to the blocked implementation is not large� However� the range of feasible
partitions for the non�selecting runtime AppLeS is limited� For example� under the con�
ditions during which the experiments were conducted� it was not possible to balance the
execution time for a ��� by ��� element problem� the communication delay between UCSD
and SDSC was so great that processors in either end would need to compute for a negative
amount of time to compensate�

��

0

1

2

3

4

5

6

7

1000 1200 1400 1600 1800 2000

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Problem Size

Comparison of Execution Times

Compile-time Blocked
Compile-time AppLeS

Runtime AppLeS, No Selection
Runtime AppLeS, Selection

Figure �� Execution times for Jacobi�D�

��

In Figure � we show execution time data for a wider range of problem sizes using Compile�
time Blocked� and the full AppLeS partitioner� Without resource selection� AppLeS would
only be able to compute reliably �depending on contention conditions� over the ���� to ����
problem size domain� We also show the predicted execution time AppLeS computed for
each run� For each problem size� we plot the time that the performance model predicted
against the actual execution time that resulted for each mapping� It is the accuracy of the
performance model that allows AppLeS to choose good resource mappings�

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Problem Size

Comparison of Execution Times

Compile-time Blocked
Measured Runtime AppLeS with Selection
Predicted Runtime AppLeS with Selection

Figure �� Execution times for Jacobi�D�

Note also the large spike in execution time for the blocked partitioning at the ����
problem size abscissa� During one experimental run at that size� a network gateway be�
tween UCSD and SDSC went down forcing all communications between the two to use an
alternative and much slower route� The AppLeS agent �through Network Weather Service
readings� was able to detect the sudden drop in available bandwidth and avoid partitionings
that spanned the a�ected link�

��� Partitioning for Memory Availability

Distributed parallel execution also allows an application to aggregate memory resources so
that problems that are larger than will �t into any single memory may be solved� Indeed�

��

the motivation behind the parallel implementation of many codes stems from the need to use
collections of memory systems rather than a desire for concurrent execution� To investigate
the ability of the AppLeS approach to e�ectively aggregate memory� we added to the resource
pool two IBM SP�� processors with ��� megabytes of real memory each� The SP�� uses
virtual memory on each of its nodes so that more than ��� megabytes of memory may be
used� However� memory is paged to disk causing reference times to increase dramatically
when the real memory of the system is exceeded� During the experiments� we had dedicated
access to the two SP�� processors and the link between them� but they were connected to
the rest of the resources via a shared ethernet segment� Figure � shows the resource pool
including the SP�� nodes�

Sparc
2

Sparc
10-

RS-2

RS-1

A-2

A-3

A-4

A-1

UCSD SDSC

SP-2
2

SP-2
1

Figure �� Resource Pool Including SP�� Processors�

Since the processors were completely unloaded� and their connectivity to the other re�
sources su�ered from contention� the best partitioning �yielding the shortest execution time�
was to split the grid evenly between the two SP�� nodes as long as neither partition exceeded
the available real memory on each node� However� when the problem size caused the par�
titions to spill out of the available real memory� the resulting delays due to paging caused
execution time to increase substantially� In Figure � we show the execution time of a blocked
partitioning using the SP�� processors only versus the AppLeS approach for Jacobi�D�

For problem sizes less than ���� by ����� AppLeS correctly chose the mapping using the
SP�� processors and exhibited nearly identical execution times to the blocked mapping� As
problem size increased� the SP�� began paging� causing execution time to increase to the

��

0

1

2

3

4

5

6

7

8

9

3400 3600 3800 4000 4200 4400

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Problem Size

Comparison of Execution Times

Compile-time Blocked using SP-2 only
Runtime AppLeS with Selection

Figure �� Partitioning and Memory Usage�

��

point where use of these processors was no longer feasible� The AppLeS agent was able to
locate memory elsewhere within the resource pool e�ectively� At each problem size beyond
����� the AppLeS was able to �nd memory it could use e�ectively without a dramatic change
in the performance trajectory�

Thus far we have shown how the AppLeS approach was used e�ectively to determine
a performance�e	cient �and non�obvious� schedule for Jacobi�D� It was important to walk
through this example in detail to demonstrate this approach� We now discuss how the
AppLeS approach can be used as the basis for the design of general software agents which
facilitate application�level scheduling for distributed parallel applications�

� Developing General AppLeS Agents

It is clear from the previous sections that application�level scheduling can be used e�ectively
to achieve performance for distributed applications� However� to develop general AppLeS
agents� we must convince ourselves that the following questions could be answered in the
a	rmative�

� Is the application�level approach for selecting a performance�e	cient schedule gener�
alizable�

� Is it possible to e	ciently obtain the appropriate level of application and system infor�
mation �from the user or through analysis� from which good schedules may be derived�

To address the �rst question� observe that in the development of the application�level
schedule for Jacobi�D� our approach did not rely particularly on the choice of algorithm�
implementation language� or programming style for success� The organization of the AppLeS
software mimics how a diligent user would schedule his or her application� The characteristics
of the application are relevant only as they pertain to modeling its performance� In AppLeS�
we modularize application�speci�c� system�speci�c and dynamic information and use this
information to parameterize the general approach�

To address the second question� we developed a set of data sources to provide the rele�
vant application� and system�speci�c information e	ciently� The Network Weather Service
was designed to provide dynamic system information and short�term forecasts� Application�
speci�c information is provided through a Heterogeneous Application Template �or HAT�
which distills much of the information from the application relevant to performance estima�
tion� Additional information which re�ects the user
s preferences� access to resources� etc�
is provided by User Speci�cations� Note that for AppLeS� as in practice� the more complete
the application information that is available to the scheduler� the better the schedule�

AppLeS is currently a work�in�progress� The software has been designed and the under�
lying building blocks are currently being prototyped� We are working with researchers from
the Legion project ����� ���� and from the Globus project ���� ���� to prototype AppLeS as
an application�level scheduler for these resource management systems� In addition� we are
progressing on an implementation which uses MPI as the underlying substrate�

Note that AppLeS essentially develops a customized scheduler for each application� This
di�ers from the approach taken in much of the scheduling literature ������ ����� ����� ���� ���

��

etc��� Application�level scheduling is related to the work of Brewer ���� and more directly to
the Mars project ���� Brewer
s work� which attempts to select the correct implementation of
an algorithm for a given machine based on a small set of static parameters� uses application�
speci�c information to improve performance� The MARS project ���� whose goal is to produce
more general�purpose software� is more similar in scope and intent to AppLeS� An important
di�erence� however� is that AppLeS includes user�speci�c as well as application�speci�c
information in its scheduling decisions� User�speci�c information provides a powerful and
well�de�ned interface that allows the user to in�uence and control how the scheduling agent
will behave�

In the following sections� we describe the architecture for general AppLeS agents�

��� The AppLeS Organization

AppLeS is organized in terms of four subsystems and a single active agent called the Coor�
dinator� The four subsystems are

� The Resource Selector which chooses and �lters di�erent resource combinations for
the application
s execution�

� The Planner which generates a description of a system�independent schedule from a
resource combination�

� The Performance Estimator which generates a performance estimate for candidate
schedules according to the user
s performance metric� and

� The Actuator which implements the �best� schedule on the target resource manage�
ment system�s��

Figure �� depicts the Coordinator and these four subsystems� Application�speci�c� system�
speci�c� and dynamic information used by these subsystems constitute an �information pool�
which all subsystems share� There are four general sources of information feeding the infor�
mation pool� The Network Weather Service provides dynamic information on system
state and forecasts of system state for the time frame in which the application will be sched�
uled� The Heterogeneous Application Template is a web�oriented interface in which
the user provides speci�c information about the structure� characteristics and current imple�
mentations of the application and its tasks� The User Speci�cations provide information
on the user
s criteria for performance� preferences for implementation� additional application
information� etc� Finally� the Model pool provides model templates used by the AppLeS
subsystems for application performance estimation�

AppLeS agents will be employed as follows� Initially� the user provides information to
the agent via the HAT and User Speci�cations� The agent uses the Resource Selector to
select a set of viable resource con�gurations based on accessibility� the user
s access rights�
the characteristics of the application �input as �lters which exclude resources that are not
viable�� and a notion of �distance� which is derived from HAT information and the Model
pool� or provided as a default by the Coordinator� For each viable resource con�guration� the
Planner �in conjunction with the Performance Estimator and the Network Weather Service�

��

ACTUATOR

RESOURCE
SELECTOR PLANNER PERFORMANCE

ESTIMATOR

HETEROGENEOUS
APPLICATION

TEMPLATE

USER
SPECIFICATIONS

INFORMATION POOL

RESOURCE MANAGEMENT SYSTEM

NETWORK
WEATHER
SERVICE

COORDINATOR

MODELS

Figure ��� Relationship of the components of AppLeS�

computes a potential schedule of the resources using predictive models from the Model pool�
The Coordinator considers the performance of the candidate schedules and selects a �best�
schedule for implementation� The Actuator then interacts with the resource management
system�s� to implement this schedule�

In the following subsections� we describe each of the components of AppLeS agents in
more detail�

��� The Coordinator

The Coordinator embodies the active thread or threads of control within an AppLeS agent�
It executes a blueprint that dictates the way in which it uses the various other subsystems
to derive a schedule� initiate the application� and monitor its progress� The blueprint can be
speci�ed by the user or by the system for a particular application or class of applications �e�g�
data parallel applications�� We show a sample blueprint in Figure ��� This is typical for a
user scheduling a minimum execution time application over a large set of possible resources�

��

Coordinator

Select S,
 a set of Resource Sets S_i

for i = 1 to number of S_i do

PL_i = Planner(S_i)

Et_i = Estimator(PL_i)

Set MinS_i

End For

Actuate (MinS_i)

Resource Selector

Planner

Performance Est.

Actuator

Subsystems

Figure ��� Coordinator and Blueprint

and is� in fact� the blueprint used to schedule Jacobi�D�

��� Data Sources

While the Coordinator directs the interactions between subsystems through its blueprint�
each subsystem draws upon a variety of data sources to perform its function� These data
sources contribute information to a data pool which is available to all AppLeS functions
�see Figure ���� They are the Network Weather Service �NWS�� the Heterogeneous
Application Template �HAT�� the User Speci�cations� and the Model pool� In this
section� we brie�y describe the form and content of each�

����	 The Network Weather Service

The Network Weather Service provides software for monitoring and predicting the load �or
�weather�� on networked resources� Our strategy is to use sensors to dynamically probe and
read the network �weather� conditions such as CPU load� available free memory� network
performance� etc�

��

To provide forecasts of system state� the Network Weather Service uses a number of
stochastic techniques for predicting network load� Experiments using di�erent network links
and predictors show that� in general� for a given resource� di�erent estimation techniques will
yield the best forecasts at di�erent times� Consequently� the Network Weather Service tracks
the error between all predictors and sampled data� and uses the predictor with the lowest
cumulative error to make predictions of system state� Both the prediction and a measure of
its recent �accuracy� are used by the Resource Selector� the Planner� and the Performance
Estimator subsystems of an AppLeS agent�

We have prototyped this facility with good results as shown in the Jacobi�D example�
We are currently integrating Network Weather Service facilities with the Legion and Globus
resource management systems�

����� The Heterogeneous Application Template

The Heterogeneous Application Template �HAT� provides basic information about the over�
all application� tasks and implementations in terms of their resource requirements� Infor�
mation is provided through a web interface which makes explicit the structural parameters
of the application� information about existing implementations of application tasks� and the
data movement requirements between distinct tasks� Figures ��� �� and �� give a sample of
HAT parameters�

The HAT also lets the user identify an active set� i�e� a set of task�machine implemen�
tations that work together to compose an entire application� Since there may be multiple
implementations� the active set identi�es the particular task�machine allocations that will
be used in a single full implementation of the application� For Jacobi�D� the active set was
composed of a single task implementation per machine� In general� however� there may be
several implementations from which to choose and multiple active sets�

Notice that the user may not have all the information requested by HAT� The system
can use partial information to determine a schedule� However� as is the case for the user�
the better and more comprehensive the information available� the more performance�e	cient
the schedule is likely to be�

����� User Speci�cations

While the HAT describes application�speci�c information� information speci�c to a particular
user or application developer is made available to an AppLeS through User Speci�cations
�US� which will also be html�based� The most important role of the US is in the de�nition of
user�speci�ed requirements which fall into the three broad categories� execution constraints�
performance objectives� and user preferences� Execution constraints refer to the access
rights and resource constraints of the user� The user
s performance objective is also
conveyed through the US� For Jacobi�D� minimum execution time was the desired objective�
Finally� the US allows the user to specify preferences for the Coordinator to attempt to
satisfy� It may be that one resource should be preferred over another for non�performance
related reasons� This feature gives the user tremendous control over the actions of AppLeS
and the solutions that it generates�

��

����� Models

The Model pool provides a set of model templates which are used for application performance
estimation by the Planner� Performance Estimator and Resource Selector� Model templates
are structures for composing models of characteristics which contribute to application per�
formance� For example� in Jacobi� the model template for the execution time for processor
i is

Ti � Computation � Communication

where Computation is instantiated as Ai � Pi and Communication is instantiated as Ci� as
described in Section ����

Model templates may be provided by the user� Default model templates for classes of
applications �e�g� data parallel regular grid applications� will be available in the Model pool�
Note that model templates can leverage successful models from the literature such as ����
���� ����� ����� ����� etc� to predict the performance of the application and its tasks�

��� Resource Selector

The Resource Selector produces viable active sets to be considered by the Coordinator� It
may iterate multiple times to identify a set of candidate active sets according to di�erent
selection criteria�

A potentially viable active set may be �ltered to ensure its feasibility� Resources are
prioritized with respect to an application�speci�c valuation function such as �distance�� and
�lters are applied to the resource set to eliminate resources that are unusable� A �lter
may use information such as the user
s access rights� memory constraints� implementation
availability� etc� to eliminate resources quickly� Viable and feasible resource con�gurations
will be scheduled by the Planner� evaluated by the Performance Estimator� and compared
by the Coordinator to other candidate schedules�

In the Jacobi�D example� �lters considered two characteristics of each potential sched�
ule� the area of region i� Ai� and the available memory� Partitions with strips in which Ai

was negative were �ltered out� Next� resources which did not meet the memory require�
ments of application tasks were also �ltered out� Such constraints for most users are readily
identi�able� and can be used pro�tably to reduce the resource selection space�

��� Planner

The function of the Planner is to create a schedule for a feasible active set� The schedule is
based on a scheduling policy that optimizes for the user
s performance measure� In practice�
most users will employ common performance measures �execution time� cost� speedup�� and
the Planner will be equipped with default scheduling policies for these measures if the user
chooses not to recommend a policy of his�her own� The schedule generated by the Planner
must be in a format that the Actuator �described in section ���� can implement on the target
resource system�

In the Jacobi�D example� the Planner implemented a time�balancing scheduling policy�
It took a list of candidate machines and their communication links �the feasible resource

��

set�� and produced a mapping of grid strips to the machines� The Coordinator then used
the Performance Estimator to determine the execution time of each mapping generated by
the Planner and passed the best schedule to the Actuator�

��� The Performance Estimator

The performance estimator parameterizes a model template with component models to pro�
duce an estimate of application performance� given a schedule provided by the Planner�
Parameters for the component models can be provided by the user or derived from other
data sources such as the Network Weather Service� Since dynamic information is included�
the resulting estimates can be targeted to the time frame during which the application will
be run by the Actuator� In Jacobi� the formula Ti � Ai � Pi � Ci is evaluated to obtain an
estimate of the time necessary to compute each strip�

Note that it is important to estimate the behavior of the application tasks in the context
of the production systems in which they will be used� For this reason� we are developing
models which forecast the slowdown of tasks on shared resources �networks and machines�
���� Factoring slowdown into the model will provide a more realistic estimate of application
and task performance in the presence of contention�

��� Actuator

AppLeS does not function as a resource manager
 it relies on the services of existing resource
managers to perform resource allocation and task instantiation� It is the job of the Actuator
to implement the schedule �determined by the Planner� using the semantics and facilities
supported by the target resource management system� Some of these resource managers�
such as PVM� are limited in scope and provide little additional functionality� Others� like
Legion� have the potential for communicating considerable information about resource and
application status� The Actuator will also convey whatever feedback information is available
to the various subsystems� It acts as the conduit between the Coordinator and the underlying
resource management facilities�

The minimum functionality required by the Actuator is the ability to initiate a network
connected task on a remote machine� More accurate scheduling can be accomplished when
the resource management system returns feedback about when resources are actually avail�
able for use� or can provide guaranteed service times in response to requests for service� Since
the AppLeS agent is working at the application level� however� the Actuator minimally has
access to whatever facilities the application enjoys� It will use the same facilities to commu�
nicate with the application and manage its task execution that the application itself uses to
control its tasks� In that sense� the Actuator� and by extension the AppLeS agent� consti�
tute an integrated extension of the program being scheduled� AppLeS and the application
become part of the same execution instance� In the Jacobi�D example� the Actuator issued
KeLP directives to control grid partitioning� These were the same primitives the application
used to manage the grid itself�

��

� Summary

As network speeds increase and parallel distributed computing becomes more prevalent�
resource�intensive applications will increasingly need to leverage shared� heterogeneous net�
works of resources� E�ective coordination of application components and their use of re�
sources is key to performance� In this work� we described application�level scheduling
as a way of achieving performance�e	cient schedules for applications which execute on het�
erogeneous networks of machines� We described principles which re�ect the way in which
applications are scheduled by their end�users and illustrated these principles by developing
a �proof�of�concept� application�level scheduler for a distributed data�parallel Jacobi ap�
plication� We then described a general architecture for Application�Level Schedulers and
described the subsystems which compose an AppLeS agent�

From the results generated by our prototype� it is clear that the AppLeS approach can
achieve substantial performance improvements for an individual application over conven�
tional scheduling methods� Application�level scheduling allows the user to deal with the
heterogeneous system as it really is� under the control of multiple system schedulers� shared
by other contending applications� and able to deliver only a dynamically varying fraction of
resource performance� When such characteristics are explicitly factored into the scheduling
activity� the application can better leverage the system to achieve performance�

Acknowledgments

We are grateful to the researchers in the UCSD Parallel Computation Laboratory� and
in particular to Stephen J� Fink for many substantive discussions� We are also grateful
to Andrew Grimshaw� Carl Kesselman� Reagan Moore� John Karpovich� Doug Shea� and
Darren Atkinson for their thoughtful comments and support�

AppLeS Home Page

http���www�cse�ucsd�edu�users�berman�apples�html

References

��� Berman� F� and Moore� R�� Heterogeneous working group report� Proceedings of
the Second Pasadena Workshop on System Software and Tools for High Performance
Computing Environments� ����� http���cesdis�gsfc�nasa�gov�PAS��index�html�

��� Brewer� E� A�� High�level optimization via automated statistical modeling�
Proceedings of Principles and Practice of Parallel Programming� PPoPP
�� �������
pp� ��
���

��

��� DeFanti� T�� Foster� I�� Papka� M�� Stevens� R� and Kuhfuss� T�� Overview of the
I�way
 Wide area visual supercomputing� to appear in the International Journal
of Supercomputer Applications�

��� Figueira� S� M� and Berman� F�� Modeling the e�ects of contention on the per�
formance of heterogeneous applications� to appear in the Proceedings of the High
Performance Distributed Computing Conference �������

��� Fink� S�� http���www�cse�ucsd�edu�groups�hpcl�scg�kelp�html� �����

��� Fink� S� J�� Baden� S� B� and Kohn� S� R�� Flexible communication mechanisms
for dynamic structured applications� in preparation� �����

��� Freund� R�� Proceedings of the ���� IPPS Workshop on Heterogeneous Computing�

��� Gehrinf� J� and Reinfeld� A�� Mars � a framework for minimizing the job ex�
ecution time in a metacomputing environment� Proceedings of Future general
Computer Systems �������

��� Geist� A�� Beguelin� A�� Dongarra� J�� Jiang� W�� Manchek� R� and Sunderam� V��
PVM
 Parallel Virtual Machine A Users� Guide and Tutorial for Networked
Parallel Computing� MIT Press� �����

���� Getov� V� S�� Hockney� R� W� and Hey� A� J� G�� Performance analysis of dis�
tributed applications by suitability functions� in Proceedings of the MPPM Con�
ference �������

���� Globus� http���www�mcs�anl�gov�globus�

���� Grimshaw� A� S�� Wulf� W� A�� French� J� C�� Weaver� A� C� and Reynolds� P� F��
Legion
 The next logical step toward a nationwide virtual computer� Tech�
Rep� CS������� University of Virginia� �����

���� Hensgen� D� A�� Moore� L�� Kidd� T�� Freund� R�� Keith� E�� Kussow� M�� Lima� J� and
Campbell� M�� Adding rescheduling to and integrating condor with smartnet�
in Proceedings of the Heterogeneous workshop �������

���� High Performance Fortran Forum� High performance fortran language speci�ca�
tion� Rice Univeristy� Houston� Texas� May �����

���� Ho�man� J� D�� Numerical Methods for Engineers and Scientists� McGraw�Hill
� Inc� �����

���� Korab� H� and Brown� M�� Virtual environments and distributed computing at
SC�
�
 GII testbed and HPC challenge applications on the I�way� in Proceed�
ings of Supercomputing
�� �������

���� Legion� http���www�cs�virginia�edu��mentat�legion�legion�html�

��

���� Messina� P� and Heirich� A�� personal communication� �����

���� Pruyne� J� and Livny� M�� Parallel processing on dynamic resources with Carmi�
in Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing�
IPPS
�� �April ������

���� PVM� http���www�epm�ornl�gov����pvm��

���� Rudolph� L� and Feitelson� D�� Proceedings of the ���� IPPS Workshop on Job Schedul�
ing Strategies for Parallel Processing �������

���� Sarkar� V�� Automatic partitioning of a program dependence graph into par�
allel tasks� IBM Journal of Research and Development ��� ��� �Sept�Nov ������

���� Siegel� H�� Antonio� J�� Metzger� R�� Tan� M� and Li� Y� A�� Heterogeneous comput�
ing� Tech� Rep�� Purdue University EE Technical Report TR�EE ������

���� Zhang� X� and Yan� Y�� A framework of performance prediction of parallel com�
puting nondedicated heterogeneous now� in Proceedings of the ���� International
Conference on Parallel Processing ������� pp� ���
��

��

User Account Information User Specification Information

HAT - Heterogeneous Application Template
APPPLICATION:

USER:

HAT - Structure Template
INPUT:

Amount of data needed to start application

Current source (give full machine name e.g. paragate.sdsc.edu)

MBytes

OUTPUT:
Amount of data returned by application

Current source (give full machine name e.g. paragate.sdsc.edu)

MBytes

ITERATION PHASE: Create new iteration phase

Listing of Implementations

Listing of Active Sets

Structure Implementation Interface AppLeS ManagerHelp

Figure ��� The Structure module of HAT gives information about the general functional
decomposition of the application� and lets a user identify an active set for the application�

��

Sequential Vector Task Parallel Data Parallel

HAT - Implementation Template
TASK:

PLATFORM:

PARADIGM:

USAGE:

Dedicated Non-dedicated

DATA STRUCTURES:

Number

Size Bytes

Communication per data structure Words

Compution per data structure MFlops

RATIO:

Communication per data structure Words

Compution per data structure MFlops

Select an approximation or fill in numerical values

Communication Heavy Balanced Computation Heavy

COMMUNICATION PATTERNS:
 Pt to Pt Stencil Multicast Broadcast

MEMORY:

Core memory needed for in-core sol’n MWords

Structure Implementation Interface AppLeS ManagerHelp

 Single Processor Multi-Processor

TUNING FACTOR:

 1 (bubblesort) 3 (cs 101) 5 (1st year grad) 7(PhD thesis) 10(hand tuned asseumbler)

Figure ��� The Implementation module focuses on how the task was implemented for a
speci�c platform�

��

HAT - Interface Template
IMPLEMENTATION A:

IMPLEMENTATION B:

NETWORK:

Ethernet Hippi ATM Other

AMMOUNT OF COMMUNICATION:

Per message MBytes

Total MBytes

DATA CONVERSION:

Performed on:

Conversion type:

Format Conversion Structure Conversion

PIPELINE:
Pipelined Data Strict Data

Structure Implementation Interface AppLeS ManagerHelp

COMMUNICATION FREQUENCY:

Per application interation: MBytes

Dependent on no. of iterations

Size of Pipeline: MBytes

Figure ��� The Interface module of HAT characterizes the communication between imple�
mentations A and B mapped to distinct execution sites�

��

