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Abstract

 

Most applications share the resources of networked
workstations with other applications. Since system load
can vary dramatically, allocation strategies that assume
that resources have a constant availability and/or
capability are unlikely to promote performance-efficient
allocations in practice. In order to best allocate
application tasks to machines, it is critical to provide a
realistic model of the effects of contention on application
performance. In this paper, we present a model that
provides an estimate of the slowdown imposed by
competing load on applications targeted to high-
performance clusters and networks of workstations. The
model provides a basis for predicting realistic
communication and computation costs and is shown to
achieve good accuracy for a set of scientific benchmarks
commonly found in high-performance applications.

 

1. Introduction

 

In the last decade, networks of workstations have emerged
as powerful platforms for executing high-performance
parallel  applications.  For such applications,  the
development of a performance-efficient allocation of tasks
to machines is dependent upon a realistic prediction of
application behavior under changing system load. In
particular, additional applications executing on the system
can dramatically affect the availability and capability of
resources and must be factored into predictions of
application execution costs. If an effective predictive
model can be developed for time-shared multi-user
environments, applications can be allocated in a way that
promotes execution performance in the system.

In recent literature, 

 

machine workload

 

 has been used to
parameterize the allocation of tasks to workstations in a
network. However, many allocation strategies do not
consider load characteristics in the measurement of
workload (e.g., [1, 2, 4, 6]). When load characteristics are
considered, the system environment for each workstation
is frequently limited to at most one compute-intensive task
and local tasks, which alternate idle with compute-

intensive cycles [10, 15].
We believe that a model to predict contention effects on

application performance must reflect both system
characteristics and workload behavior. The dependence on
workload behavior reflects the fact that different
applications utilize different types of resources, and the
requirements for these resources vary during the execution
of each application.

In [8], we proposed a contention model based on
system characteristics and workload behavior for two-
machine networks. In this paper, we develop a contention
model for application performance on high-performance
clusters and networked workstations. Our model is based
on the evaluation of a 

 

slowdown factor

 

, which is used to
predict computation and communication costs in a time-
shared multi-user networked environment. The parameters
required for our models are detailed enough to allow good
accuracy, but reasonable to obtain or calculate at run-time.

This paper is organized as follows. Section 2 introduces
our approach. In Section 3, we analyze contention effects
in high-performance clusters. Section 4 discusses
contention effects in workstation networks. Section 5
evaluates the proposed model. Section 6 concludes with a
summary and future work.

 

2. Approach

 

In the following sections, we define a contention measure,
the 

 

slowdown factor

 

, to adjust the computation times and
communication costs of an application to accommodate
for system load. In a networked system, application tasks
may be assigned to distinct execution sites to promote
concurrent execution and/or to take advantage of
distributed data sources, aggregate memory, or I/O
bandwidth. If slowdown can be defined accurately, it can
be utilized to produce more realistic predictions of
application performance. Such predictions form the
foundation of a performance-efficient strategy for
scheduling. We model slowdown for the time required to
compute an application task at a single execution site in
the system, and for the time required for communication
between distinct execution sites.

Define  as the time to execute task 

 

X

 

 on
machine 

 

m

 

 in dedicated mode, and  as the
cost to transfer data between task 

 

X

 

 and task 

 

Y

 

 when task 

 

X

Xm ded,
Xm Yn→( ) ded
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executes on machine 

 

m

 

 and task 

 

Y

 

 executes on machine 

 

n

 

,
in dedicated mode. Since computation and communication
costs are affected by contention for resources on both
machines and on the communication link, the time to
execute task 

 

X

 

 on machine 

 

m

 

 is given by

, (1)

where 

 

sd

 

m 

 

is a slowdown factor dependent on the load in
machine 

 

m

 

. The cost to transfer data between task 

 

X

 

 and
task 

 

Y

 

, when task 

 

X

 

 executes on machine 

 

m

 

 and task 

 

Y

 

executes on machine 

 

n

 

, is

, (2)

where  is a slowdown factor dependent both on
the traffic between machine 

 

m

 

 and machine 

 

n

 

 and on
contention in both machines.

Equations (1) and (2) demonstrate how slowdown
factors can be used to predict execution time in the
presence of contention. The following sections show how
to derive these slowdown factors for two different
platforms: high-performance clusters and workstation
networks.

We make the following assumptions: We assume
applications to be coarse-grained, scientific programs that
are basically CPU-bound. We assume that the applications
executing on each workstation fit in memory, or at least
that their working sets fit in memory, so that no delay is
imposed by extra swapping caused by lack of memory
space. We also assume multiple applications to have the
same priority as one another and to be scheduled locally in
round-robin fashion on the time-shared systems. In
prac t ice ,  most  opera t ing  sys tems execut ing  on
workstations employ a priority-based scheduling strategy
that reduces to a round-robin policy when the executing
applications are CPU-bound [7]. Since we assume the
applications to be coarse-grained, considering a round-
robin local scheduler for time-shared systems is a
reasonable assumption.

We assume that communication between machines
involves the transference of large bursts of data, requires
data conversion, and uses TCP/IP via sockets.

Our calculation of slowdown factors currently requires
information about all the applications executing on the
system, i.e., we assume that information about the load is
available or is easily obtainable. This is a reasonable
assumption for local environments (e.g., distributed
facilities at the San Diego Supercomputer Center or the
UCSD Parallel Computation Laboratory), where such
information is typically available. Determining slowdown
factors, when only partial information about contending
applications is known, is an open question and part of our
research plans.

Finally, we assume that the time to execute a task in
dedicated (single-user) mode is known or has been
calculated previously. The contribution of this research is
to use dedicated time estimates and slowdown factors to
provide reasonably accurate estimates of application
behavior in a time-shared multi-user system.

Xm Xm ded, sd× m=

Xm Yn→ Xm Yn→( ) ded sd× m n→=

sdm n→

 

To validate our models we have used scientific
computations on systems in which contention is generated
by synthetic loads. This guarantees equivalent conditions
for  comparat ive experiments .  In  this  paper,  we
demonstrate our model on serial versions of three
benchmarks commonly used in scientific applications: an
SOR benchmark [5], which solves Laplace’s equation and
was developed using PVM [13], a Matrix Multiplication
benchmark [11], which was developed using KeLP [9] and
MPI [12], and a Multigrid benchmark [5], which was also
developed using KeLP and MPI. We have verified the
model with various load conditions. In the experiments
performed, contention was generated by a synthetic load
generator in which computation and communication
cycles alternate. The load was parameterized so that the
duration of the computation cycle, the direction of the
communication, and the number of messages and message
size in a communication burst, as well as other parameters
could be varied.

 

3. Contention Effects in
High-Performance Clusters

 

Consider a set of homogeneous workstations connected by
a dedicated high-speed network. Examples of this type of

 

high-performance cluster 

 

include the DEC Alpha-Farm
and the IBM SP-2. We consider each node in the cluster as
an individual machine and calculate the slowdown on
computation and communication costs as 

 

sd

 

a

 

 and 

 

sd

 

a

 

→

 

b

 

,
where 

 

a 

 

and 

 

b 

 

are two nodes in the cluster.
In a cluster, applications executing on a machine may

be communicating with various machines. The delay
imposed by communication activity on both computation
and communication costs may vary with the 

 

bandwidth
available

 

 on the links used by the competing applications.
This happens because the bandwidth available reflects the
amount of CPU used for communication.

We demonstrate this phenomenon using two nodes of a
DEC Alpha-Farm

 

1

 

, which we call m

 

1

 

 and m

 

2

 

. Figure 1
shows the difference between the delay imposed on
compu ta t i on  a t  node  m

 

1  

 

by  one  app l i c a t i on
communicating from node m

 

1

 

 to node m

 

2

 

 when different
bandwidths are available. The graph shows curves for
execution of the SOR benchmark with different problem
sizes (given by 

 

N

 

×

 

N

 

) subject to no contention, and subject
to contention when 1.55 and 3.21 Mwords/second are
available. The communicating process is the same for both
experiments. The bandwidth available reflects the load on
the communication link during the experiments and was
calculated with a ping-pong benchmark. This benchmark
transferred 1K messages with 1K words each from one
machine to the other. It is clear that when more bandwidth
is available, the communicating process uses more CPU,
and the delay it imposes on the SOR benchmark is greater.

 

1. 

 

The DEC Alpha-Farm used is a cluster of eight DEC Alpha 3000/400
workstations located at the San Diego Supercomputer Center. The Alphas
are connected via a dedicated GIGAswitch. All experiments in this sec-
tion were performed on this platform.
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Figure 1:  

 

Time to execute the SOR benchmark on one
node of the DEC Alpha-Farm in dedicated mode and multi-
user mode, competing for the CPU with one
communication-bound process when different bandwidths
are available.

 

The slowdown imposed by communication varies with
the communicating machines and the direction of the
transferences. Note that the effects caused by the direction
and target of communication are reflected in bandwidth
variation. We will use this bandwidth measure as a
parameter for both computation and communication
slowdown. 

 

3.1. Computation Slowdown in
High-Performance Clusters

 

The previous experiment indicates that computation on
each node is affected by other applications executing on
the same node. The delay imposed by additional
applications computing on a node reflects the fact that
CPU time is evenly split among the competing processes.
(Recall that we assume that the node scheduling policy is
round-robin. )  The delay imposed by addi t ional
applications communicating depends on the number of
applications communicating, on the bandwidth available,
and on the size of the messages being transferred. The
impact of the message size is reflected in the bandwidth
variation. Hence we can approximate the slowdown
imposed on a task executing on node 

 

a

 

 as:

(3)

where 

 

p

 

a

 

 is the number of additional applications
executing on node 

 

a

 

,  is the probability that 

 

i

 

applications will compute on node 

 

a

 

 at the same time,
 is the probability that 

 

i

 

 applications on node 

 

a

 

 will
try to communicate at the same time, and  is
the delay imposed on computation by 

 

i

 

 communicating
applications when the average bandwidth available is 

 

k

 

Mwords/second.
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sda 1 ppa i, i×( )
i 1=

pa

∑+=

pma i, delaycomm
i k,×( ) ,

i 1=

pa

∑+

ppa i,

pma i,
delaycomm

i k,

 

In the slowdown calculation, the first summation
accounts for additional applications competing for CPU
cycles, which are evenly split among all CPU-bound
applications on the node. The second summation accounts
for additional communicating applications. The values

 and  are calculated based on the percentages
of computation and communication associated with each
application executing on node 

 

a

 

.
The value  is the average delay imposed on

computation by 

 

i

 

 communication-intensive applications
executing on the node. It is calculated as the average delay
imposed on a CPU-bound application by 

 

i

 

 contention
generators that transfer messages to another node when the
bandwidth available is 

 

k

 

 Mwords/second. Since the delay
imposed by receiving and sending applications is
generally roughly the same, we use  in both
situations.

The value  is system-dependent and does
not change dynamically. Our experiments determined

 as a set of functions of 

 

k

 

, each of which is
indexed by a different value of 

 

i.

 

 The functions are
determined just once for each platform and, therefore,
their calculation does not impose any additional overhead
on the scheduling process at run-time. Each function is
determined with a two-piece linear regression on the
numbers obtained by a benchmark. The benchmark
measures the delay imposed on a CPU-bound application
by 

 

i

 

 communication-bound applications that communicate
with other nodes under decreasing bandwidth. At run-
time, the value for 

 

k – 

 

the average bandwidth available on
the links used by competing applications – can be
predicted with statistical methods (the Network Weather
Service [3, 14], for example) and used to determine

.

 

Figure 2:  

 

Graph of  for 

 

i 

 

= 1 and 

 

i

 

 = 2. Each
curve in the graph provides the value for the respective
delay, which varies with the bandwidth (

 

k)

 

.

 

Figure 2 shows the curves obtained for ,
when 

 

i

 

 = 1 and

 

 i

 

 = 2. In low-bandwidth systems,
 may be approximated by just one of the

indexed curves or by a single value. One curve is enough
when the delay does not vary with 

 

i

 

, whereas a single
value is enough when the range of the delay imposed by
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communication is small, as described in Section 4.1.
The slowdown factor is calculated at run-time and,

therefore, it is important to guarantee that its calculation is
efficient so that it does not impose too much overhead on
the scheduling process. Although the values  and

 change with the load on the system and are
obtained at run-time, they can be calculated using dynamic
programming in time O(pa

2). Since pa is generally small
and the overall calculation of the slowdown takes O(pa

2)
time, the overhead imposed by its calculation is negligible.

Figure 3 is a comparison of measured with predicted
(modeled) execution times for SOR, when sda  is
calculated using equation (3). The SOR benchmark was
executed in multi-user and single-user modes for a variety
of problem sizes. Multi-user mode was emulated by an
additional application executing on the same node. This
application alternates computation and communication
cycles and communicates with another node 45% of the
time. The bandwidth available in the system during the
experiment was 1.79 Mwords/second, and the slowdown
imposed by the additional application was 1.56. In this
example, our predictions were within an average error of
3% of the actual measurements.

Figure 3:  Time to execute the SOR benchmark on one
node of the DEC Alpha-Farm in dedicated mode and
competing with one application.

This experiment illustrates how slowdown can be used
to “correct” single-user predictions to achieve multi-user
predictions.

To validate our model, we ran a serial (one processor)
version of the benchmarks with diverse configurations of
one, two and three instances of the contention generator.
These configurations were defined by the contention
generator parameters. Table 1 shows experiments with a
serial version of the Multigrid benchmark and two
competing applications, and Table 2 shows experiments
with a serial version of the Matrix Multiply benchmark.
Each row in the tables corresponds to one execution of the
benchmark with five different problem sizes. The average
error column indicates, for each experiment, how far our
predictions of execution time were from measured
execution times. As the tables show, we varied both the
burst size used by the competing application and the
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average bandwidth available on the links used by the
competing applications.

3.2. Communication Slowdown in
High-Performance Clusters

In the previous subsection, we developed a formula for
sda, the slowdown on computation at processor a due to
contention. In this subsection, we develop a formula for

, the slowdown on communication.
In high-performance clusters,  when nodes are

connec ted  by  swi tches  and  con ten t ion  fo r  the
interconnection network is negligible, communication
delay between two nodes is affected primarily by other
applications on the two nodes. These applications may be
computing, or communicating within the source and
destination nodes, or communicating with other nodes. 

Our experiments show that various factors affect
communication costs. The number of communicating and
computing applications executing on the source and
destination nodes, the size of the messages being
transferred by the communicating applications, the
bandwidth available on the links used, and the destination
and direction of the communication, all affect the amount
of delay.

We use Figure 4 to illustrate the fact that the bandwidth
available in the links used by competing applications
affects the delay imposed by these applications on
communica t ion .  Suppose  we  wan t  t o  measu re
communication costs from node m1 to node m2. If node

Table 1: Experiments with Multigrid

Burst Sizes (number of
messages / message size

in words) per
Competing Application

Average
Bandwidth

(Mwords/sec)

Average
Error

10 / 1000, 10 / 1000 2.75 2%

1000 / 1000, 1000 / 1000 2.75 1%

5000 / 1000, 5000 / 1000 2.75 1%

100 / 1000, 100 / 1000 2.12 11%

1000 / 1000, 1000 / 1000 2.12 9%

5000 / 1000, 5000 / 1000 2.12 4%

Table 2: Experiments with Matrix Multiply

Burst Sizes (number of
messages / message size

in words) per
Competing Application

Average
Bandwidth

(Mwords/sec)

Average
Error

4000 / 4000 1.51 5%

2000 / 2000, 2000 / 2000 3.18 1%

2000 / 2000, 3000 / 3000
4000 / 4000

3.89 9%

2000 / 1000, 2000 / 1000
2000 / 1000

2.45 6%

sda b→
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m2 hosts an application that is communicating with node
m3, the bandwidth available on this link (between nodes
m2 and m3) will affect the amount of CPU required from
nodes m2 and m3 to perform this communication and,
consequently, communication costs between nodes m1 and
m2.

Figure 4:  Communication activity among 3 nodes in a
dedicated cluster.

Figure 5 shows the difference between the delay
imposed on communication from node m1 to node m2 by
one competing application that transfers data from node
m2 to node m3 under different bandwidths. The graph
shows the time to transfer bursts of 1000 messages in three
different situations: when there is no contention on the
source and destination nodes; when a competing
application is also executing and the bandwidth available
between nodes m2 and m3 is 2.23 Mwords/second, and
when the competing application is also executing but the
bandwidth available between nodes m2 and m3 is 1.20
Mwords/second. The competing application is the same
for both experiments.

Figure 5:  Time to transfer bursts with 1000 messages
between two nodes of the DEC Alpha-Farm in dedicated
mode and competing with a communication-bound process
that transfers messages through a link where different
bandwidths are available.

A prediction of the bandwidth available on all the links
used by competing applications is required at run-time so
that the delay imposed on communication can be
calculated. However, we can achieve good results using a
simpler model that is based just on the bandwidth
available between nodes a and b. Using this model we
calculate the slowdown on communication as follows:

, (4)

where  is the initial bandwidth, or bandwidth
available when  was calculated, and

 is the current bandwidth, or bandwidth available
at run-time.

Equation (4) reflects the delays imposed by both

m1 m2 m3
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------------------=

iba b→
Xa Yb→( ) ded

cba b→

computa t ion  and  communica t ion  ac t iv i t i e s  on
communication costs. Although these activities do not
appear in the formula, they are embedded in the current
bandwidth measure,  ,  which accounts for
competition for both CPU and communication link.

The value for  can be calculated with a
benchmark whenever  is calculated. The
benchmark sends 1024 messages with 1024 words each
from one node to another and waits for the answer.

The value for  can be obtained at run-time with
statistical methods employed by performance prediction
tools, such as the Network Weather Service [3, 14]. In our
experiments, since the contention in the cluster is
generated by a synthetic load, we determined the value for

 by measuring the bandwidth at run-time with the
same benchmark used to calculate .

Figure 6 illustrates communication formula (4). It
shows the time for transferring bursts of 1000 equal-sized
messages between two nodes in dedicated time (  =
6.21 Mwords/second), as well as modeled and actual times
for transferring the same messages between the two nodes
when  = 3.67 Mwords/second. The error in this
experiment was within 9% on average.

Figure 6:  Time to transfer bursts with 1000 messages
each between two nodes, in dedicated mode and under
decreased bandwidth.

Figure 7 also illustrates formula (4). It shows the time
for transferring bursts of 2000 equal-sized messages
between two nodes in dedicated time (  = 6.21
Mwords/second), as well as modeled and actual times for
transferring the same messages between the two nodes
when  = 1.95 Mwords/second. The error in this
experiment was within 13% on average.

To validate the model shown in formula (4), we ran a
ping-pong benchmark (which transfers bursts of same-
sized messages) with diverse configurations of one, two
and three instances of the contention generator. These
configurations are indexed by the contention generator
parameters. Table 3 presents a representative set of the
experiments performed to verify the model. Each row of
the table corresponds to three executions of the ping-pong
benchmark for each message size, which grows in steps of
100 words. The average error column indicates, for each
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experiment, how far our predictions of communication
cos t s  ( u s ing  )  we re  f rom the  ac tua l
communication measurements. As the table shows, the
bandwidth available and burst size of the ping-pong
benchmark were varied during the experiments.

Figure 7:  Time to transfer bursts with 2000 messages
each between two nodes, in dedicated mode and under
decreased bandwidth.

According to the results shown in Table 3, the error
increases when the burst size is small and the available
bandwidth is low. This happens because, in this high-
bandwidth platform, short bursts are not sensitive to
bandwidth variations. A benchmark that calculates the
bandwidth using a tailored burst size will overcome this

Table 3: Experiments with Communication

Burst Sizes (number of
messages / message size

in words)

Average
Bandwidth

(Mwords/sec)

Average
Error

100 / 100 – 1000 1.19 368%

100 / 100 – 1000 2.32 151%

100 / 100 – 1000 3.44 78%

100 / 1000 – 3000 1.19 16%

100 / 1000 – 3000 2.32 51%

100 / 1000 – 3000 3.44 23%

1000 / 100 – 1000 1.19 81%

1000 / 100 – 1000 2.32 42%

1000 / 100 – 1000 3.44 33%

1000 / 1000 – 3000 1.19 14%

1000 / 1000 – 3000 2.32 4%

1000 / 1000 – 3000 3.44 2%

5000 / 100 – 1000 1.19 57%

5000 / 100 – 1000 2.32 20%

5000 / 100 – 1000 3.44 16%

5000 / 1000 – 3000 1.19 10%

5000 / 1000 – 3000 2.32 3%

5000 / 1000 – 3000 3.44 2%

sda b→
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problem. This is illustrated in Table 4, which shows the
slowdown produced with a benchmark that measures the
bandwidth using a specific burst size. For short bursts, the
slowdown is approximately 1, whereas for larger bursts, it
is approximately 4 (assuming the same load in the
network).

4. Contention Effects in
Workstation Networks

The slowdown factors calculated in the previous section
were developed for high-performance clusters in which
the network connecting the nodes was dedicated to the
nodes, and non-negligible bandwidth variations were
caused exclusively by applications on the cluster. In this
section, we extend the model to reflect a more general
scenario of a workstation network (such as a computer
laboratory) in which machines may belong to different
networks and are connected by non-dedicated network
links. The basic differences between a workstation
network and a high-performance cluster are:

• Less bandwidth is typically available in workstation
networks.

• In workstation networks, machines may not all be the
same.

• Links connecting the machines in a workstation net-
work may not have the same bandwidth.

• Bandwidth between machines in a workstation net-
work may be affected by applications executing on
other machines that share network links with the
machines in the network.
It is important to note that, in this platform, we use the

term communication link to refer to a connection between
two nodes that may or may not be directly connected by a
physical network link.

We consider each node in the workstation network to
be an individual machine. In this section, we calculate the
slowdown for computation and communication costs, sda
and sda→b respectively, where a and b are two nodes in the
network.

We demonstrate our results using the four nodes of a
workstation network consisting of two DEC Alphas2

(located in the Computer Systems Laboratory at UCSD)
connected to one another by Ethernet and two IBM RS-

2. The DEC Alphas used are DEC Alpha 3000/800 workstations.

Table 4: Experiments with Bandwidth Benchmarks

Burst Size (number of
messages / message size in

words) used by the Benchmark

100 / 100 1.08

100 / 500 0.96

1000 / 500 3.99

1024 / 1024 3.97

5000 / 500 3.96

sda b→
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6000s (located in the Parallel Computation Laboratory at
UCSD) also connected by Ethernet. Each pair of
workstations is connected via Ethernet and is part of a
non-dedicated network.

4.1. Computation Slowdown in
Workstation Networks

Computation on each node is affected by additional
applications executing on the same node, which may be
computing or communicating with another node. The
delay imposed by applications computing on the node
reflects the fact that CPU time is evenly split among the
competing processes. As before, delay imposed on
computation by communicating applications depends on
the variation of the bandwidth on the links used. However,
since the bandwidth is typically lower for the workstation
network (in comparison with the high-performance
cluster), the range of its variation is small, as is the range
of the variation on the delay. For this reason, an average
delay can be used to approximate the delay imposed by
communication on computation. Consequently, the
slowdown imposed on a computation executing on node a
can be modeled by 

(5)

where pa is the number of extra applications executing on
the node,  is the probability that i applications will
compute on node a at the same time,  is the
probability that i applications on node a will try to
communicate at the same time, and  is the
delay imposed on computation by communication activity.

As before, the first summation accounts for other
applications competing for CPU cycles, which are evenly
split among CPU-bound applications on the node. The
second summation accounts for computation required to
support the communication of other applications. Both

 and  are calculated based on the percentages
of computation and communication associated with each
application executing on node a.

The value  is the average delay imposed on
computation by communicating applications executing on
the node. It is the average of two delays. The first is the
maximum delay  imposed by communicat ion  on
computation. This can be calculated by measuring the
delay imposed on a CPU-bound application by a
communication-intensive application that communicates
with the “closest” machine in the workstation network
transferring messages with 1000 words. The closest
machine is the one with which the node can communicate
with highest bandwidth (generally the closest machine is
one located on the same physical network, e.g., on the
same Ethernet). The second is the minimum delay imposed
by communication on computation, which generally tends

sda 1 ppa i, i×( )
i 1=

pa

∑+=

pma i, delaycomm×( ) ,
i 1=

pa

∑+

ppa i,
pma i,

delaycomm

ppa i, pma i,

delaycomm

to 0 because the delay decreases with the bandwidth
available. 

The slowdown factor sda is calculated at run-time and,
therefore, it is important to guarantee that its calculation is
efficient so that it does not impose excessive overhead on
the scheduling process. The value  is system-
dependent and does not change dynamically. It is
calculated just once for each platform and, therefore, its
calculation does not impose any additional overhead on
the scheduling process at run-time. Although the values

 and  change with the load on the system and
are obtained at run-time, they can be calculated as before
by dynamic programming in time O(pa

2). Since pa is small
and the overall calculation of the slowdown takes O(pa

2)
time, the overhead imposed by its calculation is negligible.

Figure 8 shows the modeled and measured times for
executing the SOR benchmark on a DEC Alpha in
dedicated (single-user) and non-dedicated (multi-user)
modes, parameterized by problem size (which is N×N). In
this experiment, two additional applications are executing
on the machine. They alternate computation and
communication cycles and communicate with another
machine 24% of the time. In this example, our predictions
were within an average error of 6% of the actual
measurements.

Figure 8:  Time to execute the SOR algorithm on a DEC
Alpha, in dedicated and non-dedicated mode, competing
with two extra applications. The contending applications
communicate 24% of the time and compute the remaining
time.

To validate the model described in equation (5), we ran
a serial version of the SOR benchmark and other
applications with diverse configurations of one, two and
three instances of the contention generator. These
configurations were defined by the contention generator
parameters. Table 5 presents experiments performed with
a serial version of the SOR benchmark when there are
competing applications on the node. Each row of the table
corresponds to one execution of the benchmark (on a DEC
Alpha) with six different problem sizes. The average error
column indicates, for each experiment, how far our
predictions were from the actual measurements of
execution time. As the table shows, we vary the

delaycomm
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computation/communication ratio of the competing
applications and the burst size used by the competing
applications.

4.2. Communication Slowdown in
Workstation Networks

Our experiments show that various factors affect
communication costs. The number of computing and
communicating applications executing on the two nodes,
the  s i ze  o f  the  messages  be ing  t r ans fe r red  by
communicating applications, the bandwidth available on
the links used, and the destination and direction of the
communication,  al l  affect  the delay imposed on
communication. As in the high-performance cluster case,
bandwidth variation reflects all these factors and can be
used in a simple model. Following the analysis for the
high-performance clusters, slowdown on communication
can be modeled by

, (6)

as shown in Section 3.2.
Figure 9 illustrates communication formula (6). It

shows the time for transferring bursts of 1000 equal-sized
messages between the two IBM RS-6000s (located in the
same subnet) when  = 0.91 Mwords/second, and
modeled and actual times for transferring the same bursts
when there are additional applications alternating
computation and communication cycles on the nodes. The
value for  is 0.33 Mwords/second,  = 2.76,
and the average error for modeled versus actual

Table 5: Experiments with Computation

Amount(s) of
Communication

per
Competing
Application

Burst Size(s) (number of
messages / message size

in words)
per Competing Application

Average
Error

24% 1000 / 2000 5%

49% 2000 / 1000 9%

58% 1000 / 3000 9%

44% 5000 / 1000 7%

15% 5000 / 100 8%

14% 100 / 5000 3%

49%, 49% 2000 / 1000, 2000 / 1000 6%

15%, 14% 5000 / 100, 100 / 5000 8%

38%, 15% 1000 / 2000, 5000 / 100 13%

48%, 48% 1000 / 2000, 1000 / 2000 3%

48%, 21% 1000 / 2000, 5000 / 100 18%

58%, 32% 1000 / 3000, 1000 / 1000 15%

49%, 49%, 49% 2000 / 1000, 2000 / 1000,
2000 / 1000

6%

58%, 32%, 49% 1000 / 3000, 1000 / 1000,
2000 / 1000

22%

sda b→
iba b→
cba b→
------------------=

iba b→

cba b→ sda b→

communication costs was within 7%. The peak obtained
by transferring messages with 3100 words reflects an
inefficiency of the IBM RS-6000 system in dealing with
this specific message size.

Figure 9:  Time to transfer bursts with 1000 messages
between machines in the same subnet.

Figure 10 also illustrates communication formula (6). It
shows the time for transferring bursts of 2000 equal-sized
messages between one IBM RS-6000 and one DEC Alpha
in different subnets when  = 0.48 Mwords/second,
and modeled and actual times for transferring the same
bursts when there are additional applications alternating
computation and communication cycles on the nodes. The
value for  is 0.28 Mwords/second,  = 1.71,
and the average error for communication cost modeled
with slowdown versus actual communication cost was
within 7%.

Figure 10:  Time to transfer bursts with 1000 messages
between machines in the different subnets.

To validate our model of communication slowdown,
we ran a ping-pong benchmark (which transfers bursts of
same-sized messages) with diverse configurations of one,
two and three instances of the contention generator. These
configurations were defined by the contention generator
parameters. Table 6 presents a representative set of the
experiments performed with the ping-pong benchmark.
Each row of the table corresponds to three executions of
the ping-pong benchmark for each message size, which
grows in steps of 100 words. The average error column
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indicates, for each experiment, how far our predictions
were from the actual measurements of communication
costs. As the table shows, we vary the bandwidth available
and burst size of the ping-pong benchmark.

Mirroring the results showed in Section 3.2, the error
increases when the burst size is small. However, the error
is smaller in this case than it is in the high-performance
cluster case because the bandwidth is lower and the
variation in its range is shorter. Also, the transference of
short bursts in the workstation network environment is
more sensi t ive  to  bandwidth var ia t ion than the
transference of large bursts. This is shown in Table 7,
which shows the slowdown produced with a benchmark
that measures the bandwidth using a specific burst size.
For short bursts, the slowdown is approximately 5,
whereas for larger bursts it is approximately 2 (assuming
the same load in the network). As for high-performance
clusters, a benchmark that calculates the bandwidth in the
workstation network using a tailored burst size overcomes
this problem.

5. Evaluation of the Model
The models developed for slowdown on computation were
based on knowledge of  the  re la t ive amounts  of
computation and communication for each application. We

Table 6: Experiments with Communication

Burst Sizes (number of
messages / message size

in words)

Average
Bandwidth

(Mwords/sec)

Average
Error

10 / 100 – 1000 0.48 23%

10 / 100 – 1000 0.68 43%

10 / 1000 – 3000 0.48 5%

10 / 1000 – 3000 0.68 43%

1000 / 100 – 1000 0.48 19%

1000 / 100 – 1000 0.68 8%

1000 / 1000 – 3000 0.48 2%

1000 / 1000 – 3000 0.68 7%

5000 / 100 – 1000 0.48 15%

5000 / 100 – 1000 0.68 8%

5000 / 1000 – 3000 0.48 1%

5000 / 1000 – 3000 0.68 6%

Table 7: Experiments with Bandwidth Benchmarks

Burst size (number of messages / 
message size in words) used by the 

Benchmark

10 / 100 5.09

10 / 500 2.26

1000 / 500 2.06

5000 / 500 2.05

sda b→

assume that the time to compute is longer than the
computation/communication cycles of the competing
applications and will be affected by both computation and
communication activities. If the targeted computation is
fast in comparison with the duration of these cycles, i.e.,
the time to compute is close to the duration of one
computation/communication cycle, the accuracy of the
model decreases. The error may also increase if the
applications exhibit a non-random behavior, e.g., if the
computation and communication cycles of the competing
applications are either totally synchronized or totally non-
synchronized with one another.

Figure 11:  Time to execute the SOR benchmark in
dedicated mode and competing with one application that
has a 24.2-second computation/communication cycle.

Figure 12:  Time to execute the SOR benchmark in
dedicated mode and competing with one application that
has a 288.0-second computation/communication cycle.

Figure 11 and Figure 12 illustrate the difference in
accuracy obtained in the prediction of the time to execute
the SOR benchmark serially on a DEC Alpha in two
settings. In both settings, the SOR competes for the CPU
with one application that alternates computation with
communication. In Figure 11, the time to execute one
computation/communication cycle of the competing
application was 24.2 seconds. In this case, the time to
execute the algorithm was longer than one computation/
communication cycle of the competing application, and
the average error was 5%. In Figure 12, the time to

20

40

60

80

100

120

2000 2100 2200 2300 2400 2500

no contention
modeled
measured

ti
m

e 
(s

ec
on

ds
)

problem size (N)

20

40

60

80

100

120

2000 2100 2200 2300 2400 2500

no contention
modeled
measured

ti
m

e 
(s

ec
on

ds
)

problem size (N)



10

HPDC’97

execute one computation/communication cycle of the
competing application was 288.0 seconds. In this case, the
time to execute the same algorithm was shorter than one
computation/communication cycle of the competing
application, and the variation of the actual times to execute
the algorithm causes the average error to expand to within
17%.

6. Summary and Future Work

Most applications share the resources of networked
environments with other applications. Since system load
can vary dramatically, allocation strategies that assume
that resources have a constant availability and/or
capability are unlikely to promote performance-efficient
allocations in practice. It is critical to provide a realistic
model of the effects of contention on application
performance in order to best allocate application tasks to
machines.

In this paper, we have presented a model that predicts
contention effects in representative networked platforms.
The model provides a basis for predicting realistic
communication and computation costs. Note that the
variation in times to execute applications on production
systems is typically high, and therefore makes it difficult
for a contention model to be accurate. For this reason, our
objective has been to obtain accuracy on an average basis.
The experiments executed thus far have shown that we
have achieved our goal.

We are continuing to investigate causes for contention.
We are currently extending our model to include memory
constraints, as well as priority issues. We also plan on
characterizing the setting in which contending applications
execute for only part of the execution of a given
application. Since system load may vary during the
execution of an application, the slowdown factors should
be recalculated when the job mix changes, and task
migration should be considered.

Finally, the slowdown factors developed for these
platforms can be used for general networked systems. We
believe that an accurate contention model is a fundamental
part of a performance-efficient allocation strategy for
networked systems and, ultimately, essential to the use of
these  sys tems  as  p la t forms  for  para l le l  and /or
heterogeneous applications.
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