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Abstract

In this paper, we focus on the execution of high-
performance distributed applications on parallel platforms,
such as MPPs or homogeneous clusters. These
applications are usually formed by tasks, which are
mapped to the nodes available in the parallel platform.
When these tasks can execute concurrently, it may be
necessary to space-share the nodes available within the
application. In this case, partitioning the nodes among the
concurrent tasks is a key part of the mapping process. This
paper presents a polynomial algorithm that provides an
optimal partitioning of nodes to concurrent parallel tasks.
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1 Introduction

This paper focuses on the execution of distributed applica-
tions formed by two or more data-parallel tasks (for exam-
ple, [17, 19, 20, 23]), on parallel platforms, such as MPPs
or homogeneous clusters (e.g., the IBM SP/2 or Beowulf
Clusters [25]). These parallel platforms are space-shared
and, whenever these applications execute on such a plat-
form, the tasks need to be mapped to the nodes available.
This mapping process is key in obtaining good perfor-
mance, and mapping strategies have been discussed exten-
sively in the literature. These strategies assume a
distributed model in which execution sites are time- (e.g.
[1, 6, 7, 16]) or space-shared [11] by different applica-
tions. However, when executing distributed applications
formed by data-parallel tasks, if tasks can execute concur-
rently, it may be necessary to space-share the nodes avail-
able within the application.

To illustrate, consider the application shown in
Figure 1. The application is comprised of three tasks: ID
(which initializes data), SOR (which implements a red-
black SOR algorithm to solve Laplace’s Equation), and
GE (which implements a Gaussian Elimination algo-
rithm). Both the SOR and the GE tasks were implemented
using PVM [22], and require data generated by the initial

task. Communication is required when either SOR or GE,
or both, does not execute on the same machine as ID. 

Figure 1: The graph represents an application formed by
three tasks, ID, SOR, and GE. Tasks SOR and GE can
execute concurrently.

Depending on the number of nodes available in the
parallel platform, the application can execute in one of the
following ways:
• execute ID, then execute GE, then execute SOR, or
• execute ID, then execute SOR, then execute GE, or
• execute ID, then execute GE and SOR concurrently, by

having GE and SOR space-share the nodes.
In order to efficiently execute GE and SOR concur-

rently in a parallel environment, an optimal partitioning of
the nodes to the tasks must be found.

For an example of optimal partitioning, consider exe-
cuting tasks GE and SOR on an 8-node DEC Alpha-Farm.
The DEC Alpha-Farm used is a cluster formed by eight
DEC Alpha 3000/400 workstations located at the San
Diego Supercomputer Center. The Alphas are connected
via a dedicated GIGAswitch. SOR executes on a matrix of
size 500x500, whereas GE executes on a matrix of size
500x501. Execution times are available for each task from
individual runs. Table 1 shows the execution times for both
tasks, SOR and GE, with different numbers of nodes. Both
tasks execute in minimum time with 6 nodes. However,
only 8 nodes are available, and the tasks cannot execute
concurrently in minimum time. The time to execute both
tasks on the DEC Alpha-Farm with 6 nodes, one after the
other, would be 107.905 seconds. However, with an opti-
mal partitioning, 3 nodes are assigned to SOR and 5 nodes
to GE. For this partitioning, since no slowdown is imposed
by contention for the GIGAswitch, the overall execution
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time for tasks SOR and GE is 62.084 seconds. 

Note that, in this case, the overall execution time for
the application depends on the partitioning of the nodes
among the tasks. For this reason, finding an optimal parti-
tioning is an essential part of the mapping process. In fact,
optimal partitioning is extremely important in metacom-
puting [13] and grid environments [14], where applica-
tions are scheduled automatically to different platforms,
which may consist of space-shared parallel platforms,
such as MPPs or Beowulf clusters.

The partitioning, or mapping, problem, which consists
of assigning tasks to nodes in order to minimize the com-
pletion time, is known to be an NP-hard problem [15]. In
fact, a lot of effort has been made towards both solving
tractable instances of the problem [3, 21] and developing
heuristic approaches [2, 4, 5, 9, 10, 18, 24]. In this paper,
we present a polynomial algorithm to determine an opti-
mal partitioning of nodes to concurrent data-parallel tasks.
This is a tractable instance of the problem, since data-par-
allel tasks have a peculiar behavior that allows for a greedy
algorithm to provide an optimal partitioning in polynomial
time.

This paper is organized as follows. Section 2
addresses the problem of partitioning nodes in parallel
platforms. Section 3 presents the partitioning algorithm
and discusses its correctness and complexity. Section 4
summarizes and discusses possible extensions for the
algorithm. 

2 Partitioning Nodes

The partitioning problem consists of partitioning a number
of homogeneous nodes among data-parallel tasks in an
optimal way, i.e., so that the tasks can execute concur-
rently in the minimum amount of time. When multiple
tasks are executing concurrently, the overall time to exe-
cute them is the time to execute the longest one. An opti-
mal partitioning of nodes to tasks is a partitioning for
which the overall execution time is minimum.

As discussed in the previous section, the mapping

Table 1: Execution Time (in seconds) on the Alpha-Farm

Number of 
Nodes

SOR
Gaussian 

Elimination

1 133.227 153.773

2 82.447 104.329

3 61.655 81.157

4 51.537 67.943

5 49.229 62.084

6 46.465 61.440

7 47.400 61.474

8 49.279 63.145

problem is known to be NP-hard. However, since data-par-
allel tasks present a peculiar behavior, a greedy algorithm
provides an optimal partitioning in polynomial time. The
algorithm is based on the fact that the function that gives
the execution time for different numbers of nodes is typi-
cally decreasing for values which do not exceed SK, where
SK is the smallest number of nodes for which the execu-
tion of task K is the fastest. Figure 2 shows an example of
a curve representing the execution time of a typical data-
parallel task K parameterized by the number of nodes. The
thicker part of the curve represents execution time with

 nodes. It is clear that, on this section of the curve,
execution time correlates inversely with the number of
nodes. Note that the ‘local’ minimum in this sector of the
curve corresponds to the global minimum.

Figure 3 and Figure 4 show actual curves obtained by
executing two tasks - a Gaussian Elimination algorithm
and an SOR algorithm to solve Laplace’s equation - on the
SDSC DEC Alpha-Farm with different numbers of nodes.
The graphs show that SGE = 4 whereas SSOR = 6. It is clear
that, in both cases, the function is decreasing for values
smaller than or equal to the smallest number of nodes
which provides the minimum execution time.

Given this behavior, the goal is to decrease the time to
execute the longest task by increasing its number of nodes,
while increasing the other tasks’ execution time by
decreasing their number of nodes. Suppose there are two
tasks A and B, and task A takes longer than task B. Also,
task A would execute faster with one more node. If trans-
ferring a node from task B to task A does not make task B
execute for a longer time than task A, then this transfer-
ence leads to a better partitioning (in spite of task B taking
longer to execute). This is explained by the fact that the
overall time decreases when the longest task (in this case,
task A) is able to execute faster. Intuitively, transferring all
possible nodes to the longest task leads to an optimal parti-
tioning, and a greedy approach, which transfers nodes
from each task to the longest one, will solve the problem.

Figure 2: The graph shows a typical curve for execution
time of task K parameterized by the number of nodes used.
The thicker part of the curve represents the region of the
curve for which the task uses a number of nodes smaller
than or equal to SK, the smallest number of nodes for

which the execution is the fastest.
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Figure 3: Execution time for Gaussian Elimination with
different number of nodes.

Figure 4: Execution time for SOR with different number
of nodes

3 The Partitioning Algorithm

Given a set of tasks and a set of nodes, the partitioning
algorithm divides the nodes among the tasks in an optimal
way, so that the total time to execute the tasks concurrently
is optimal. This is a greedy algorithm, which works based
on the assumption that the tasks are data-parallel and
behave according to the curve shown in the previous sec-
tion.

Note that the algorithm assumes that the environment
has the following characteristics:
• The nodes in the cluster are homogeneous.
• The nodes are not time-shared. Consequently, execution

times for each task are deterministic and known.
• Contention for the network is not significant.

We assume that the following quantities are known or
have been estimated:
• the time to execute a task K on n nodes of a parallel

machine (or homogeneous cluster) M, and
• the smallest number of nodes SK for which task K exe-

cutes on machine M in the minimum amount of time.
These values can be provided by the user or obtained

from a model such as Driscoll and Daasch’s [8], who have
developed a strategy to estimate these amounts for MPPs.
If exact costs are not available for the tasks on variable-
sized sets of nodes, estimates can be used. For resource-
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intensive problems which require the use of parallel plat-
forms, users generally have a good estimate of execution
times. As with any scheduling strategy, the more accu-
rately these parameters can be predicted, the better the
derived mapping will be.

3.1  The Algorithm

The pseudo-code for the algorithm is shown in Figure 5.
The algorithm works as follows:
• Assign SK nodes to each task K.
• If the total nodes assigned is smaller than or equal to N

(the total number of nodes available), then each task is
already executing in minimum time, and no repartition-
ing is necessary.

• If the total nodes assigned is greater than N, repartition-
ing is necessary. In this case, extract nodes from the
tasks uniformly until the sum of all the nodes assigned to
each task is equal to N, and each task has at least one
node.

• Place each task K in an array, ordered by execution time
(according to the node assignment).

• Traverse the array, from left to right, transferring nodes
from each task to the longest one (always on the extreme
right of the array) whenever the transference will cause
the overall execution time to decrease, i.e., the time to
execute the longest task decreases with one more node,
and the time to execute the yielding thread with one less
node is not greater than the time to execute the longest
thread.

• For each position in the array, the algorithm transfers as
many nodes as possible from the corresponding task to
the longest one.

• After each transference, the position of both the yielding
and longest tasks are re-evaluated and the array is
updated. The algorithm continues to transfer nodes from
whichever task is in the current position until no node
can be transferred.

• The algorithm terminates when the overall time cannot
be decreased, i.e., no node transference is possible. This
happens when the longest task’s execution time does not
decrease with extra nodes or when the traversal finishes.
In this case, all tasks had a chance to yield as many
nodes as possible to the longest one.

3.2  Correctness

We show that, after traversing the array, the partitioning
obtained is an optimal partitioning, in which no transfer-
ence of nodes decreases the overall time. For a formal
proof, see [12].

The algorithm terminates
1.when there is enough nodes to execute all the tasks with

the optimal number of nodes,
2.when transferring a node from any task to the longest

one just increases the longest task’s execution time, or
3.when the array has been totally traversed.



Figure 5: Pseudo-code for the Partitioning Algorithm.

In case 1, the partitioning is obviously optimum
because, since every task is executing with its optimal
number of nodes, no other partitioning will be better than
that. In case 2, the partitioning is optimal because transfer-
ring any node to the longest task would not decrease its
time. That means, the longest task is already executing at
full speed, and it is impossible to obtain a partitioning in
which the overall time would be any shorter.

In case 3, the array has been traversed, and all the
tasks have yielded as many nodes as possible to decrease
the overall time. Traversing the array once is enough
because after a task yields all the nodes it can in a first tra-
versal, it will not be able to yield any nodes in a second
traversal, since the longest task’s execution time will have
only decreased. Even though tasks are reordered, every
task has a chance to yield as many nodes as it can, since
the only possible changes in task position are:

Partitioning Algorithm

assign each task its optimum number of nodes
if the total number of nodes assigned is smaller or equal to 
the total number of nodes available

return <repartitioning is not needed>
else <repartition nodes>

extract nodes from each task until only the nodes 
available are assigned
sort tasks according to the time to execute with
the nodes assigned and place sorted tasks in array A
for j = 1 to T - 1 do
<traverse the array, T is the number of tasks>

while task in the jth position has
more than one node do

J = task in the jth position
P = longest task
if giving one more node to task P does not
decrease its time then

return <overall time cannot be improved>
endif
if task J with one less node is still faster than
task P then

transfer a node from task J to task P
update the position of task J in array A, 
according to its new time
update the position of task P in array A,
according to its new time

else
break <go to next position,
task in the jth position cannot
yield any more nodes>

end if
end while

end for
end if

return <array traversal is over>

1.Change in the position of the task which has just
yielded a node to the longest task.
Since the time to execute the yielding task will increase
(it only increases when yielding), the task will move to
the right in the array, and therefore will be rechecked
later. In this case, another task will move to the left and
occupy the position being checked. Since the algorithm
will recheck the current position until no node can be
yielded, the task just moved will be checked. This case is
illustrated in Figure 6. In Figure 6.(a), the algorithm is
checking the third position on the array, which contains
task B. Figure 6.(b) shows the updated array after task B
yields a node to task P (which is the longest task): Task
B has moved to the right making task C move to the left.
The algorithm will now go on checking the task in the
third position, which is task C. Task B will be rechecked
again, when the algorithm gets to its position. Therefore,
in spite of the change, each task will be checked until no
node transference is possible.

Figure 6: Possible changes of positions in the array of
tasks, considering the yielding task.

2.Change in the position of the longest task.
When the time to execute the longest task decreases, it
moves left in the array. Figure 7 illustrates this case. In
Figure 7.(a), the algorithm is checking the third position
on the array, which contains task B. Suppose task B
yields a node to task P, which is the longest task. Task P
could execute faster than task D, but slower than task B
(Figure 7.(b)). In this case, the algorithm goes on check-
ing task B, and each task which is faster than the new
longest one - D. Task P could also execute faster than
task B. In this case, if it is still slower than task A
(Figure 7.(c)), the algorithm will check task P, which
cannot yield nodes (during the traversal, no task is able
to yield nodes after having been the longest task,
because the overall time has only decreased since it was
the longest task, and its time with one less node would
be greater than the new overall time) and go on. If it exe-
cutes faster than task A (Figure 7.(d)), the algorithm will
recheck task A, which cannot yield nodes (tasks that can-
not yield a node at some point during the traversal will
not be able to yield a node because the longest task’s
execution time always decreases) and go on. Since task

(b) A C B D P

(a) A B C D P



P cannot yield a node (during the traversal, no task is
able to yield nodes after having been the longest task), it
does not need to be checked.

Figure 7: Possible changes of positions in the array of
tasks, considering the longest task.

3.3  Complexity

Assigning nodes to the tasks take O(T), and extracting
nodes from the tasks take O(N). The time-consuming parts
of the algorithm are: sorting the tasks, which takes
O(TlogT), and traversing the array, which takes O(TN).
Therefore, the algorithm executes in time O(T + N + TlogT
+ NT). Note that , since the tasks are data-parallel
and each task generally executes in several nodes. There-
fore, since N > 0, T > 0, and , we can consider the
algorithm to execute in O(NT) steps. 

4 Summary

Distributed applications may contain tasks that can exe-
cute concurrently. When executing these applications in
parallel platforms, it may be necessary to partition the
nodes among the concurrent tasks. Minimizing the overall
execution time of these tasks is key to the efficient utiliza-
tion of these platforms, but depends on determining an
optimal partitioning of nodes. We have presented a poly-
nomial algorithm to solve this problem.

The partitioning algorithm executes in time O(NT),
where N is the number of nodes whereas T is the number
of tasks. It determines an optimal partitioning of nodes to
concurrent tasks by transferring nodes from each task to
the longest one until no transference is possible. The algo-
rithm works based on the fact that a partitioning in which
no transference of nodes decreases the overall execution
time is an optimal partitioning.

The partitioning algorithm can be easily extended to
take into account constraints such as the amount of mem-
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ory required and/or thresholds on the size of the partition
available. Note that the partitioning algorithm can also be
used to improve the utilization of multicomputers by
applications which have relaxed constraints on execution
time, e.g., applications that do not require minimum exe-
cution time but need to finish in a fixed amount of time.
Transferring nodes between these applications may allow
more applications to share the multicomputer, decreasing
the average response time. In this case, there is a straight-
forward extension of the partitioning algorithm, which
allows transference of nodes only when the yielding appli-
cation does not increase its time above a pre-determined
threshold.

The algorithm can also be extended to accommodate
for heterogeneous clusters of workstations. In this case,
machines may be different (i.e., have different computa-
tional capacities) and also time-shared, and these aspects
need to be taken into account when partitioning the nodes.
Partitioning heterogeneous nodes will have the same time
complexity. However, due to the heterogeneity, the algo-
rithm will partition the nodes by partitioning the capacity
of the cluster. 
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