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Abstract:

This project studies classification methods and try to find the best model for the
Kaggle competition of Otto group product classification. Machine learning models
deployed in this paper include decision trees, neural network, gradient boosting model,
etc. We will also use cross-validation for prediction accuracy in order to compare
between models.
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1. Introduction

1.1. Objective
The objective of this project is to apply classification learning models on an
e-commerce products dataset with 93 features for more than 200,000 products and
therefore to obtain a predictive model with high accuracy for identifying future products
categories.

1.2. What is the problem

Given a dataset concerning e-commerce products with 93 features for more
than 200,000 products, this project is aimed to build a predictive model that is able to
distinguish products between 9 main product categories. A few selected classification
learning models will be trained by the dataset that includes each product’s
corresponding category. In order to compare among applied models, cross validation
will be used to evaluate the accuracy and then the model with comparatively higher
accuracy will be selected.

1.3. why this is a project related the this class

This project does not only contribute to achieve the objectives of this Machine
Learning class, but also applies what we learned in class into practice. This project
follows the course objective that is to learn advanced knowledge and implementation
in machine learning. As an important part in machine learning, classification has many
real world applications, such as business marketing segmentation, Internet search
result grouping, etc. In this project, we use classification to distinguish e-commerce
products between main categories, which directly help us to obtain hands-on skills of
dealing with real data from the perspective of machine learning.

1.4. Why other approach is no good
Among all classification techniques, quite a few of them has restrictions and
preference in attribute value types and the size of attributes. Besides, simply applying
a learning model on a particular dataset normally will not yield the “best” analysis
results. According to different dataset, adding more techniques can help train the
model in a better performance.

1.5. Why you think your approach is better

In our project, instead of applying single models, we apply as much as possible
classification models on the dataset. After a comparison of accuracies among all



applied models, we choose the one with comparatively highest accuracy. This
approach not only allow us to test out and get a comprehensive concept of most of
those frequently used models, but also will obtain the one with highest accuracy under
our administration. Besides, we add and adjust weighting factors to some of those
models. Instead of each data contributing equally to the model, this approach enables
us to add weights on those more important core data so that the model can be trained
better for this particular dataset.

1.6. Statement of the problem

This project is aimed to build a predictive model that is able to distinguish
between main product categories in an e-commerce dataset. The main dataset
regarding to ecommerce products has 93 features for more than 200,000 products.
The resource of the dataset comes from an open competition Otto Group Product
Classification Challenge, which can be retrieved on www kaggle.com. The Otto Group
is one of the world’s largest e-commerce companies. They are selling millions of
products worldwide everyday, with several thousand products being added to their
product line. Therefore it is important for the company to do a consistent analysis on
the performance of their products. However, due to the diversity of the company’s
global infrastructure, it is challenging to classify each product appropriately. As a
result, the quality of product analysis depends heavily on the ability to accurately
cluster similar products. In order to find out the model with comparatively high
accuracy, we will first utilize various classification learning models including decision
trees, Bayesian approaches, neural network, regression-based methods, vector-based
methods, etc. After an accuracy comparison among applied models, we shall obtain
the “best” model under our experimental analysis.

1.7. Area or scope of investigation

This project will mainly discuss classification models in the field of machine
learning and statistics. Specifically, a variety of classification models will be used and
evaluated including decision trees, Bayesian approaches, neural network,
regression-based methods, vector-based methods, etc. Besides, model validation
techniques, which are used to assess how the results of a statistical analysis will
generalize to an independent data set, will be applied on trained models. In the
process of applying models, programming languages including R, Python, and Java
will be used. To conclude, this project covers knowledge in machine learning,
computer science, and statistics, with a concentration on various classification learning
models.



2. Theoretical bases and literature review

2.1. Definition of the problem:

In this problem, we are given a data set contains over 20k products and 93
features with them; the goal is find a predictive model to distinguish between their
main product categories. In machine learning and statistics, classification is the
problem of identifying to which of a set of categories (sub-populations) a new
observation belongs, on the basis of a training set of data containing observations (or
instances) whose category membership is known. An example would be assigning a
given email into "spam" or "non-spam" classes or assigning a diagnosis to a given
patient as described by observed characteristics of the patient (gender, blood
pressure, presence or absence of certain symptoms, etc.).

2.2. Theoretical background of the problem:

2.2.1. Decision Trees

Decision tree learning uses a decision tree as a predictive model which
maps observations about an item to conclusions about the item’s target value.
Tree models where the target variable can take a finite set of values are called
classification trees. In these tree structures, leaves represent class labels and
branches represent conjunctions of features that lead to those class labels. In
data mining, a decision tree describes data but not decisions; rather the
resulting classification tree can be an input for decision making. An example of
it looks like:

Suny [Overcast \Rain

Figure 1. Decision Tree Example
Tree based methods have Boosted trees, Random forest, etc.



2.2.2. Bayesian Approaches

There are two groups of Bayesian approaches: Naive and non-naive
Bayesian approaches. The naive part of the former is the assumption of feature
independence, meaning that the feature order is irrelevant and consequently
that the presence of one word does not affect the presence or absence of
another. This assumption makes the computation of Bayesian approaches
more efficient.

Abstractly, naive Bayes is a conditional probability model: given a

problem instance to be classified, represented by a vector X = (T1,..-,Tn)
representing some n features (dependent variables), it assigns to this instance

probabilities p(C;;| LLyeey In)for each of k possible outcomes or classes.
Using Bayes' theorem, the conditional probability can be decomposed as
Cy) plx|Cly,
p(x) Using Bayesian probability terminology, the above
prior x likelihood

posterior =

equation can be written as evidence

2.2.3. Neural Networks

Different neural network approaches have been applied to document
categorization problems. While some of them use the simplest form of neural
networks, known as perceptrons, which consist only of an input and an output
layer, others build more sophisticated neural networks with a hidden layer
between the two others. In general, these feed-forward-nets consist of at least
three layers (one input, one output, and at
least one hidden layer) and use
backpropagation as learning mechanism.
However, the comparatively old
perceptron approaches perform
surprisingly well.

Hidden

Inpm

Output

In machine learning and cognitive
science, artificial neural networks (ANNs)
are a family of statistical learning
algorithms inspired by biological neural
networks, neural networks are similar to
biological neural networks in performing
functions collectively and in parallel by the Q

units, rather than there being a clear



delineation of subtasks to which various units are assigned.

The first layer has input neurons which send data via synapses to the
second layer of neurons, and then via more synapses to the third layer of
output neurons. More complex systems will have more layers of neurons with
some having increased layers of input neurons and output neurons. The
synapses store parameters called "weights" that manipulate the data in the
calculations.

The advantage of neural networks is that they can handle noisy or
contradictory data very well. Furthermore, some types of neural networks are
able to comprehend fuzzy logic, but one has to change from backpropagation
as learning mechanism to counterpropagation. The advantage of the high
flexibility of neural networks entails the disadvantage of very high computing
costs. Another disadvantage is that neural networks are extremely difficult to
interpret the result.

2.2.4. Regression-based Methods

For this method the training data are represented as a pair of
input/output matrices where the input matrix is identical to our feature matrix A
and the output matrix B. The most methodology used here is Logistic
regression, it measures the relationship between categorical dependent
variables and one or more independent variables, which are usually
continuous, by using probability scores as the predicted values of the
dependent variable. It can be seen as a special case of generalized linear
model.

Logistic regression can be binomial or multinomial. Binomial or binary
logistic regression deals with situations in which the observed outcome for a
dependent variable can have only two possible types. In binary logistic
regression, the outcome is usually coded as "0" or "1", as this leads to the most
straightforward interpretation.

2.2.5. Vector-based Methods - SVM

Support vector machines are supervised learning models with
associated learning algorithms that analyze data and recognize patterns, used
for classification and regression analysis. A support vector machine constructs
a hyperplane or set of hyperplanes in a high- or infinite-dimensional space,
which can be used for classification, regression, or other tasks. Intuitively, a
good separation is achieved by the hyperplane that has the largest distance to
the nearest training data point of any class (so-called functional margin), since


http://en.wikipedia.org/wiki/Hyperplane
http://en.wikipedia.org/wiki/High-dimensional_space

2.3.

2.4.

in general the larger the margin the lower the generalization error of the
classifier.

Related research to solve the problem

e The research <Chimera: Large-Scale Classification using Machine
Learning, Rules, and Crowdsourcing> introduces how Chimera employs a
combination of learning, rules (created by in-house analysts), and
crowdsourcing to achieve accurate, continuously improving, and cost-effective
classification.

e The research <A New Methodology for Photometric Validation in
Vehicles Visual Interactive Systems> introduces a new way to identify a region
of components on Instrument Clusters (IC) as homogenous or not, and showed
that the proposed methodology obtains precision above 95%.

e Duetal (2011) introduced rule learning for classification based on
neighborhood covering reduction. Specifically, it redefines the relative
covering element reduction and analyze the difference between
covering element reduction and relative covering element reduction.

e Kim et al (2010) proposed a mathematical programming method that
directly mines discriminative patterns as numerical features for
classification and they also proposed a technique called novel search
space shrinking which addresses the inefficiencies in iterative pattern
mining algorithms.

Advantage/disadvantage of those research
e The research <Chimera: Large-Scale Classification using Machine
Learning, Rules, and Crowdsourcing> Advantage : The reasearch
shows that Chimera is novel in four important aspects:

1. Chimera uses both learning and hand-crafted rules (written by
domain analysts) extensively.

2. It uses a combination of crowdsourcing and in-house analysts to
evaluate and analyze the system, to achieve an accurate,
continuously improving, and cost-effective solution for
classification.

3. Chimera is scalable in terms of human resources, by using
in-house analysts and tapping into crowdsourcing, the most
“elastic" and “scalable" workforce available for general use
today, and



2.5.

4. Chimera uses a human-machine hybrid algorithm that treats
learning, rules, crowd workers, in-house analysts, and
developers as “first-class citizen".

Disadvantage: With the time going on, the write rules becomes more
and more storing into the database. Then it will be slower for searching
activity.The current learning-based classifiers are not precise enough.

The research <A New Methodology for Photometric Validation in
Vehicles Visual Interactive Systems> Advantage:This research gets a
high precision of classification. Descriptors was given to two machine
learning algorithms, namely the SVM and an ANN. Both the SVM and
the ANN obtained precisions higher than 95% when classifying the
regions.

Disadvantage: This research focuses on image and visual quality
identification. The training data sets are small and hard to obtain with
only 7 features which is not very useful in our large-scale data problem.

According to Du et al (2011), the relative covering element reduction
learning method can be used in more complex tasks compared to
previous related algorithms because it expands the application of
covering element reduction to numerical type attributes. However
compared to other rule learning methods, the number of rules derived
from this algorithm is sometimes much more than other techniques.
Only after a step of merging derived rules, the number of rules can be
reduced.

According to Kim et al (2010), the NDPMine method is an order of
magnitude faster, significantly more memory efficient and more accurate
than current approaches.

Our solution to solve this problem
Instead of using the simple decision trees we assume adding weights to each

tree can improve the precision of the prediction, thus using boosted trees can improve
our product classification. Similar to this, apart from traditional neural network model,
we can also try giving weights to different neurons or adding more layers up to
thousands to find out if it can improve our scenario. Besides all the methods, some
simple exploratory analysis can tell us the relationship between each or more features,
or a model selection before modeling can largely improve the efficiency and accuracy.
For example, using variable importance in a random forest model to select the
important features out and then apply to other models can help the model to make
better decisions. However, all the assumptions above need to be tested out to make a
standing point.
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2.6. Where your solution different from others
Describe the differences between different classification methods here later

2.7. why your solution is better

The assumption is doing weighted trees or preliminary cleaning process can
help with the accuracy of the prediction, this does not guarantee that our solution is
better until test out.

3. Hypothesis

Successfully classify the product categories with precision 90%, in the end, visualize
the model and classification such as:

[ TR
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Figure 2. Visualization using t-SNE
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4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Methodology

how to generate/collect input data

The input data already exists in csv format. Download the training data from:
http://www.kaggle.com/c/otto-group-product-classification-challenge/data 61878 sets
of training data in all

how to solve the problem

Classification is a supervised problem, so we will use training data sets to train
the selected algorithms and models, then comparing the test error by cross-validation
to find the best algorithm which can maximize the precision. Then using the newest
technology to continuously improve the precision.

algorithm design

We will experiment and compare several algorithms as follows: SVM, neural
network, logistic regression, naive bayes, random forest, decision trees.

language used
R, Python, Java

tools used
RStudio, iPython Notebook, Plot.ly, Eclipse

how to generate output

Our well trained algorithm will make the prediction from input data and output
as a specific classification corresponded to the input. There are 9 classes totally in this
project.

how to test against hypothesis

We will upload the prediction data to the Otto group for precision verification in
order to compare with hypothesis.

how to proof correctness
We'll use cross validation to proof the correctness of our methodology.

12
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5. Implementation

5.1 Code (refer programming requirements)

Exploratory Analysis

Working environment: R, Rstudio, ggplot2, randomForest, Rstne

Feature correlation analysis:
https://github.com/lyladuan/kaggle/blob/master/correlation_visual.r

Feature importance analysis:https://github.com/lyladuan/kaggle/blob/master/varimp_rf.r
Classes visual using Rsne: https://github.com/lyladuan/kaggle/blob/master/rsne_visual.r
AUC ROC curve: https://github.com/lyladuan/kaggle/blob/master/roc_auc.r

Support vector machines (SVMs)

Working environment: Anaconda, IPython Notebook, Python 2.7, scikit-learn

https://github.com/edisonhmp/edisonhmp/blob/master/Support%20vector%20machines%20(S

VMs)

Decision Trees (DTs)

Working environment: Anaconda, IPython Notebook, Python 2.7, scikit-learn

https://qgithub.com/edisonhmp/Machine-Learning-Big-data-classification/blob/master/Decision
%20Trees%20(DTs)

Extremely Randomized Trees

Working environment: Anaconda, IPython Notebook, Python 2.7, scikit-learn

https://qithub.com/edisonhmp/Machine-Learning-Big-data-classification/blob/master/Extremel
v%20Randomized%20Trees

Gradient Boosting Machines

Working environment: R, Rstudio, Xgboost, H20, Python3.4, Graphlab
xgboost: https://github.com/lyladuan/kaggle/blob/master/xgboost.r
h2o: https://github.com/lyladuan/kaggle/blob/master/h2o_gbm_nn.r
Graphlab: https://github.com/lyladuan/kaggle/blob/master/graphlab.py

Deep Learning using Neural Network

13
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https://github.com/lyladuan/kaggle/blob/master/xgboost.r
https://github.com/lyladuan/kaggle/blob/master/h2o_gbm_nn.r
https://github.com/lyladuan/kaggle/blob/master/graphlab.py

Working environment: R, Rstudio, H20
h2o: https://github.com/lyladuan/kaggle/blob/master/h20_gbm_nn.r
Ensemble using GBM and ANN

Working environment: R, Rstudio, H20

https://qgithub.com/lyladuan/kaggle/blob/master/ensemble.r

5.2 Design document and flowchart

For python:
Design document: http://scikit-learn.org/stable/modules/classes.html
FlowChart : http://scikit-learn.org/stable/tutorial/machine learning_map/index.html

scikit-learn

classification
algorithm cheat-sheet

WORKING

dimensionality
reduction
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Flowchart of using Python and R to get the
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Data analysis and discussion
output generation & output analysis

Support vector machines (SVMs) are a set of supervised learning methods used for

classification, regression and outliers detection.

The advantages of support vector machines are:

e Effective in high dimensional spaces.

e Still effective in cases where number of dimensions is greater than the number of
samples.

e Uses a subset of training points in the decision function (called support vectors), so
it is also memory efficient.

e Versatile: different Kernel functions can be specified for the decision function.

Common kernels are provided, but it is also possible to specify custom kernels.

The disadvantages of support vector machines include:

e If the number of features is much greater than the number of samples, the method
is likely to give poor performances.

e SVMs do not directly provide probability estimates, these are calculated using an

expensive five-fold cross-validation (see Scores and probabilities, below).

1. Choosing parameters in Support Vector Classification:
C : float, optional (default=1.0)
Penalty parameter C of the error term.

kernel : Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’,

‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable.
degree : int, optional (default=3)

Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.

16
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gamma : float, optional (default=0.0)

Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. If gamma is 0.0 then 1/n_features will

be used instead.

coef0 : float, optional (default=0.0)

Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.

2. The precision is bad if just randomly select the parameters in SVC.

3. Try several different Kernels and corresponding parameters, and evaluate their
out-of-sample performance by using cross validation.

4. Doing cross validation one-by-one with changing kernels and other parameters are
pretty slowly and inefficient.

5. Parameters that are not directly learnt within estimators can be set by searching a
parameter space for the best Cross-validation score. Exhaustive Grid Search:
exhaustively generates candidates from a grid of parameter values specified with the
param_grid parameter.

tuned_parameters = [{'kernel’': ['rbf'], "gamma': [le-3, 1le-4],
'C': [1, 1e, 1ee, 1eea]},
{'kernel’: ['linear’'], 'C': [1, 10, lee, 1e80]},
{'kernel': ['poly'], 'degree':[3,5,7,11,21], 'gamma': [le-3, 1le-4], 'coef®’' :[e.e, ©.2,8.5,0.8,1.8,3.0],
'C': [1, 1@, 1eae, 188@]}]

Decision Trees (DTs) are a non-parametric supervised learning method used for
classification and regression. The goal is to create a model that predicts the value of a
target variable by learning simple decision rules inferred from the data features.For
instance, in the example below, decision trees learn from data to approximate a sine
curve with a set of if-then-else decision rules. The deeper the tree, the more complex

the decision rules and the fitter the model.

Some advantages of decision trees are:

e Simple to understand and to interpret. Trees can be visualised.

e Requires little data preparation. Other techniques often require data normalisation,
dummy variables need to be created and blank values to be removed. Note

however that this module does not support missing values.

17
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The cost of using the tree (i.e., predicting data) is logarithmic in the number of data
points used to train the tree.

Able to handle both numerical and categorical data. Other techniques are usually
specialised in analysing datasets that have only one type of variable. See
algorithms for more information.

Able to handle multi-output problems.

Uses a white box model. If a given situation is observable in a model, the
explanation for the condition is easily explained by boolean logic. By contrast, in a
black box model (e.g., in an artificial neural network), results may be more difficult
to interpret.

Possible to validate a model using statistical tests. That makes it possible to
account for the reliability of the model.

Performs well even if its assumptions are somewhat violated by the true model

from which the data were generated.

The disadvantages of decision trees include:

Decision-tree learners can create over-complex trees that do not generalise the
data well. This is called overfitting. Mechanisms such as pruning, setting the
minimum number of samples required at a leaf node or setting the maximum depth
of the tree are necessary to avoid this problem.

Decision trees can be unstable because small variations in the data might result in
a completely different tree being generated. This problem is mitigated by using
decision trees within an ensemble.

The problem of learning an optimal decision tree is known to be NP-complete
under several aspects of optimality and even for simple concepts. Consequently,
practical decision-tree learning algorithms are based on heuristic algorithms such
as the greedy algorithm where locally optimal decisions are made at each node.
Such algorithms cannot guarantee to return the globally optimal decision tree. This
can be mitigated by training multiple trees in an ensemble learner, where the
features and samples are randomly sampled with replacement.

There are concepts that are hard to learn because decision trees do not express

them easily, such as XOR, parity or multiplexer problems.

18
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e Decision tree learners create biased trees if some classes dominate. It is therefore

recommended to balance the dataset prior to fitting with the decision tree.

In [3]: clf = DecisionTreeClassifier(max_depth=None, min_samples_split=1,random_state=8)

scores = cross_val_score(clf, X, vy)
scores.mean( )

Out[3]: @.7877639191467533

One estimator model is still not precise enough, so we use ensemble methods to
combine the predictions of several base estimators built with a given learning
algorithm in order to improve generalizability / robustness over a single estimator.

Random Forests: each tree in the ensemble is built from a sample drawn with
replacement (i.e., a bootstrap sample) from the training set. In addition, when splitting
a node during the construction of the tree, the split that is chosen is no longer the best
split among all features. Instead, the split that is picked is the best split among a
random subset of the features. As a result of this randomness, the bias of the forest
usually slightly increases (with respect to the bias of a single non-random tree) but,
due to averaging, its variance also decreases, usually more than compensating for the
increase in bias, hence yielding an overall better model.

In [5]: | clf = RandomForestClassifier(n_estimators=18, max_depth=None,min_samples_split=1, random_state=0)

Qut[5]:

2
o

scores = cross_val score(clf, X, y)
scores.mean( )

8.77579413036888279

Extremely randomized trees classifier is one of the averaging ensemble methods,
randomness goes one step further in the way splits are computed. As in random
forests, a random subset of candidate features is used, but instead of looking for the
most discriminative thresholds, thresholds are drawn at random for each candidate
feature and the best of these randomly-generated thresholds is picked as the splitting
rule. This usually allows to reduce the variance of the model a bit more, at the expense
of a slightly greater increase in bias.

Extremely randomized trees get the higher precision than the previous ones and also
includes the technique of Feature importance evaluation. We use this function to plot
the top 10 important features:
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Feature importances
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After estimate the accuracy of a Extremely randomized trees on the dataset by
splitting the data, fitting a model and computing the score 3 consecutive times,the
output mean score shows the precision is only around 78%

from sklearn import cross_validation

from sklearn import datasets

from sklearn import metrics

from sklearn.grid_search import GridSearchCV

from sklearn.cross_validation import cross_val_score
import matplotlib.pyplot as plt

In [2]: train = pd.read_csv( train.csv")
test = pd.read_csv('test.csv')
features = train.columns[1:94]

X = train[features]
y, _ = pd.factorize(train[ 'target’])

In [3]:
clf = ExtraTreesClassifier(n_estimators=16,min_samples _split=1,random_state=8)
scores = cross_val_score(clf, X, y)

In [5]: scores

Qut[5]: array([ ©.77317230, o.77581693, 6.73188029])

« Gradient Boosting Machine

Gradient boosting is a machine learning technique for regression problems, which
produces a prediction model in the form of an ensemble of weak prediction models, typically
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decision trees. It builds the model in a stage-wise fashion like other boosting methods do, and
it generalizes them by allowing optimization of an arbitrary differentiable loss function. The
gradient boosting method can also be used for classification problems by reducing them to
regression with a suitable loss function.

Using H20 in R, first we need to do a random search to determine the parameters that
are using:

models <- c()

for (i in 1:30) {
rand_numtrees <- sample(1:50,1)
rand_max_depth <- sample(5:15,1)
rand_min_rows <- sample(1:10,1)
rand_learn_rate <- ©.025*sample(1:10,1)
model _name <- paste®("GBMModel ",i,

_ntrees",rand_numtrees,

_maxdepth", rand_max_depth,
" _minrows",rand_min_rows,
" learnrate",rand_learn_rate

)

model <- h2o.gbm(x=predictors,
y=response,
training_frame=train_holdout.hex,
validation_frame=valid_holdout.hex,
destination_key=model_name,
loss="multinomial",
ntrees=rand_numtrees,
max_depth=rand_max_depth,
min_rows=rand_min_rows,
learn_rate=rand_learn_rate

)

models <- c(models, model)

This random search will keep tuning within the previous search range and search
within the range to tune the parameters. For GBM model, the parameters need tuning are
number of trees, maximum of depth, minimum of rows and the learning rate.

The following graph shows the feature importance according to the trees, feature 10, 59 33
are the top features. We choose the Logloss to be the criterion for selecting models since this
is a classification problem and we try to minimize logloss.
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We reached the conclusion that the logloss are the same before feature scaling and after, The
final parameters we chose are number of trees = 43, maximum depth =9, minimum of rows =
9 and learning rate = 0.125; error rate is around 15%, logloss is 0.501.

+ Deep learning -- Neural Network

Deep learning is part of a broader family of machine learning methods based on
learning representations of data. An observation (e.g., an image) can be represented in many
ways such as a vector of intensity values per pixel, or in a more abstract way as a set of
edges, regions of particular shape, etc. Some representations make it easier to learn tasks
(e.g., face recognition) from examples. One of the promises of deep learning is replacing
handcrafted features with efficient algorithms for unsupervised or semi-supervised feature
learning and hierarchical feature extraction.

H2QO’s Deep Learning is based on a multi-layer feed-forward artificial neural network
that is trained with stochastic gradient descent using back-propagation. The network can
contain a large number of hidden layers consisting of neurons with tanh, rectifier and maxout
activation functions. Advanced features such as adaptive learning rate, rate annealing,
momentum training, dropout, L1 or L2 regularization, checkpointing and grid search enable
high predictive accuracy. Each compute node trains a copy of the global model parameters on
its local data with multi-threading (asynchronously), and contributes periodically to the global
model via model averaging across the network.

First, perform a random search to determine the parameters.
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ann.models <- c()

for (i in 1:30) {
hidden_layer <- c(12, 12)*sample(7:25, 1)
rand_epochs <- runif(1, 9, 13)
model_name <- paste@("ANNModel_ ", i,

_nlayer", hidden_layer,

_nepochs", rand_epochs
)
model <- h2o.deeplearning(x=predictors,
y=response,
training_frame = train_holdout.hex,
validation_frame = valid_holdout.hex,
loss = "CrossEntropy’,
hidden = hidden_layer,
rate = 0.005,
epochs = rand_epochs
)

ann.models <- c(ann.models, model)

}

We have ran 200 Neural networks models to determine the one that minimized the
logloss; the parameters are hidden layers = ¢(120, 120), learning rate = 0.005, epochs =
10.87304. Which give us around 16% error rate and the logloss is 0.51.

R

< Ensemble

In order to reach a better accuracy, we decide to try ensemble learning to mix several
models together. In statistics and machine learning, ensemble methods use multiple learning
algorithms to obtain better predictive performance than could be obtained from any of the
constituent learning algorithms. Unlike a statistical ensemble in statistical mechanics, which is
usually infinite, a machine learning ensemble refers only to a concrete finite set of alternative
models, but typically allows for much more flexible structure to exist between those
alternatives.

Here, we choose Bayesian model averaging to ensemble the GBM model and Neural
Network model together. Bayesian model averaging (BMA) is an ensemble technique that
seeks to approximate the Bayes Optimal Classifier by sampling hypotheses from the
hypothesis space, and combining them using Bayes' law. Unlike the Bayes optimal classifier,
Bayesian model averaging can be practically implemented. Hypotheses are typically sampled
using a Monte Carlo sampling technique such as MCMC. For example, Gibbs sampling may
be used to draw hypotheses that are representative of the distribution P(T|H). It has been
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shown that under certain circumstances, when hypotheses are drawn in this manner and
averaged according to Bayes' law, this technique has an expected error that is bounded to be
at most twice the expected error of the Bayes optimal classifier. Despite the theoretical
correctness of this technique, it has been found to promote overfitting and to perform worse,
empirically, compared to simpler ensemble techniques such as bagging; however, these
conclusions appear to be based on a misunderstanding of the purpose of Bayesian model
averaging vs. model combination.

To realize the above techniques:
# Create a custom base learner library & specify the metalearner

h2o.gbm.1 <- function(..., ntrees = 43,
max_depth = 9,
min_rows = 9,
learn_rate = 0.125,
seed = 1)
h2o.gbm.wrapper(..., ntrees = ntrees,
max_depth = max_depth,
min_rows = min_rows,
learn_rate = learn_rate,
seed = seed)

h2o.deeplearning.1l <- function(..., hidden = c(120,120),

activation = "Rectifier”,
epochs = 10.87304,
seed = 1)

h2o.deeplearning.wrapper(..., hidden = hidden,
activation = activation,
epochs = epochs,
seed = seed)

learner <- c("h2o0.gbm.1", "h2o.deeplearning.1l")
metalearner <- c("SL.glm")

fit <- h2o.ensemble(x=predictors,
y=response,
data=train_holdout.hex,
family = 'binomial’,
learner = learner,
metalearner = metalearner)

After the this step we get to error rate at 10% and logloss = 0.45598.
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6.3 Compare output against hypothesis

The Forests of randomized trees or Gradient Tree Boosting are not precise as the
hypothesis expected. So, we need to find another model or ensemble more other models
together.

6.4 Abnormal case explanation

In the GBM boosting trees part, we found that if we keep boosting as more GBM with
one tree each depth, we will eventually get better results. Some may takes weeks to finish the
process, which can be essentially eliminating our error rate and good in the competition.
However, this is not the purpose of learning this project, here we decide not to pursue the
black box approach and decide to ensemble the two models together.

6.5 Discussion

To utilize an effective and good ensemble method, we have discussed a lot of different
combinations of algorithms and core models.

7. conclusions and recommendations

7.1 summary and conclusions

In this project, we have tried 7 classification models(include the ensemble ones) to
continuously decrease the error rate from 35% to 10%. The models we have used are listed
as follows: SVM, Decision Tree, Random Forest, Extremely randomized trees classifier,
Gradient Boosting Machine, Neural Network, Ensemble Gradient Boosting Machine and
Neural Network with Bayesian model averaging. The lowest precision we can get is 65% from
SVM, while the highest is 90% from Ensemble Gradient Boosting Machine and Neural
Network with Bayesian model averaging. So, we can conclude that it is very hard for one pure
training model to get a high precision even with the best parameters. For trees models, the
more number of trees in parameter, the more precision it can get. But, in order to break the
bottleneck, using ensemble techniques is necessary but time consuming.

7.2 recommendations for future studies

We can transmit csv training datasets into RDD.Then adopt spark distributed
computing and Amazon EC2 to break the hardware limitation on our project. So, we can
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ensemble more training models and find optimal parameters for each of them. Then, we can
get a higher precision.
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9. Appendices

9.1 program flowchart

scikit-learn
algorithm cheat-sheet

classification

dimensionality
reduction

9.2 program source code with documentation
Exploratory Analysis

Working environment: R, Rstudio, ggplot2, randomForest, Rstne

Feature correlation analysis:
https://github.com/lyladuan/kaggle/blob/master/correlation_visual.r

Feature importance analysis:https://github.com/lyladuan/kaggle/blob/master/varimp_rf.r
Classes visual using Rsne: https://github.com/lyladuan/kaggle/blob/master/rsne_visual.r
AUC ROC curve: https://github.com/lyladuan/kaggle/blob/master/roc_auc.r

Support vector machines (SVMs)

Working environment: Anaconda, IPython Notebook, Python 2.7, scikit-learn

https://qithub.com/edisonhmp/edisonhmp/blob/master/Support%20vector%20machines%20(S

VMs)
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Decision Trees (DTs)

Working environment: Anaconda, IPython Notebook, Python 2.7, scikit-learn

https://github.com/edisonhmp/Machine-L earning-Big-data-classification/blob/master/Decision
%20Trees%20(DTs)

Extremely Randomized Trees

Working environment: Anaconda, IPython Notebook, Python 2.7, scikit-learn

https://qgithub.com/edisonhmp/Machine-Learning-Big-data-classification/blob/master/Extremel
v%20Randomized%20Trees

Gradient Boosting Machines

Working environment: R, Rstudio, Xgboost, H20, Python3.4, Graphlab
xgboost: https://github.com/lyladuan/kaggle/blob/master/xgboost.r
h2o: https://github.com/lyladuan/kaggle/blob/master/h20_gbm_nn.r
Graphlab: https://github.com/lyladuan/kaggle/blob/master/graphlab.py

Deep Learning using Neural Network

Working environment: R, Rstudio, H20
h20: https://github.com/lyladuan/kaggle/blob/master/h2o_gbm_nn.r
Ensemble using GBM and ANN

Working environment: R, Rstudio, H20

https://qgithub.com/lyladuan/kaggle/blob/master/ensemble.r

9.3 input/output listing

Model Name Parameters Error rate
SVM Exhaustive Grid Search 35%
Decision Tree Default 30%
Random Forests n_estimators=10, 23%

min_samples_split=1,
random_state=0

Extremely randomized trees n_estimators=10, 22%
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classifier

min_samples_split=1,
random_state=0

Gradient Boosting Machine number of trees = 43, 15%
maximum depth = 9,
minimum of rows = 9 and
learning rate = 0.125
Deep learning -- Neural hidden layers = ¢(120, 120), 16%
Network learning rate = 0.005,
epochs = 10.87304.
Ensemble with Bayesian learner(GBM,Deep learning) 10%

model averaging
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