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Abstract

As one of the most important state-of-the-art classifi-
cation techniques, Support Vector Machine (SVM) has
been widely adopted in many real-world applications,
such as object detection, face recognition, text catego-
rization, etc., due to its competitive practical perfor-
mance and elegant theoretical interpretation. However,
it treats all samples independently, and ignores the fact
that, in many real situations especially when data are
in high dimensional space, samples typically lie on low
dimensional manifolds of the feature space and thus a
sample can be related to its neighbors by being rep-
resented as a linear combination of other samples on
the same manifold. This linear representation, which
is usually sparse, reflects the structure of underlying
manifolds. It has been extensively explored in the re-
cent literature and proven to be critical for the perfor-
mance of classification. To benefit from both the under-
lying low dimensional manifold structure and the large
margin classifier, this paper proposes a novel method
called Sparsity Preserving Support Vector Machine(SP-
SVM), which explicitly considers the sparse representa-
tion of samples while maximizing the margin between
different classes. Consequently, SP-SVM inherits both
the discriminative power of support vector machine and
the merits of sparsity. A set of experiments on real-
world benchmark data sets show that SP-SVM achieves
significantly higher precision on recognition task than
various competitive baselines including the traditional
SVM, the sparse representation based method and the
classical nearest neighbor classifier.

Introduction
Pattern classification is one of the most important problems
in machine learning, and Support Vector Machine(SVM)
(Vapnik 1963; 1998) is one of the most successful classi-
fication approaches. It has been widely used in many real-
world applications, such as face recognition (Guo, Li, and
Chan 2000), object detection (Felzenszwalb et al. 2010), text
categorization (Joachims 1998), image classification (Liu et
al. 2014; Wang, Ruan, and Si 2014; Shen, Liu, and Alle-
bach 2014), and so on. In many of these applications, SVM
is able to achieve very competitive performance compared
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with other approaches. Conventional SVM learns a classi-
fier in a fully supervised manner. Given a set of labeled
data samples, it aims to find the hyperplane that separates
samples of different labels with the largest margin. Later, it
is extended to the semi-supervised fashion (Belkin, Niyogi,
and Sindhwani 2006). This semi-supervised version of SVM
tries to preserve the neighborhood relation among the un-
labeled samples while searching for the separating hyper-
plane for those labeled samples. In this manner, both labeled
and unlabeled samples contribute to the final solution. How-
ever, it does not explore the neighborhood relation or local
structure among labeled samples, thus ignores the under-
lying manifold structure of labeled samples. Furthermore,
maximum margin clustering (Xu et al. 2004), which can be
viewed as an unsupervised counterpart of SVM, tries to find
hyperplane which separates the unlabeled samples with the
largest margin. Recently, with the rapidly increasing size of
data the speed of training becomes a concern for users. To
speed up the training process of SVM and deal with large
scale data, various optimization approaches are proposed,
such as Pegasos (Shalev-Shwartz, Singer, and Srebro 2007),
LIBLINEAR (Fan et al. 2008), and StreamSVM (Mat-
sushima, Vishwanathan, and Smola 2012). With the help of
these techniques, SVM is able to cope with large scale data
in relatively short time.

In many applications such as face recognition, while the
original data samples seem in a very high-dimensional fea-
ture space, they often actually lie on lower dimensional
manifolds of the feature space (Arandjelovic et al. 2005;
Shen and Si 2010; Wu, Shen, and Ling 2014; Liu et al.
2013). A reasonable assumption is that a sample can be rep-
resented as a sparse linear combination of other samples on
the same manifold. For classification, the samples are drawn
from different classes, which are typically on different man-
ifolds. For example, in face recognition, the face images of
the same person are on the same manifold while faces of
different people lie on different manifolds. A more subtle
assumption is that samples within the same class may still
lie on a mixture of manifolds. For example, the face images
of the same person with different facial expressions but the
same lighting condition are on one manifold, while the im-
ages with the same facial expression but different lighting
conditions are on another manifold. Because of the underly-
ing low dimensional manifold structure, the samples usually



have sparse representations with respect to certain dictionary
of base elements.

In recent years, sparse representation has been a surge of
interest in many communities including computer vision and
signal processing (Donoho 2006; Candes, Romberg, and Tao
2006; Elhamifar and Vidal 2009). Each sample can often
be represented as a sparse linear combination of other sam-
ples, and this linear representation is believed to be critical
for classification of high dimensional data samples (Wright
et al. 2009) such as face images. Moreover, even if the
linear combination is not sparse, it can also help in pat-
tern classification, which is known as collaborative repre-
sentation (Zhang, Yang, and Feng 2011; Yang et al. 2012;
2013), and our formulation is applicable to this situation as
well. The goal of our work is not to justify whether sparse
representation or collaborative representation is better, but to
consider the underlying manifold structure of training sam-
ples by incorporating linear representation into large margin
classifier. Due to the popularity of sparsity, in this paper we
focus on sparse representation, although our algorithm can
also be applied when the representation is dense.

This paper aims to combine the discriminative power of
SVM and the merits of sparse linear representation. The pro-
posed method explicitly exploits the local sparse structure
in the training samples. While seeking the separating hyper-
plane with large margin, the proposed algorithm preserves
the local sparse linear structure, thus called Sparsity Preserv-
ing Support Vector Machine(SP-SVM).

The algorithm is evaluated on multiple real-world
testbeds. It has been shown that the proposed algorithm
achieves substantially improved performance in terms of
precision than the traditional SVM, which benefits from ex-
ploiting the linear representation of samples.

Review of Related Techniques
In this section, we briefly review the large margin classifica-
tion algorithm SVM and the concept of sparse presentation.

Support Vector Machine
Given a set of labeled samples {(xi, yi)}ni=1, where xi ∈
Rm is the feature vector of the ith sample and yi is the cor-
responding label(for binary classification, yi ∈ {−1,+1}),
SVM learns a hyperplane that maximizes the margin be-
tween samples with different labels.

In order to learn the hyperplane w ∈ Rm, SVM solves the
following optimization problem:

min
w
C
∑
i

max(0, 1− yiwTxi) +
1

2
‖w‖22 (1)

The first term in (1) is the hinge loss, the second term
is a regularizer for w, and C is a parameter controlling the
tradeoff between the hinge loss and the regularization on w.
The explicit bias term is omitted here to simplify the prob-
lem while keeping it entirely general since the bias could be
easily introduced as an additional coordinate in the data.

Sparse Representation
In the real-world data, an observed sample x ∈ Rm often
has a sparse representation with respect to a dictionary D ∈
Rm×p. This indicates x = Dβ, where the coefficient vector
β ∈ Rp is sparse.

In real situations, usually the observation x is polluted by
noise, and thus we have x = Dβ+ ε, where ε ∈ Rm denotes
the noise term.

An interesting question is how to estimate the sparse
representation given the dictionary D and the sample x.
Lasso (Tibshirani 1996) is a popular approach for this task
since L1 norm penalty encourages the sparsity of the rep-
resentation (Donoho 2006) and it minimize the following
objective function:

β̂ = argmin
β

1

2
‖x−Dβ‖22 + λ‖β‖1. (2)

Note that this is a convex optimization problem, and there
exists various efficient solvers. Besides the simplicity and
efficiency, Lasso is also known to be able to select the few
important base elements from the dictionary D for the given
sample x.

Our Approach
Here we describe the formulation of the proposed approach,
which explicitly considers the sparse representation of sam-
ples on multiple manifolds while learning a large margin
classifier.

Formulation
Given a set of training samples, SVM learns a separating hy-
perplane by maximizing the margin between samples with
different labels. Even a sample is dense in the original fea-
ture space, it may still have sparse representation with re-
spect to some dictionary of base elements. One reasonable
explanation is that the samples reside on different mani-
folds, and a sample has a sparse representation on its man-
ifold (Goldberg et al. 2009), such as face images. Face im-
ages of the same subject reside on the same manifold while
images of different subjects reside on different manifolds.
However, SVM ignores the implicit sparse representation of
the samples, and consequently ignores the structure of the
underlying manifold.

Since SVM is trained on samples from different classes,
it is safe to assume these training samples come from differ-
ent manifolds. It is believed that the success of sparse rep-
resentation in face recognition benefits from this manifold
structure (Wright et al. 2009).

To encode the multiple manifold structure, the implicit
sparse representation of each sample with respect to the
other samples in the same class is calculated. In this way,
a sparse graph connecting n nodes is created to encode the
manifold structure, where n is the number of samples and
each node corresponds to a sample. It is worth noting that
we do not simply connect neighbors according to the Eu-
clidean distance, because even the samples in the same class
may still be from different manifolds(e.g. the face images of



a person with different facial expressions but with the same
lighting condition are likely to be on one manifold, while
the images with the same facial expression but with differ-
ent lighting conditions are on another manifold), and sam-
ples close to each other may still be on different manifolds,
especially near the intersection of manifolds. Sparse repre-
sentation not only weighs more on the selected samples that
are close to it, but also tends to select the samples on the
same manifold.

The graph created in the way described above results from
the sparse representation of each sample with respect to the
other samples, and thus conveys information of the under-
lying manifold structure. Our proposed classification algo-
rithm incorporates a preservation term defined based on this
sparse graph into the conventional SVM objective function,
and thus the proposed algorithm is able to preserve the graph
structure in the output space while learning a large margin
classifier.

Sparse Representation for Structure Encoding
Let xi be an arbitrary training sample and yi be the cor-
responding label. xi can be represented as a sparse linear
combination of the other training samples in the same class.
Let X be the matrix composed of all the training samples,
i.e. X = [x1, x2, ..., xn], each column of this matrix is the
feature vector of a training sample.

To relate sample xi with its neighbors, we need to es-
timate the linear combination coefficients, which encode
the structure information around sample xi. To achieve this
goal, we solve the following optimization problem:

S.i =argmin
β

1

2
‖xi −Xβ‖22 + λ‖β‖1

s.t. βi = 0

βj = 0, if yj 6= yi,

(3)

where β is vector and βk is the coefficient for sample xk.
In many cases, we are more interested in the local sparse
structure. Consequently, xi can be represented as a sparse
linear combination of its neighbors. Let N (xi) denote the
set of neighboring samples of xi, either k nearest neigh-
bors or ε neighbors. The related optimization problem is then
modified into:

S.i =argmin
β

1

2
‖xi −Xβ‖22 + λ‖β‖1

s.t. βi = 0

βj = 0, if yj 6= yi or xj /∈ N (xi).

(4)

The neighboring constraint introduces locality of the
sparse representation, and it also highly reduces computa-
tional cost especially when the number of training samples
is large while k is relatively small.

Let S ∈ Rn×n be the matrix composed of the
sparse representation of all the training samples, i.e. S =
[S.1, S.2, ..., S.n]. It describes the geometrical information
conveyed by the training data.

Sparsity Preserving Support Vector Machine
For a sample xi with sparse representation S.i, its identity
is closely related to the samples corresponding to nonzero
coefficients of S.i.

Since the geometrical structure information encoded
by the sparse representation S is critical for classifica-
tion (Wright et al. 2009), we would like to preserve
this while training the discriminative large margin clas-
sifier. For convenience of presentation, we introduce two
new notations. Let Y ∈ R1×n be a row vector com-
posed of the labels of all the training samples, i.e. Y =
[y1, y2, ..., yn]. Let f(X) ∈ R1×n be the output of the
classifier when applied to all the training samples, i.e.
f(X) = [f(x1), f(x2), ..., f(xn)]. Specifically, for linear
SVM, f(X) = wTX . Again, the bias term is omitted here
for convenience without sacrificing the generality of the
problem.

In the input space, we have X ≈ XS because of the first
terms in the optimization problems (3) and (4). To preserve
the structure information, it is preferable to ensure f(X) ≈
f(X)S, which can be gained by minimizing:

N∑
i=1

‖f(xi)− f(X)S.i‖22

=‖f(X)(I − S)‖22
=f(X)(I − S)(I − S)T f(X)T

=wTXTXTw,

(5)

where S.i is the ith column of the matrix S and T = (I −
S)(I − S)T .

By incorporating the term above to SVM, we get the fol-
lowing optimization problem:

min
w
C
∑
i

max(0, 1− yiwTxi) +
1

2
‖w‖22

+
ν

2
wTXTXTw.

(6)

The first two terms are inherited from the conventional
SVM: the first term is the hinge loss of training samples,
and the second term is standard L2 norm regularizer. The
third term tries to preserve the sparse structure information,
and the parameter ν controls how much weight we put on
the structure preservation. We call this technique Sparsity
Preserving Support Vector Machine(SP-SVM) since it tries
to preserve the structure reflected by sparse representation
while learning a large margin classifier.

When ν is equal to 0, SP-SVM reduces to the conven-
tional SVM; when C is equal to 0, it reduces to learning
a mapping direction which preserves the sparse structure
rather than a classifier since it does not incur any loss if a
sample is wrongly classified. More interestingly, when the
parameter λ in Equation (4) is equal to 0, minimizing the ob-
jective function above turns out to be learning a large margin
classifier that preserves the neighborhood information.



The objective function of SP-SVM is in the form of
quadratic programming, which is the same as the conven-
tional SVM. This can be efficiently solved by standard op-
timization toolboxes. Also, many of the techniques (Platt
and others 1998; Shalev-Shwartz, Singer, and Srebro 2007)
that help to speed up the conventional SVM could be eas-
ily adapted to SP-SVM without much modification. In our
implementation, we use Quasi-Newton method to minimize
the objective function by relying on the subgradient.

Overall, the training process of SP-SVM involves the
computation of the sparse graph S, and a quadratic program-
ming problem. The algorithm flow is listed in the Algorithm
1. The testing process of SP-SVM is exactly the same as
the conventional SVM. The label of a testing sample x is
predicted as sign(w>x), where sign(.) is the simple sign
function.

Experiments
In this section, we describe the experimental settings, and
show and briefly analyze the results of our proposed algo-
rithms, sparse representation and conventional SVM.

Experimental Settings
In the experiments, three benchmark data sets including
Extended Yale B database (Georghiades, Belhumeur, and
Kriegman 2001), AR database (Martinez 1998), and CMU
PIE database (Sim, Baker, and Bsat 2002) are used to evalu-
ate the performance of our proposed algorithm. The images
are cropped to 32 × 32 and power normalized (Perronnin,
Sánchez, and Mensink 2010). For each data set, the data
are randomly split into training set and testing set. We ran-
domly select images per category for training and the rest for
testing. Since for the face recognition task we usually have
very limited training samples for each person in real situa-
tions, our experiments use 10 training samples per category.
It is shown that for the Extended Yale B database and AR
database, experiments with 10 training samples per category
already achieve very high precision(98.21% and 97.63%);
for CMU PIE database, the precision is around 90%, which
allows space to improve. Then, specifically, for CMU PIE
database, we conduct more experiments with more training
samples per category, and the details are reported later.

To make the results more convincing, the experimental
process is repeated 10 times, and the mean and standard de-
viation of the classification accuracy are recorded.

Algorithm 1 SP-SVM Training

Require: Data samples X = [x1, x2, ..., xn], sample labels
Y = [y1, y2, ..., yn], λ, ν and k

1: for i = 1;k ≤ n;i++ do
2: Compute Si according to Equation 4
3: end for
4: Formulate S = [S1, S2, ..., Sn] and compute T
5: Compute the w by solving the quadratic programming

problem in Equation 6
6: return w

Sparse representation (SR) (Wright et al. 2009) explores
the sparsity of the given sample, and achieves high precision
in recognition, and is considered as one of the state of art
approaches for face recognition. SVM is a popular and com-
petent technique for many classification problems including
face recognition. In our experiments, the proposed SP-SVM
algorithm is compared with these two algorithms, as well as
the classical and popular approach: nearest neighbor classi-
fication(NN).

Given a testing sample, SR calculates its sparse linear rep-
resentation with respect to all the training samples by Equa-
tion 2, where x is the testing sample and D is composed
of all the training samples. Feature-sign search algorithm
(Lee et al. 2007) is used for solving sparse representation.
Then the identity of the testing samples is determined by
the fitting error. For SVM, the implementation of LIBSVM
(Chang and Lin 2011) is adopted for its robustness and pop-
ularity. For SP-SVM, S is calculated according to Equation
4, where N (xi) denotes the set of k nearest neighbors of
xi. One against all multi-classification strategy is adopted
by both SVM and SP-SVM.

In our experiments, there are four parameters to set: C,
ν, k and λ. C is varying on the grid of {20, 21, · · · , 25}
for both SVM and SP-SVM. ν is varying on the
grid of {2−1, 20, · · · , 24}. λ is studied on the grid of
{10−4, 10−3, · · · , 101} for sparse representation algorithm.
For k, we consider the set {1, 3, 5, 7, 9}. For the main exper-
iments, k is set to 5, since the performance is not sensitive
to k when k ≥ 3 as we will show below.

Extended Yale B Database

Figure 1: Examples of the Extended Yale B database

The Extended Yale B database contains 2414 frontal face
images of 38 individuals, which were captured under vary-
ing illumination conditions. Figure 1 shows some sample
images from this database.

Figure 2(a) shows the precision of SP-SVM, SVM, and
SR with varying parameter C. As C increases, the perfor-
mance of SVM and SP-SVM ν = 22 firstly increases, till to
the optimal value around C = 23, and then it decreases.
From the figure, we can see that SR outperforms SVM,
which does not consider the sparse representation. How-
ever, when the large margin classifier is coupled with spar-
sity preserving, the resulting algorithm, SP-SVM, achieves a
high precision of 98.13%, which is far beyond SR(95.44%).
This demonstrates the importance of the sparsity preserv-
ing. SR method considers the compact representation of the
data samples and explores the underlying structure, while
SVM focuses on the margin between different classes. Both



Table 1: Performance comparison on three benchmark data sets (%).

Methods NN SR SVM SP-SVM
Extended Yale B 51.45± 0.75 95.44± 0.57 94.83± 0.65 98.13± 0.46
CMU PIE 43.66± 0.88 84.55± 1.06 85.10± 0.81 90.02± 0.54
AR 49.72± 1.67 92.73± 0.33 93.67± 0.76 97.60± 0.36
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23, ν = 22, and λ = 0.01 for
SP-SVM, C = 23 for SVM,
λ = 0.01 for SR)

Figure 2: Precision(%) of SP-SVM, SVM and SR with different parameter settings on Extended Yale B database

of these two facets are important for the classification, and
thus when combining these two, the precision is significantly
boosted.

The effect of parameter ν is also studied. We fix C = 23,
and vary the value of ν. The precision(%) of SP-SVM is re-
ported in Figure 2(b). As ν increases, the performance of
SP-SVM increases, till to the optimal ν = 22. We can also
see that regardless of what value the ν is(as long as ν is
in that range), the precision of SP-SVM always outperforms
both SR and SVM. This further demonstrates the importance
of combining of these two facets. Actually, it is not diffi-
cult to see that when ν = 0, SP-SVM degenerates into the
conventional SVM; when ν = +∞, the learning process of
SP-SVM becomes the same as SR, though the prediction is
different.

The effect of λ is shown in Figure 2(c), which shows the
precision(%) of SP-SVM and SR with varying parameter λ.
The precision achieved by SR algorithm is very sensitive to
the value of λ, especially when λ > 0.1. When λ = 10, the
precision is only 67.80%. However, the precision achieved
by SP-SVM changes slowly with varying λ. Again, this in-
sensitivity to λ should be due to the combination of the large
margin and sparse representation. The effect of parameter λ
for the other two data sets is nearly the same as for Extended
Yale B database, i.e., the performance is not sensitive to λ,
we omit these figures due to the space limit.

Figure 2(d) shows the precision(%) of SP-SVM with
varying parameter k. The experiments are conducted for
k ∈ {1, 3, 5, 7, 9}. When k = 1, the precision is very low.
When k ≥ 3, the precision is relatively consistent. The rea-
son may lie in the fact that it is difficult to fit the target sam-
ple with only one neighbor. When there are more samples,
sparse representation will be able to select the homogenous

neighbors to fit the data point.
After all, the experimental results (when λ = 0.01, C =

23, ν = 22 and k = 5) are listed in Table 1, which shows the
precision of SP-SVM is 3.30% higher than SVM and 2.69%
higher than SR, while the standard deviation of all the three
algorithms is smaller than 0.7%.

CMU PIE Database

Figure 3: Examples of CMU PIE database

In the CMU PIE database, there are totally 41, 368 images
of 68 people, each person under 13 different poses, 43 differ-
ent illumination conditions, and with 4 different expressions.
Thus, the images in the same category may still lie on mul-
tiple manifolds. We select the images with five near frontal
poses (C05, C07, C09, C27, C29) and all different illumina-
tions and expressions. There are about 170 images for each
individual and totally 11, 554 images. Figure 3 shows some
sample images from this database.

The results of SR, SVM, NN, and SP-SVM on PIE
database are listed in Table 1 when λ = 0.01, C = 23,
ν = 21 and k = 5. The precision of SP-SVM is 4.92%
higher than SVM and 5.47% higher than SR. Both of these
gains are significant since the standard deviation is quite
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Figure 4: Precision(%) of SP-SVM, SVM and SR with dif-
ferent parameter settings on CMU PIE database

small. Moreover, Figure 4(a) shows the precision of SP-
SVM, SVM and SR with varying parameter C, and Figure
4(b) studies the effect of varying ν.

We find that for this dataset, the precision resulted from
10 training images per category is only about 90%. Then,
a further experiment is conducted with 20 training images
per category. With this new setting, SR achieves an aver-
age precision of 92.65% with a standard deviation of 0.53%,
conventional SVM achieves 93.10% with a standard devia-
tion of 0.42%, and the proposed SP-SVM still gets the best
performance, which is 94.88% with a standard deviation of
0.22%. Although the precisions of all algorithms increase
as the number of training samples increases, the proposed
SP-SVM still outperforms the other two baseline algorithms
substantially.

AR Database

Figure 5: Examples of AR database

There are over 4, 000 frontal images for 126 individuals
in AR database. We choose a subset consisting of 50 male
and 50 female categories. There are 26 images for each cat-
egory. Compared with two other data sets, the AR database
includes more facial variations, such as illumination change,
various expressions, and facial disguises. Please refer to Fig-
ure 5 for examples.

Again, the face recognition experiments are conducted
with the standard setting. The results with λ = 0.01, C =
23, ν = 22 and k = 5 are reported in Table 1. The SP-SVM
algorithm has much higher precision than SVM(by 3.93%)
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Figure 6: Precision(%) of SP-SVM, SVM and SR with dif-
ferent parameter settings on AR database

and SR (by 4.87%). Also, the standard deviation is quite
small so that we can conclude that SP-SVM outperforms
the others significantly. Figure 6(a) shows the precision of
SP-SVM, SVM and SR with varying parameter C, and Fig-
ure 6(b) shows the precision(%) of SP-SVM with varying
parameter ν with C = 23. In this wide range of C and ν,
SP-SVM consistently outperforms SVM and SR.

Conclusion and Future Work
Support vector machine is one of the most popular state-
of-art classification techniques. It not only has elegant the-
oretical interpretation, but also achieves competitive perfor-
mance on many real-world tasks. Sparse representation ex-
plores the underlying manifold structure of data samples,
and is proven to be critical for classification problems, espe-
cially face recognition. This paper proposes a new classifi-
cation technique called SP-SVM, which combines the large
margin of SVM and the power of sparse representation. The
new classifier not only explores the superability of samples
with different labels, but also considers the sparse relation
among them, which encodes the underlying manifold struc-
ture information. Experimental results show that SP-SVM
gains significantly better performance on face recognition in
terms of precision than both SVM and sparse representation.

For future work, it is worth exploring to extend this sparse
graph S based regularizer to semi-supervised fashion of
SVM to handle a mixture of labeled and unlabeled data sam-
ples, or even the fully unsupervised version of SVM, which
is maximum margin clustering. Also, another interesting di-
rection would be to study the nonlinear version of SP-SVM,
and to adopt the kernel trick into this framework.
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