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ABSTRACT
With an ever increasing amount of data available on the web, fast
similarity search has become the critical component for large-scale
information retrieval systems. One solution is semantic hashing
which designs binary codes to accelerate similarity search. Recently,
deep learning has been successfully applied to the semantic hashing
problem and produces high-quality compact binary codes compared
to traditional methods. However, most state-of-the-art semantic
hashing approaches require large amounts of hand-labeled train-
ing data which are often expensive and time consuming to collect.
The cost of getting labeled data is the key bottleneck in deploying
these hashing methods. Motivated by the recent success in machine
learning that makes use of weak supervision, we employ unsu-
pervised ranking methods such as BM25 to extract weak signals
from training data. We further introduce two deep generative se-
mantic hashing models to leverage weak signals for text hashing.
The experimental results on four public datasets show that our
models can generate high-quality binary codes without using hand-
labeled training data and significantly outperform the competitive
unsupervised semantic hashing baselines.
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1 INTRODUCTION
Computing document similarity is one of the most important tasks
for large-scale information retrieval problems including web search,
document clustering, and recommendations. As massive web infor-
mation has incurred high computational cost, it is crucial to develop
a similarity search solution with computational efficiency and high
accuracy. A practical solution is semantic hashing [1] which aims
to design compact binary codes to represent documents. It has re-
cently gained much attention since performing similarity search
on binary codes only requires an inexpensive Hamming distance
function which is counting bitwise differences. Another benefit of
using binary codes is memory efficiency as a binary vector can be
squeezed into a memory address.
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Deep learning has gained tremendous popularity due to its re-
markable performance onmany important tasks in computer vision,
speech recognition, and natural language processing. It can discover
novel features from raw input without the need of feature engineer-
ing, and deep learning models are often trained efficiently with the
backpropagation algorithm on massive high-dimensional data. Re-
cently, deep learning has been successfully applied to the semantic
hashing problem for image and text similarity search [2, 3].

Due to the ease of modeling and the excellent performance of
supervised hashing models, most deep hashing models are designed
to leverage human-labeled data such as tags and categories. When
we evaluate the performance of the similarity search using labels as
relevant judgments, the supervised learning model can directly map
the input documentswith the same labels to the similar binary codes.
Since the unsupervised hashing models cannot directly observe the
ground truth, the models need to exploit the structure of the data
to infer the true labels of the documents. In spite of the difficulty
in modeling under the unsupervised setting, generating binary
codes without hand-labeled data is very practical because acquiring
hand-labeled data is costly and time-consuming in many real-world
scenarios.

To improve the performance of unsupervised hashing models is
quite challenging due to the lack of labels. In this paper, we attempt
to utilize the relationships between documents to gather more in-
formation from training data. Specifically, we use unsupervised
ranking methods such as BM25 [4] to identify the k-nearest docu-
ments for every query document. The additional documents serve
as a weak signal1 that may reveal the structure of the document
space which can be used to generate a better binary code. However,
since the weak signals are often noisy, the learning model must
be able to handle the noise introduced by BM25. Due to the suc-
cess of deep generative models [5] for learning a low-dimensional
space from high-dimensional data, we proposed two deep genera-
tive models to learn a compact binary code from text documents
together with their supplementary neighborhood information. We
summarize our main contribution as follows:

• We mitigate the lack of labeled data by using unsupervised
ranking to approximate the true document space.

• We design two deep generative models to leverage the con-
tents of the documents and the estimated neighborhood for
learning a semantic hash function.

• Experiments results on four large public text corpora demon-
strate that our models outperforms competitive unsuper-
vised text hashing models.

1Although some works define a weak supervision as a less precise label, in this paper
we refer a weak supervision as using noisy and low-quality data without the need of
an external data source.
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2 RELATEDWORK
There exist extensive studies in learning data-dependent hash func-
tions [2, 6]. Due to the space constraint, we provide a brief review of
the two most relevant works to ours. 1) Self-Taught Hashing (STH)
[7]: this model aims to preserve the k-nearest neighborhood for
each document. The major difference from ours is that this model
excludes document features and only considers the document con-
nectivity. 2) The unsupervised Variational Deep Semantic Hashing
(VDSH) [3] is a deep generative model that aims to preserve the
content of each training document. It has an autoencoder architec-
ture which is similar to ours, but VDSH does not explicitly preserve
the document neighborhood.

The use of BM25 as a weak annotator is similar to [8] which
uses the output from the BM25 ranking model to train a ranking
model based on feedforward neural networks. However, the role of
the weak signals is different from ours. We use the weak signals to
estimate the true document space while the work [8] uses the weak
signals as relevance scores. Another line of works that employs
the k-nearest documents as weak signals is the query language
modeling. The k-nearest documents are used to solve the vocabulary
gap between queries and documents. Somemethods such as pseudo-
relevance feedback is commonly used and mentioned in the query
expansion literature [9].

3 METHODS
3.1 Document Space Estimation
If we have the label information, we can estimate the true document
space where all documents with the same labels are nearby.Without
the labels, we attempt to use a vector space model to estimate the
document space. In the vector space, a document is a fixed-length
vector, and the cosine similarity measures the distance between
document vectors. Due to the competitive performance of BM25
[4], we represent each document as a bag-of-words vector using
the BM25 weighting scheme. For every document d which acts as
a pivot document, the BM25 will retrieve the k-nearest documents,
denoted as a set of neighbor documents NN(d). We assume that a
majority of documents in NN(d) share the same label as its pivot
document d , hence a binary code of any document within the same
proximity in the vector space model should be more similar.

3.2 Neighborhood Recognition Model (NbrReg)
Instead of learning a binary code directly, we will learn a continuous
distribution to generate semantic vector s [3]. We use the following
generative story for documents:

• Draw a semantic vector s from a standard normal, N(0, 1).
• For a unique wordwi in a pivot d :
– Drawwi from PA(wi |s).

• For each unique word w̃ j in the neighborhood set NN(d):
– Draw w̃ j from PB (w̃ j |s)

NN(d) is a set of the k-nearest documents of the pivot document
d . We set document likelihood P(d) =

∏
i PA(wi |s) and neighbor-

hood likelihood P(NN(d)) =
∏

j PB (w̃ j |s) as a product of word
probabilities.

The objective function is obtained by maximizing the varia-
tional lowerbound of the log data likelihood of P(d,NN(d)) =
P(d)P(NN(d):

log P(d,NN(d)) = log
∫
s
P(d |s)P(NN(d)|s)P(s)ds

≥ EQ (s | ·)
[

log P(d |s)
]
+ EQ (s | ·)

[
log P(NN(d)|s)

]
− DKL(Q(s |·) ∥ P(s)) (1)

where Q(d |·) is an approximate posterior distribution that will be
learned from the data. The dot · notation is a placeholder for the
input random variables. There are many ways to define Q(d |·); we
will define Q in Section 3.4. P(d |s) measures how well s represents
the global meaning of d . Similarly, P(NN(d)|s) determines how
well s represents the global meaning of the neighborhood of d .
The Kullback-Leibler divergence (DKL) measures the deviation of
Q(d |s) from P(s) = N(0, 1).

3.3 Decoder Function
P(d |s) and P(NN(d)|s) are viewed as decoder functions and defined
as a product of word probabilities2:

P(d |s) =
∏
i
PA(wi |s) =

∏
i

exp{sTAei }
exp{

∑
j s

TAej }
(2)

where ei is the one-hot encoded vector of the ith unique wordwi
in d . Matrix A maps semantic vector s to a word embedding space.
P(NN(d)|s) has a similar definition as Eq.2 while we use a different
matrix B as the mapping matrix. The reason to maximize only
unique words found in the set of neighbor documents is because
we do not want to overcount some bad signals which are words
observed in any document that does not have the same label as the
pivot document. As a result, we also undercount good words which
serve as good signals.

3.4 Encoder Function
We define Q(s |·) as a normal distribution parameterized by the
pivot documents d : Q(s |·) = N(s; f (d)). Function f maps d to
mean µ and standard deviation σ . Since there are two distribution
parameters, we need to definemapping function for each parameter:
f = ⟨fµ , fσ ⟩. We use feedforward neural networks as a functional
form of fµ and fσ :

fµ (d) =Wµ · h(d) + bµ fσ (d) =Wσ · h(d) + bσ (3)

h(d) = relu
(
W2 · relu

(
W1 · d + b1

)
+ b2

)
(4)

whereW· and b · are weight and bias of a single-layer feedforward
neural network. fµ and fσ transform d to µ and σ so that semantic
vector s can be sampled from Q :

s ∼ Q(s |d) = N(s; µ = fµ (d),σ = fσ (d)) (5)

Computing the gradient of Eq.1 requires estimation. We use
Monte Carlo to estimateEQ (s |d )

[
log P(d |s)

]
≈ 1

|S |
∑ |S |
i=1 log P(d |s(i))

2Weomit the definition of neighborhood likelihood function due to the space limitation.



where s(i) ∼ Q(s |d). But the gradient estimated by Monte Carlo
has a high variance and will be difficult for the models to learn. [5]
uses the reparameterization trick to turn distribution Q(s |d) to a
low-variance gradient estimator3:

s ∼ д(fµ (d), fσ (d),ϵ) = ϵ · fσ (d) + fµ (d), ϵ ∼ N(0, I ) (6)

Similar to Variational Autoencoder [5], this step introduces an-
other random variable ϵ as a source of randomness and applies
scale and shift on ϵ to derive s which resulted in a deterministic
objective function.

3.5 Utilize Neighbor Documents (NbrReg+Doc)
The NBrReg model generates a semantic vector from the distri-
bution that depends only on the pivot document. However, the
neighbor documents also provide useful signals to enhance repre-
sentation learning. For instance, a set of words used by neighbor
documents could indicate a theme of all documents in that region.
However, the additional words from neighbor documents are noisy
and may confuse the models. To alleviate the influence of bad sig-
nals, we use the feedforward neural networks to learn a hidden
vector for every document in the neighbor document set and apply
a mean pooling layer to compute the centroid of the neighborhood.
We modified Eq.34 to accommodate the neighbor documents:

ZNN = relu
(
W NN

2 · relu
(
W NN

1 · NN(d) + bNN1
)
+ bNN2

)
(7)

hNN(NN(d)) = mean(ZNN) (8)
fµ (d,NN(d)) =Wµ · (h(d) + hNN(NN(d)) + bµ (9)

Eq.9 is an encoder function that adds a hidden vector of the pivot
document (From Eq.4) with a centroid of its neighborhood. The de-
coder remains the same as NbrReg model. Consequently, the model
takes both pivot and neighbor documents as well as reconstructs
the input back. The objective function is the same as Eq.1.

3.6 Binarization
We use the encoder functionQ(s |·) to generate a continuous seman-
tic vector for a new document d . We take the mean of the encoder
function as the output semantic vector, s̄ = E

[
Q(s |·)

]
. We use the

median method [10] to generate binary code b from s̄ . That is we
set the kth bit of b to 1 if the kth dimension of s̄ is larger than
the threshold; otherwise, we set the kth bit to 0. We determine the
threshold value by computing the median value of the semantic
vector in the training set.

4 EXPERIMENTAL SETUP
We use four public text collections for evaluations. 1) Yahoo! An-
swers5 We select the ten largest categories and use question title,
content, and the best answer. The final dataset has 207,261 docu-
ments . 2) AG’s news6 We select the four largest categories and
use the title and description. The resulting data set contains 132,912

3https://ermongroup.github.io/cs228-notes/extras/vae/
4fσ is similarly defined.
5https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
6http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

news articles. 3) DBPedia7 We select 14 largest classes and sample
107,559 Wikipedia articles. 4) 20Newsgroups8 A text collection
for text classification comprised of 18K forum posts on 20 topics.
For each dataset we split into three subsets with 80% for training,
10% for validation, and 10% for testing.

We compare the performance of the proposed models with
the following unsupervised semantic hashing models: VDSH9 [3],
STH10 [7], Laplacian co-hashing (LCH) [11], Spectral Hashing (SpH)
[10], and Locally Sensitive Hashing (LSH)11 [12]. We used cross-
validation to select the hyperparameters for the baselines. The size
of the neighborhood for SpH, STH, LCH, and our models is set to
20. Since our goal is to demonstrate the effectiveness of the pro-
posed models without using supervisory signals, we do not include
supervised text hashing models. We also include the BM25 model
as the additional baseline.

We train the models using training samples and use the encoder
function to generate binary codes. We use the Hamming distance
to retrieve 100 closest training documents for each test query. Sim-
ilar to prior works [3, 7, 13, 14], a training document that shares
the same label with the test document is considered relevant. We
employ average Precision at 100 (Prec@100) which is the ratio of
relevant documents over the number of retrieved documents. We
report the average Prec@100 over all test documents.

5 EXPERIMENTAL RESULTS
Table 1 presents the performance of all models from 8 to 128 bits.
On the large dataset (DBPedia, Yahoo, AgNews), the NbrReg model
outperforms the baselines while the NbrReg+Doc model yields the
best results on the small dataset (20NG). These results demonstrate
that the weak signals generated by BM25 are helpful in learning
binary codes.

We observe that NbrReg excels in the large datasets, which indi-
cates that as long as we have enough data encouraging a semantic
vector to recognize its neighborhood is more effective than us-
ing the neighborhood as the input. Interestingly, the NbrReg+Doc
model performs extremely well on 20NG. We believe that when
the training set is small, NbrReg+Doc uses more data than NbrReg
by taking neighbor documents as an additional input. This allows
NbrReg+Doc learns a better representation.

The performance is correlated with the number of bits. As the
number of bits increases, the models can pack more relevant in-
formation into a semantic vector. When the number of bits is 8
or 16 bits, our models generally perform better than the models
that do not use the document’s contents such as STH and LCH.
This shows that utilizing the contents is useful under a very low-
dimensional constraint. Our models also outperform VDSH model
on most configurations. It shows that the neighbor documents as
side information are useful signals for the learning models.

Figure 1 shows the performance of our models as we vary the
size of the neighborhood. When we train the models with more
neighbor documents, the models generate better binary codes. One

7http://wiki.dbpedia.org/Datasets
8http://scikit-learn.org/stable/datasets/twenty_newsgroups.html
9https://github.com/unsuthee/VariationalDeepSemanticHashing
10STH, LCH, SpH: http://www.dcs.bbk.ac.uk/~dell/publications/dellzhang_sigir2010/
sth_v1.zip
11http://pixelogik.github.io/NearPy/
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DBPedia YahooAnswers (Yahoo)
Method 8-bits 16-bits 32-bits 64-bits 128-bits 8-bits 16-bits 32-bits 64-bits 128-bits
LSH [12] 0.0904 0.1040 0.1385 0.1815 0.2506 0.1037 0.1066 0.1107 0.1215 0.1406
SpH [10] 0.4246 0.6083 0.6877 0.6879 0.6787 0.1430 0.1710 0.2204 0.2416 0.2195
LCH [11] 0.2484 0.4556 0.6663 0.7527 0.7907 0.2149 0.3593 0.4559 0.5158 0.5323
STH [7] 0.2381 0.3734 0.5589 0.6903 0.7812 0.2991 0.3808 0.4627 0.5138 0.5304
VDSH [3] 0.6289 0.6951 0.7783 0.8068 0.8588 0.3636 0.4291 0.4611 0.5094 0.5212
NbrReg 0.6775▲ 0.7540▲ 0.8250▲ 0.8489▲ 0.8683 0.4179 0.4682▲ 0.5087▲ 0.5298 0.5396

NbrReg+Doc 0.6144 0.7437▲ 0.7996▲ 0.8238 0.8373▽ 0.4078 0.4565▲ 0.4964▲ 0.5163 0.5255
20Newsgroups (20NG) AgNews

LSH [12] 0.0533 0.0558 0.0587 0.0635 0.0720 0.2557 0.2620 0.2713 0.2948 0.3271
SpH [10] 0.0548 0.0567 0.0896 0.1286 0.1218 0.3687 0.4082 0.4359 0.4671 0.5011
LCH [11] 0.1804 0.3075 0.4255 0.4801 0.4688 0.7363 0.7689 0.7789 0.7913 0.7913
STH [7] 0.2337 0.3415 0.4132 0.4340 0.4142 0.6922 0.7541 0.7977 0.8181 0.8243
VDSH [3] 0.2905 0.3125 0.3346 0.3364 0.3874 0.7078 0.7173 0.7471 0.7868 0.8071
NbrReg 0.3463▲ 0.4120▲ 0.4644▲ 0.4768 0.4893▲ 0.7446 0.7831▲ 0.8114 0.8299 0.8320

NbrReg+Doc 0.3910▲ 0.4470▲ 0.4898▲ 0.5118▲ 0.5265▲ 0.7315 0.7984▲ 0.8149 0.8233 0.8316
Table 1: Precision of the top 100 retrieved documents on four datasets with different numbers of hashing bits. The bold font
denotes the best result at that number of bits. ▲ or ▽ denote the improvement or degradation over the best result of the
baselines is statistically significant based on the paired t-test (p-value < 0.05).
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Figure 1: Precision@100 for various neighborhood sizes on
the proposed models with the 32-bit hash code.

explanation is that as we increase the size of neighborhood, we ex-
plicitly preserve more information in the document space. However,
the performance does not improve after we reach the neighbor-
hood size of 50. We also compare the performance of our models
with BM25 model. It shows that our models outperform BM25 on
the document similarity retrieval task because both NbrReg and
NbrReg+Doc keep only important information via the dimensional

reduction while BM25 model keeps all words and contains more
noise.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed two deep generative models for text
hashing by utilizing weak signals generated by the unsupervised
ranking model BM25. Based on the experimental results, we found
that explicitly preserving the content of documents and neighbor-
hood is an effective strategy for learning binary codes. In the future,
we would like to investigate different kinds of signals from other in-
expensive external data sources such as click-through data. Another
promising direction is to extend our models for the semi-supervised
learning setting.
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